Abstract: In this paper, we give some conditions for a weighted composition operator in the space of analytic functions on a region of the plane domain have an eigenvalue.

AMS Subject Classification: 47B37, 47B33
Key Words: Riemann Mapping Theorem, Schwarz’s Lemma, weighted composition operator

1. Introduction

Let Ω be a domain in the complex plane, then the space $H(\Omega)$ of all complex-valued functions analytic on Ω can be made into a F-space by a complete metric for which a sequence $\{f_n\}$ in $H(\Omega)$ converges to $f \in H(\Omega)$ if and only if $f_n \rightarrow f$ uniformly on every compact subsets of Ω. Each $\varphi \in H(\Omega)$ and analytic self-map ψ of Ω induces a linear weighted composition operator $C_{\varphi,\psi} : H(\Omega) \rightarrow H(\Omega)$ by

$$C_{\varphi,\psi}(f)(z) = \varphi(z)f(\psi(z))$$

for every $f \in H(\Omega)$ and $z \in \Omega$. Indeed, $C_{\varphi,\psi} = M_{\varphi}C_{\psi}$ where M_{φ} denotes the operator of multiplication by φ and C_{ψ} is a composition operator by means
of the definition $C_\psi(f) = f \circ \psi$ for every $f \in H(\Omega)$. For some details on composition operators one can see [1–10].

2. Main Results

By $H^\infty(\Omega)$ we denote the space of bounded analytic functions on Ω. We will denote the open unit disk by U and for a set A, we will write \overline{A} to denote the closure of A. Also, ψ_n means the nth iterate of ψ and $\|f\|_\Omega$ denotes the supremum norm of f on Ω.

Lemma 2.1. Let φ be a holomorphic self-map of the open unit disc U. Then for every pair of points $p, q \in U$ we have $d(\varphi(p), \varphi(q)) \leq d(p, q)$. Moreover, there is equality here for some pair of points if and only if there is equality for all points, and this happens if and only if φ is a conformal automorphism of U.

Proof. See [5, p. 60].

Theorem 2.2. Let ψ be an analytic self-map of a bounded simply connected domain Ω with a fixed point in Ω. Also, let $\varphi \in H^\infty(\Omega)$ be such that φ is not zero at the fixed point of ψ. If the closure of $\psi(\Omega)$ is contained in Ω, then $\varphi(w)$ is an eigenvalue for $C_{\varphi, \psi}$ acting on $H(\Omega)$.

Proof. Let w be the fixed point of ψ. By the Riemann Mapping Theorem there exists an $R \in H(U)$ such that R is univalent in U and $R(U) = \Omega$ (see [4, Theorem 14.8, p. 283]). Clearly

$$\{f \circ R : f \in H(\Omega)\} \subseteq H(U).$$

Also for any $f \in H(U)$ clearly $f \circ R^{-1} \in H(\Omega)$, thus indeed

$$H(U) = \{f \circ R : f \in H(\Omega)\}.$$

Put $\Phi = \varphi \circ R$ and $\Psi = R^{-1} \circ \psi \circ R$. Then $\Phi \in H^\infty(U)$ and Ψ is an analytic self-map of the open unit disc U. Since $\overline{\psi(\Omega)}$ is compact, hence clearly $R^{-1}(\overline{\psi(\Omega)})$ is closed and so we have

$$\overline{\Psi(U)} = R^{-1} \circ \overline{\psi(\Omega)} \subseteq R^{-1}(\overline{\psi(\Omega)}) \subseteq R^{-1}(\Omega) = U.$$

This implies that there exists $0 < \lambda < 1$ such that $\Psi(U) \subseteq \lambda U$. So by the Schwarz’s Lemma we have $|\Psi(z)| \leq \lambda |z|$ for all $z \in U$. Set

$$h(z) = (\Phi(z) - \Phi(0))/2\|\Phi\|_U.$$
Then \(h \) is a self-map of \(U \) and \(h(0) = 0 \). Thus by the Schwarz’s Lemma ([1, p. 130]), \(|h(z)| \leq |z|\) which implies that

\[
|\Phi(z)| \leq 2||\Phi||_U |z| + |\Phi(0)|
\]

for every \(z \in U \). Now by substituting \(\Phi(z) \) instead of \(z \) in the above inequality we get

\[
|\Phi(\Psi(z))| \leq 2\lambda^n||\Phi||_U |z| + |\Phi(0)|.
\]

But \(\Phi(0) \neq 0 \), thus

\[
\frac{|\Phi(\Psi(z))|}{|\Phi(0)|} \leq \exp\left(\frac{2||\Phi||_U}{|\Phi(0)|} \lambda^n\right),
\]

since \(1 + x \leq e^x \) for all \(x \in \mathbb{R} \). Hence

\[
\prod_{n=0}^{\infty} \frac{1}{\Phi(0)} \Phi(z) \leq \exp\left(\sum_{n=0}^{\infty} \frac{2||\Phi||_U}{|\Phi(0)|} \lambda^n\right) = \exp\left(\frac{2||\Phi||_U}{|\Phi(0)|} \frac{1}{1 - \lambda}\right)
\]

for every \(z \in U \). Set

\[
G(z) = \prod_{n=0}^{\infty} \frac{1}{\Phi(0)} \Phi(\Psi(z)),
\]

then \(G \) is nonzero and belongs to \(H^\infty(U) \subseteq H(U) \). Also, note that

\[
G(z) = \frac{1}{\Phi(0)} \Phi(z) \prod_{n=1}^{\infty} \frac{1}{\Phi(0)} \Phi(\Psi(z))
\]

and consequently

\[
\Phi(0)G(z) = \Phi(z) \prod_{n=1}^{\infty} \frac{1}{\Phi(0)} \Phi(\Psi(z)).
\]

But

\[
G \circ \Psi(z) = \prod_{n=0}^{\infty} \frac{1}{\Phi(0)} \Phi(\Psi_{n+1}(z)) = \prod_{n=0}^{\infty} \frac{1}{\Phi(0)} \Phi(\Psi_n(z)),
\]
thus indeed

\[C_{\Phi, \Psi} G = \Phi(0)G. \]

If \(u \neq 0 \), consider the self maps \(\Psi_1 = \alpha_u \circ \Psi \circ \alpha_u \) and \(\Phi_1 = \Phi \circ \alpha_u \) where \(\alpha_u(z) = \frac{(u - z)}{(1 - \overline{u}z)} \). Clearly we can see that \(\Psi_1(0) = 0 \) and \(\Phi_1(0) \neq 0 \). Also, note that by the Lemma 2.1, \(\alpha_u(\lambda U) \subseteq \lambda U \) which implies that \(\Psi_1(U) \subseteq U \). So the first part of the proof shows that there exists a nonzero bounded analytic function \(G_1 \) on \(U \) such that

\[C_{\Phi_1, \Psi_1} G_1 = \Phi_1(0)G_1. \]

Therefore

\[
\Phi \circ \alpha_u(z) \cdot G_1 \circ (\alpha_u \circ \Psi \circ \alpha_u)(z) = (\Phi \circ \alpha_u(0))G_1(z) = \Phi(u)G_1(z).
\]

Note that \(\alpha_u \circ \alpha_u(z) = z \). By substituting \(\alpha_u(z) \) instead of \(z \) in the above equality we get \(C_{\Phi, \Psi} G = \Phi(u)G \) where \(G = G_1 \circ \alpha_u \) is a nonzero function in \(H(U) \). Hence we have proved that \(\Phi \cdot G \circ \Psi = \Phi(u) \cdot G \). This implies that

\[
\varphi \circ R(z) \cdot G \circ R^{-1} \circ \psi \circ R(z) = \varphi \circ R(0) \cdot G(z) = \varphi(w)G(z)
\]

and so by substituting \(R^{-1}(z) \) instead of \(z \) in the above relation we get \(\varphi \cdot g \circ \psi = \varphi(w) \cdot g \), where \(g = G \circ R^{-1} \in H(\Omega) \). Thus \(\varphi(w) \) is an eigenvalue for \(C_{\varphi, \psi} \) acting on \(H(\Omega) \) and so the proof is complete.

\[\square \]

References

