COlomposed Pencils on a Smooth Curve with
a Singular Model in a Quadric Surface

E. Ballico
Department of Mathematics
University of Trento
38 123 Povo (Trento) - Via Sommarive, 14, ITALY

Abstract: Let C be the normalization of an integral curve of type (a, a') on $\mathbb{P}^1 \times \mathbb{P}^1$. We give conditions on $\text{Sing}(Y)$ and y for the non-existence of a pencil on C partially composed with the g_1^a or the $g_1^{a'}$ obtained in C from the projections $\mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^1$.

AMS Subject Classification: 14H51, 14H50

1. Introduction

Let $Q \subset \mathbb{P}^3$ be a smooth quadric surface. Let $\pi: Q \to \mathbb{P}^1$ and $\pi': Q \to \mathbb{P}^1$ be the two projections. We have $\text{Pic}(Q) \cong \mathbb{N}^2$. We have $h^0(\mathcal{O}_Q(a, b)) = (a + 1)(b + 1)$ and $h^1(Q, \mathcal{O}_Q(a, b)) = 0$ if $a \geq -1$ and $b \geq -1$. A curve $|\mathcal{O}_Q(a, b)|$ is said to have type (a, b). The lines of Q are the curve with either type $(1, 0)$ or type $(0, 1)$. We use the convention that the fibers of π have type $(0, 1)$, while the fibers of π' have type $(1, 0)$. Fix an integral $Y \in |\mathcal{O}_Q(a, a')|$. Let $w : C \to Y$ be the normalization map. Let $m : C \to \mathbb{P}^1$ (resp. $m' : C \to \mathbb{P}^1$) be the composition of w with $\pi|Y$ (resp. $\pi'|Y$). We have $\deg(m) = a$ and $\deg(m') = a'$. Set $R := m^*(_{\mathbb{P}^1}\mathcal{O}_1(1))$.
and \(R' := m'^*(\mathcal{O}_{\mathbb{P}^1}(1)) \). \(R \) and \(R' \) are spanned line bundles of degree \(a \) and \(a' \), respectively. Under mild assumptions on \(Y \) we have \(h^0(R) = h^0(R') = 2 \) (see Remark 1). In this note we consider the following classical question. Under which assumptions on \(Y \) there is no spanned \(M \in \text{Pic}(C) \), \(M \neq R \) and \(M \neq R' \), such that \(h^0(C,M) = 2 \) and the morphism \(\phi : C \to \mathbb{P}^1 \) induced by \(|M|\) is composed either with \(m \) or with \(m' \), i.e. one of the two maps \((m,\phi)\) or \((m',\phi)\) from \(C \) into \(\mathbb{P}^1 \times \mathbb{P}^1 \) is not birational onto its image? Assume that \(M \) exists and let \(D \) be the normalization of either \((m,\phi)\) or \((m',\phi)\). Set \(y := \deg(M) \).

Theorem 1. Assume the existence of a spanned \(M \in \text{Pic}^y(C) \), \(M \neq R \) (resp. \(M \neq R' \)) such that \(\phi \) is composed with \(m \) (resp. \(m' \)), i.e. the map \((m,\phi)\) (resp. \((m',\phi)\)) has degree \(b \geq 2 \) onto its image. We have \(b|y \) and \(b < y \). We have \(b|a \) and \(b < a \) (resp. \(b|a' \) and \(b < a' \)). Since \(M \notin \{R,R'\} \), \(C \) has genus \(g \geq 2 \) and \(D \) has positive genus. In this note we prove the following result.

1. \(h^1(Q,\mathcal{J}(a - 2, a' - 2 - y/b)) = 0 \) (resp. \(h^1(Q,\mathcal{J}(a - 2 - y/b, a' - 2)) = 0 \));

2. \(Y \) has only ordinary nodes and ordinary cusps as singularities, \(\text{Sing}(Y) \) is formed by general points of \(Q \) and \(\sharp(\text{Sing}(Y)) \leq (a - 1)(a' - 1 - y/b) \) (resp. \(\sharp(\text{Sing}(Y)) \leq (a - 1 - y/b)(a' - 1) \));

3. assume \(a' \geq 2 + y/b \) (resp. \(a \geq 2 + y/b \)); set \(v := \max\{a - 2, a' - 2 - y/b\} \) (resp. \(v := \max\{a - 2 - y/b, a' - 2\} \) and \(u := \min\{a - 2 - y/b, a' - 2\} \)). Set \(\alpha := [u/3] \). \(Y \) has only ordinary nodes and ordinary cusps as singularities, no two of the points of \(\text{Sing}(Y) \) are contained in a line of \(Q \), at most \(u + v \) of the points of \(Z \) are contained in a curve of type \((1,1)\) and at most \(3u + 1 \) of the points of \(Z \) are contained in a curve of type \((2,1)\) or \((1,2)\) and \(\sharp(\text{Sing}(Y)) \leq v - u + 10\alpha - 1 \);

4. \(Y \) has only ordinary nodes and ordinary cusps as singularities, \(a' \geq 2 + y/b \) (resp. \(a \geq 2 + y/b \)) and \(\sharp(\text{Sing}(Y)) \leq \min\{a - 1, a' - 1 - y/b\} \) ((resp. \(\sharp(\text{Sing}(Y)) \leq \min\{a - 1 - y/b, a' - 1\} \)).

We work over an algebraically closed field \(\mathbb{K} \).
2. The Proof

Let $Z \subset Q$ be a zero-dimensional scheme. Let Δ_Z be the union of all lines $L \subset Q$ such that $L \cap Z = \emptyset$. Notice that Δ_Z is a finite union of lines. This is a fundamental difference between Q and \mathbb{P}^2.

Lemma 1. Fix $(x, v) \in \mathbb{N}^2$ and the ideal sheaf \mathcal{J} of a zero-dimensional scheme Z such that $h^1(\mathcal{J}(u, v)) = 0$. Fix a set $B \subset Q$ such that $B \cap \Delta_Z = \emptyset$ and there is an integer $b > 0$ such that for each $I \in |\mathcal{O}_Q(0, 1)|$ either $I \cap B = \emptyset$ or $\mathfrak{g}(I \cap B) = b$. Set $y := \mathfrak{g}(B)$. Assume $b \leq u + 1$. Then $Z \cap B = \emptyset$, $b|y$ and $h^1(\mathcal{I}_{\mathcal{J} \cup B}(u, v + y/b)) = 0$.

Proof. Since $Z \subseteq \Delta_Z$ and $B \cap \Delta_Z = \emptyset$, we have $B \cap Z = \emptyset$. By assumption there is a curve $F \in |\mathcal{O}_Q(0, y/b)|$, F union of y/b distinct lines such that $B \subset F$ and $\mathfrak{g}(F \cap I) = b$ for each connected component I of F. Since $B \cap \Delta_Z = \emptyset$, we have $Z \cap F = \emptyset$. Hence deg $((Z \cup B) \cap I) = b$ for each component I of F. Since $b \leq u + 1$, we get $h^1(F, \mathcal{I}_{Z \cup B}(u, v + y/b)) = 0$. Since $Z = (Z \cup B) \setminus (Z \cup B) \cap F$.

Use the exact sequence

$$0 \rightarrow \mathcal{I}_Z(u, v) \rightarrow \mathcal{I}_{Z \cup B}(u, v + y/b) \rightarrow \mathcal{I}_{(Z \cup B) \cap F, F}(u, v + y/b) \rightarrow 0$$

and the assumption $h^1(\mathcal{J}(u, v)) = 0$. \square

Remark 1. The adjunction formula gives that $h^0(R) = 2$ (resp. $h^0(R') = 2$) if and only if $h^1(\mathcal{J}(a - 2, a' - 3)) = 0$ (resp. $h^1(\mathcal{J}(a - 3, a' - 2)) = 0$). Just the existence of a reduced curve $Y \in |\mathcal{O}_Q(a, a')|$ implies $h^1(\mathcal{J}(a - 2, a' - 2)) = 0$.

Proof of Theorem 1. We first assume that $|M|$ is composed with the g^1_a on C induced by π. Fix a general $A \in |M|$ and set $B := w(A) \subset Y$. Since $|M|$ is a complete linear system, even in positive characteristic we see that ϕ is not composed with a Frobenius. Hence ϕ is separable. Since ϕ is separable and A is general in $|M|$, A is formed by y distinct points. Since $|M|$ is spanned and A is general, we have $A \cap w^{-1}(\text{Sing}(Y)) = \emptyset$. Hence $B \subset Y$, $B \cap Z = \emptyset$ and $\mathfrak{g}(B) = y$. Since $|M|$ has no base point, Δ_Z is a finite union of lines and A is general, we have $B \cap \Delta_Z = \emptyset$. Fix $O \in A$. Since M has no base points, we have $h^0(C, \mathcal{O}_C(A \setminus \{O\})) = h^0(C, \mathcal{O}_C(A)) - 1$, i.e. $h^0(C, \omega_C(-A)) = h^0(C, \omega_C(-A))(O)$ (Riemann-Roch and Serre duality). The adjunction formula gives $\omega_Y \cong \mathcal{O}_Y(a - 2, a' - 2)$. Since $h^i(\mathcal{O}_Q(-2, -2)) = 0$, $i = 0, 1$, we get that $|\omega_C|$ is induced by the linear system $|\mathcal{J}(a - 2, a' - 2)|$ on Q. Since $A \cap w^{-1}(\text{Sing}(Y)) = \emptyset$, we get $h^1(C, \omega_C(-A)) = h^1(\mathcal{I}_{Z \cup B}(a - 2, a' - 2))$. Hence $h^1(\mathcal{I}_{Z \cup B}(a - 2, a' - 2)) > 0$ since $h^1(\mathcal{I}_{Z \cup B}(a - 2, a' - 2)) > 0$, lemma 1 gives a contradiction.
Now assume that $|R|$ is composed with the g_a^1, induced by π'. We conclude as above taking a' instead of a.

Hence we proved Theorem 1 under the assumption (1). We only need to prove that in the remaining cases the assumption of (1) is satisfied. If Y has only ordinary nodes and ordinary cusps, then Z is the set Sing(Y) with its reduced structure. In case (2) uses the definition of “general set”. In case (3) use [1], lemma 2. The proof that (4) implies (1) is an easy exercise.

Acknowledgements

The author was partially supported by MIUR and GNSAGA of INdAM (Italy).

References