YET ANOTHER X-RANK
CHARACTERIZATION OF RATIONAL NORMAL CURVES

E. Ballico
Department of Mathematics
University of Trento
38 123 Povo (Trento) - Via Sommarive, 14, ITALY

Abstract: Fix positive integers $s, k_i, 1 \leq i \leq s$, such that $k_1 \geq 2$ and $2k < n$, where $k := k_1 + \cdots + k_s$. Let $X \subset \mathbb{P}^n$ be an integral and non-degenerate curve. For any $P \in \mathbb{P}^n$ the X-rank $r_X(P)$ of P is the minimal cardinality of a set $S \subset X$ such that $P \in \langle S \rangle$. We prove that X is not a rational normal curve if and only if the following condition holds: fix s general points $P_1, \ldots, P_s \in X_{reg}$ and set $Z := \sum_{i=1}^s k_i P_i$; then there is some $P \in \langle Z \rangle$ such that $P \notin \langle Z' \rangle$ for any $Z' \subsetneq Z$ and $r_X(P) \leq n + 1 - k$.

Moreover, if X is not a rational normal curve and we fix a finite set $E \subset X$, then we may find a set $S \subset X \setminus E$ with $\sharp(S) \leq n + 1 - k$ and $P \in \langle S \rangle$.

AMS Subject Classification: 14H50, 14N05
Key Words: X-rank, rational normal curve

1. Introduction

Let $X \subset \mathbb{P}^n$ be an integral and non-degenerate variety defined over an algebraically closed field \mathbb{K}. For any $P \in \mathbb{P}^n$ the X-rank $r_X(P)$ of P is the minimal cardinality of a finite set $S \subset X$ such that $P \in \langle S \rangle$, where $\langle \cdot \rangle$ denote the linear span. In characteristic zero we have $r_X(P) \leq n + 1 - \dim(X)$ for any X and any P (see [5], Proposition 4.1). In positive characteristic this is true, except
for at most one P (see [1]). In this short note we prove the following result.

Theorem 1. Fix positive integers s, k_i, $1 \leq i \leq s$, such that $k_1 \geq 2$ and $2k < n$, where $k := k_1 + \cdots + k_s$. Let $X \subset \mathbb{P}^n$ be an integral and non-degenerate curve. X is not a rational normal curve if and only if the following condition ♠ holds:

Condition ♠: Fix s general points $P_1, \ldots, P_s \in X_{\text{reg}}$ and set $Z := \sum_{i=1}^{s} k_i P_i$. Then there is some $P \in \langle Z \rangle$ such that $P \notin \langle Z' \rangle$ for any $Z' \subset Z$ and $r_X(P) \leq n + 1 - k$.

Moreover, if X is not a rational normal curve and we fix a finite set $E \subset X$, then we may find a set $S \subset X \setminus E$ with $\sharp(S) \leq n + 1 - k$ and $P \in \langle S \rangle$.

In the case $k_i = 1$ for all i we prove the following result.

Theorem 2. Fix integers $k \geq 2$ and $n > 2k$. Let $X \subset \mathbb{P}^n$ be an integral and non-degenerate curve. Fix a general $Z \subset X$ such that $\sharp(Z) = s$. X is not a rational normal curve if and only if there is some $P \in \langle Z \rangle$ such that $P \notin \langle Z' \rangle$ for any $Z' \subset Z$ and $W \supseteq Z$ for every set $W \subset X$ such that $\sharp(W) \leq n + 1 - k$, $W \cap Z = \emptyset$ and $P \in \langle W \rangle$. Moreover, if X is not a rational normal curve for any fixed finite set $E \subset X$ we may find W as above with $W \cap E = \emptyset$.

Instead of $W \cap Z = \emptyset$ we may assume $W \not\subset Z$.

Question 1. For general Z is it possible to take as P a general element of $\langle Z \rangle$? Or, even, every $P \in \langle Z \rangle$ such that $P \notin \langle Z' \rangle$ for any $Z' \subset Z$?

2. The Proofs

Lemma 1. Let $C \subset \mathbb{P}^r$ be an integral and non-degenerate curve. Fix a general $P \in C$ and a finite set $E \subset C$ with $P \notin E$. There is a finite set $S \subset C \setminus E$ such that $P \in \langle S \rangle$, $P \notin S$ and $\sharp(S) \leq r$ if and only if C is not a rational normal curve.

Proof. If C is a rational normal, then no such set exists, because any $r + 1$ points of C are linearly independent. Now assume that C is a rational normal curve. Take a general hyperplane $H \subset \mathbb{P}^r$ containing P. For general H we have $H \cap E = \emptyset$. Since P is general in C, H may be seen as a general hyperplane. Hence $C \cap H$ is a general hyperplane section of C. Hence $C \cap H$ is formed by $\deg(C) > n$ distinct points and $C \cap H$ spans H. If C is not very strange in the sense of [6], then we may take as S any r points of $C \cap H \setminus \{P\}$. If C is very strange, then we need to check that not all r-ples of point of $C \cap H$
spanning \(H \) contains \(P \). Fix \(P_1, P_2 \in C \cap H \setminus \{P\} \) such that \(P_1 \neq P_2 \). If \(r = 2 \) we take \(S = \{P_1, P_2\} \). Assume \(r > 2 \). For every integer \(t \in \{2, \ldots, r - 2\} \) all \(t \)-dimensional linear subspaces of \(H \) spanned by points of \(C \cap H \) contain the same number of points of \(C \cap H \). Hence there is \(P_3 \in C \cap H \setminus (\langle P_1, P_2 \rangle \cup \{P\}) \).

And so on if \(r > 3 \).

\[\Box \]

Proof of Theorems 1 and 2. In characteristic zero the “if” part of Theorem 1 is the easy part of theorem of Sylvester (see [4], [3], [5]). In arbitrary characteristic it is just [2], Lemma 1, and the observation that if \(X \) is a rational normal curve, then every zero-dimensional scheme \(A \subset X \) with \(\deg(A) \leq n + 1 \) is linearly independent. Hence it is sufficient to prove the “only if” part. In the set-up of Theorem 2 take \(s := k \) and write \(Z = \{P_1, \ldots, P_s\} \). Fix a finite set \(E \subset X \). Let \(\ell : \mathbb{P}^n \setminus \{P_s\} \to \mathbb{P}^{n-1} \) denote the linear projection from \(P_s \). Since \(P_s \) is general in \(X \), a dimensional count gives that for a general \(Q \in X \) the line \(\langle Q, P_s \rangle \) meets \(X \) only at \(Q \) and \(P_s \) and that a general tangent line of \(X \) does not contain \(P_s \). Hence \(\ell|X \setminus \{P_s\} \) is birational onto its image. Let \(C \subset \mathbb{P}^{n-1} \) denote the closure of \(\ell(X \setminus \{P_s\}) \) in \(\mathbb{P}^{n-1} \). Since \(\deg(C) = \deg(X) - 1 \), \(X \) is a rational normal curve if and only if \(C \) is a rational normal curve. Assume that \(C \) is not a rational normal curve. Set \(Q_i := \ell(P_i), 1 \leq i \leq s - 1 \). Let \(Q_s \in C \) be the only point corresponding to the tangent line of \(X \) at \(P_s \). Set \(E' := \ell(E \setminus \{P_s\}) \cup \{Q_1, \ldots, Q_s\} \). Set \(B := \sum_{i=1}^{s-1} k_i Q_i + (k_s - 1) Q_s \) with the convention that \(0 Q_s \) is the zero divisor \(C \). Since \(P_1, \ldots, P_s \) are general in \(X \), \(Q_1, \ldots, Q_s \) are general in \(C \). We use induction on \(k \). First assume \(k = 2 \). In this case \(B = Q_1 \). Lemma 1 with the set \(E' \) gives the existence of a set \(S' \subset C \setminus (E_1 \cup Z_{\text{red}}) \) such that \(\#(S') \leq n + 1 - k \) and \(Q_1 \in \langle S' \rangle \). Since \(Q_s \notin S \), there is a unique set \(S \subset X \) such that \(\ell(S) = S' \). By construction we have \(S \cap E = \emptyset \). Since \(Q_1 \in \langle S' \rangle \) and \(\ell \) is the linear projection from \(P_1 \), we have \(\langle Z \rangle \cap \langle S \rangle \). Since \(P_s \notin S \) and \(P_i \notin S \), the set \(\langle Z \rangle \cap \langle S \rangle \) is a unique point, \(P \), and \(P \notin \langle Z' \rangle \) for any \(Z' \subset Z \). Now assume \(k > 2 \). We apply the inductive assumption the integer \(k - 1 \). Take \(S' \subset C \setminus S' \) such that \(\#(S') \leq n + k - 1 \) and \(\langle S' \rangle \cap \langle B \rangle \) contains a point \(P' \) such that \(P' \notin \langle B' \rangle \) for any \(B' \subset B \). Then as in the case \(k = 2 \) we may take as \(S \) the only subset of \(X \) with \(\ell(S) = S' \). \[\Box \]

Acknowledgements

The author was partially supported by MIUR and GNSAGA of INdAM (Italy).
References

