PRIME GAMMA NEAR-RINGS WITH DERIVATIONS

Isamiddin S. Rakhimov¹ §, Kalyan Kumar Dey², Akhil Chandra Paul³
¹Department of Mathematics
FS, & Institute for Mathematical Research (INSPEM)
Universiti Putra Malaysia
MALAYSIA
²³Department of Mathematics
Rajshahi University
Rajshahi, 6205, BANGLADESH

Abstract: Let N be a prime Γnear-ring with the center Z(N). The objective of this paper is to study derivations on N. We prove two results:

(a) Let N be 2-torsion free and let D₁ and D₂ be derivations on N such that $D₁D₂$ is also a derivation. Then $D₁ = 0$ or $D₂ = 0$ if and only if $[D₁(x), D₂(y)]_α = 0$ for all $x, y ∈ N, α ∈ Γ$;

(b) Let n be an integer greater than 1, N be $n!$-torsion free, and D be a derivation with $D^n(N) = \{0\}$. Then $D(Z(N)) = \{0\}$.

AMS Subject Classification: 16W25, 16Y30, 16Y99
Key Words: commutative ring, non commutative ring, derivation

1. Introduction

The notion of derivations in near-rings has been introduced by Bell and Mason [2]. They obtained some basic properties of derivations in near-rings. Then Asci [1] investigated commutativity conditions for a Γ-near-ring with derivations. Cho and Jun [7] studied some characterizations of Γ-near-rings and some regularity conditions. In classical ring theory, Posner [14], Herstein [11], Bergen
[5], Bell and Daif [4] studied derivations in prime and semiprime rings and obtained commutativity results of prime and semiprime rings with derivations. In near ring theory, Bell and Mason [3], and also Cho [8] worked on derivations in prime and semiprime near-rings.

In this paper, we deal with the prime Γ-near-rings with derivations. Here we extend the results of Wang [20] on prime near-rings to Γ-near-rings.

2. Preliminaries

A Γ-near-ring is a triple \((N, +, \Gamma)\), where:

(i) \((N, +)\) is a group (not necessarily abelian),
(ii) \(\Gamma\) is a non-empty set of binary operations on \(N\) such that for each \(\alpha \in \Gamma\),

\((N, +, \alpha)\) is a left near-ring.

(iii) \(x\alpha(y\beta z) = (x\alpha y)\beta z\), for all \(x, y, z \in N\) and \(\alpha, \beta \in \Gamma\).

Examples of Γ-near-rings and motivations to study has been given in [16, 17].

Throughout this paper, \(N\) will denote a zero-symmetric left Γ-near-ring with multiplication center \(Z(N)\). A Γ-near-ring \(N\) is called a prime Γ-near-ring if \(N\) has the property that for \(x, y \in N\), \(x\Gamma N \Gamma y = \{0\}\) implies \(x = 0\) or \(y = 0\). A Γ-near-ring \(N\) is called a semiprime Γ-near-ring if \(N\) has the property that for \(x \in N\), \(x\Gamma N \Gamma x = \{0\}\) implies \(x = 0\). A derivation \(D\) on \(N\) is an additive endomorphism of \(N\) with the property that for all \(x, y \in N\) and \(\alpha \in \Gamma\), \(D(x\alpha y) = x\alpha D(y) + D(x)\alpha y\). An additive endomorphism \(D\) of \(N\) is called a derivation on \(N\) if \(D(x\alpha y) = x\alpha D(y) + D(x)\alpha y\) for all \(x, y \in N\), \(\alpha \in \Gamma\).

A Γ-near-ring \(N\) is called commutative if \((N, +)\) is abelian, and 2-torsion free if \(2x = 0\) implies \(x = 0\).

3. Derivations in Prime Γ-Near-Rings

We begin with the following lemmas on derivations on prime Γ-near-rings \(N\).

Lemma 3.1. Let \(D\) be an additive endomorphism of \(N\). Then:

\[D(x\alpha y) = x\alpha D(y) + D(x)\alpha y \]

for all \(x, y \in N\) and \(\alpha \in \Gamma\), if and only if

\[D(x\alpha y) = D(x)\alpha y + x\alpha D(y) \]
for all \(x, y \in N \) and \(\alpha \in \Gamma \).

Proof. We assume that \(D(x\alpha y) = x\alpha D(y) + D(x)\alpha y \) for all \(x, y \in N \) and \(\alpha \in \Gamma \).

Since
\[
x\alpha(y + y) = x\alpha y + x\alpha y
\]
and
\[
D(x\alpha(y+y)) = x\alpha D(y+y) + D(x)\alpha(y+y) = x\alpha D(y) + x\alpha D(y) + D(x)\alpha y + D(x)\alpha y
\]
and
\[
D(x\alpha y + x\alpha y) = D(x\alpha y) + D(x\alpha y) = x\alpha D(y) + D(x)\alpha y + x\alpha D(y) + D(x)\alpha y
\]
we get
\[
x\alpha D(y) + D(x)\alpha y = D(x)\alpha y + x\alpha D(y),
\]
so
\[
D(x\alpha y) = D(x)\alpha y + x\alpha D(y),
\]
for all \(x, y \in N \alpha \in \Gamma \).

The converse is proved in a similar way.

Note that due to Lemma 3.1, \(D \) is a derivation if and only if
\[
D(x\alpha y) = D(x)\alpha y + x\alpha D(y), \text{ for all } x, y \in N \text{ and } \alpha \in \Gamma.
\]

We make use the following lemma from [15], Lemma 3.5.

Lemma 3.2. Suppose that \(N \) is a prime \(\Gamma \)-near-ring.

(i) any nonzero element of the center of \(N \) is not zero divisor.

(ii) If there exist a nonzero element of \(Z(N) \) such that \(x + x \in Z(N) \), then \((N, +) \) is commutative.

(iii) Let \(d \) be a nonzero derivation on \(N \). If one of the \(x\Gamma d(N) = \{ 0 \} \) and \(d(N)\Gamma x = \{ 0 \} \) holds then \(x = 0 \).

Lemma 3.3. Let \(D \) be a derivation on \(N \). Then \(N \) satisfies the following partial distributive laws

(i) \((x\alpha D(y) + D(x)\alpha y)\beta z = x\alpha D(y)\beta z + D(x)\alpha y\beta z \) for all \(x, y, z \in N \) and \(\alpha, \beta \in \Gamma \)

(ii) \((D(x)\alpha y + x\alpha D(y))\beta z = D(x)\alpha y\beta z + x\alpha D(y)\beta z \) for all \(x, y, z \in N \) and \(\alpha, \beta \in \Gamma \)
Proof. (i) Consider \(D((x\alpha y)\beta z) = D(x\alpha(y\beta z)) \) for all \(x, y, z \in N \) and \(\alpha, \beta \in \Gamma \). Then by using Lemma 3.1, we obtain the required result.

(ii) Consider \(D((x\alpha y)\beta z) = D(x\alpha(y\beta z)) \). Then we make use Lemma 3.1 to obtain,

\[
D((x\alpha y)\beta z) = D(x\alpha y)\beta z + x\alpha y\beta D(z) = (D(x)\alpha y + x\alpha D(y))\beta z + x\alpha y\beta D(z)
\]

and

\[
D(x\alpha(y\beta z)) = D(x)\alpha y\beta z + x\alpha D(y)\beta z
\]

\[
= D(x)\alpha y\beta z + x\alpha(D(y)\beta z + y\beta D(z)) = D(x)\alpha y\beta z + x\alpha D(y)\beta z + x\alpha y\beta D(z),
\]

for all \(x, y, z \in N \) and \(\alpha, \beta \in \Gamma \).

Comparing the above two relations we get the required result:

\[
(D(x)\alpha y + x\alpha D(y))\beta z = D(x)\alpha y\beta z + x\alpha D(y)\beta z
\]

for all \(x, y, z \in N \) and \(\alpha, \beta \in \Gamma \).

Now we prove our main results.

Theorem 3.4. Let \(N \) be a 2-torsion-free prime \(\Gamma \)-near-ring, and let \(D_1 \) and \(D_2 \) be derivations on \(N \) such that \(D_1 D_2 \) is also a derivation. Then the following two conditions are equivalent:

1. either \(D_1 = 0 \) or \(D_2 = 0 \);
2. (ii) \([D_1(x), D_2(y)]_\alpha = 0 \) for all \(xy \in N \), \(\alpha \in \Gamma \)

Proof. We need prove only the part (ii) \(\Rightarrow \) (i) since (i) \(\Rightarrow \) (ii) is obvious. Consider

\[
D_1 D_2(x\alpha y) = x\alpha D_1 D_2(y) + D_1 D_2(x)\alpha y
\]

for all \(x, y, z \in N \) and \(\alpha \in \Gamma \).

On the other hand, both \(D_1 \) and \(D_2 \) are derivations, therefore

\[
D_1 D_2(x\alpha y) = D_1(D_2(x\alpha y))
\]

\[
= D_1(x\alpha D_2(y) + D_2(x)\alpha y)
\]

\[
= D_1(x\alpha D_2(y)) + D_1(D_2(x)\alpha y)
\]

\[
= x\alpha D_1 D_2(y) + D_1(x)\alpha D_2(y) + D_2(x)\alpha D_1(y) + D_1 D_2(x)\alpha y,
\]

for all \(x, y \in N \) and \(\alpha \in \Gamma \).
The above two relations for $D_1 D_2(x \alpha y)$ give

$$D_1(x)\alpha D_2(y) + D_2(x)\alpha D_1(y) = 0 \text{ for all } x, y \in N \text{ and } \alpha \in \Gamma.$$ \hfill (1)

Replacing x by $x \beta D_2(z), \ z \in N, \ \beta \in \Gamma$ in (1), by using Lemma 31 and Lemma 3.3 we get

$$0 = D_1(x \beta D_2(z))\alpha D_2(y) + D_2(x \beta D_2(z))\alpha D_1(y)$$
$$= (D_1(x)\beta D_2(z) + x \beta D_1 D_2(z))\alpha D_2(y) + (x \beta D_2^2(z) + D_2(x)\beta D_2(z))\alpha D_1(y)$$
$$= D_1(x)\beta D_2(z)\alpha D_2(y) + x \beta D_1 D_2(z)\alpha D_2(y) + x \beta D_2^2(z)\alpha D_1(y)$$
$$+ D_2(x)\beta D_2(z)\alpha D_1(y)$$

for all $x, y, z \in N$ and $\alpha, \beta \in \Gamma$.

Then by using the equation (1) we obtain

$$x \beta (D_1 D_2(z)\alpha D_2(y) + D_2^2(z)\alpha D_1(y)) = 0.$$

If we replace x by $D_2(z)$ in (1) then we get

$$D_1 D_2(z)\alpha D_2(y) + D_2^2(z)\alpha D_1(y) = 0.$$

Therefore

$$D_1(x)\beta D_2(z)\alpha D_2(y) + D_2(x)\beta D_2(z)\alpha D_1(y) = 0$$

for all $x, y, z \in N$ and $\alpha, \beta \in \Gamma$. \hfill (2)

Replacing x and y by z in (1), respectively, we obtain

$$D_2(z)\alpha D_1(y) = -D_1(z)\alpha D_2(y) \text{ for all } y, z \in N \text{ and } \alpha \in \Gamma,$$

and

$$D_1(x)\alpha D_2(z) = -D_2(x)\alpha D_1(z) \text{ for all } x, z \in N \text{ and } \alpha \in \Gamma.$$

Since N is a zero-symmetric left Γ-near-ring, then due to (2) we obtain

$$0 = (-D_2(x)\beta D_1(z))\alpha D_2(y) + D_2(x)\beta (-D_1(z)\alpha D_2(y))$$
$$= D_2(x)\beta (-D_1(z))\alpha D_2(y) + D_2(x)\beta (-D_1(z)\alpha D_2(y))$$
$$= D_2(x)\beta [(-D_1(z))\alpha D_2(y) - D_1(z)\alpha D_2(y)].$$
for all $x, y, z \in N$ and $\alpha, \beta \in \Gamma$.

If $D_2 \neq 0$ then thanks to Lemma 3.2 we have

$$(-D_1(z))\alpha D_2(y) - D_1(z)\alpha D_2(y) = 0.$$

That is

$$D_1(z)\alpha D_2(y) = (-D_1(z))\alpha D_2(y) \text{ for all } y, z \in N \text{ and } \alpha \in \Gamma. \quad (3)$$

The condition (ii) provides

$$(-D_1(z))\alpha D_2(y) = D_1(-z)\alpha D_2(y) = D_2(y)\alpha D_1(-z)$$

$$= D_2(y)\alpha(-D_1(z)) = -D_2(y)\alpha D_1(z) = -D_1(z)\alpha D_2(y).$$

Therefore

$$(-D_1(z))\alpha D_2(y) = -D_1(z)\alpha D_2(y) \text{ for all } y, z \in N \text{ and } \alpha \in \Gamma. \quad (4)$$

From (3) and (4) we obtain $2D_1(z)\alpha D_2(y) = 0$ for all $y, z \in N$ and $\alpha \in \Gamma$.

Since N is 2-torsion-free, this gives $D_1(z)\alpha D_2(y) = 0$ for all $y, z \in N$ and $\alpha \in \Gamma$.

Therefore $D_1(z)\alpha D_2(N) = \{0\}$. But $D_2 \neq 0$, so $D_1(z) = 0$ for all $z \in N$, that is $D_1 = 0$.

Note that Lemma 3.5. from [15] can be derived now as the following corollary from the theorem.

Corollary 3.5 Let N be a 2-torsion free prime Γ near-ring, and let D be a derivation on N such that $D^2 = 0$. Then $D = 0$.

Proof. It is clear that $D^2 = 0$ is a derivation on N, and we have

$$0 = D^2(x\alpha y) = D(x\alpha D(y) + D(x)\alpha y) = D(x\alpha D(y)) + D(D(x)\alpha y)$$

$$= x\alpha D^2(y) + D(x)\alpha D(y) + D(x)\alpha D(y) + D^2(x)\alpha y = 2D(x)\alpha D(y)$$

for all $x, y \in N$ and $\alpha \in \Gamma$. Since N is 2-torsion free we obtain $D(x)\alpha D(y) = 0$ for all $x, y \in N$ and $\alpha \in \Gamma$. Similarly we get $D(y)\alpha D(x) = 0$ for all $x, y \in N$ and $\alpha \in \Gamma$. Therefore $[D(x), D(y)] = 0$ for all $x, y \in N$ and $\alpha \in \Gamma$. Hence by Theorem 3.4, we get $D = 0$.

Another consequence of Theorem 3.4 is the following.

Corollary 3.6. Let N be a Γ near-ring and D_1 and D_2 be derivations on N such that D_1D_2 is a derivation. Then D_2D_1 is also a derivation.
Proof. Obviously D_2D_1 is an additive endomorphism of N. By Theorem 3.4 we have

$$D_2D_1(x\alpha y) = D_2(D_1(x)\alpha y + x\alpha D_1(y)) = D_2(D_1(x)\alpha y) + D_2(x\alpha D_1(y))$$
$$= D_2D_1(x)\alpha y + (D_1(x)\alpha D_2(y) + D_2(x)\alpha D_1(y) + x\alpha D_2D_1(y)$$

for all $xy \in N$ and $\alpha \in \Gamma$.

This completes the proof.

The following is an extension of Wang [20] on Leibniz’s rule for derivations of rings to Γ-near-rings.

Theorem 3.7. Let N be a $n!$-torsion free Γ-near-ring Let n be an integer $n \geq 2$ and D be a derivation on N. Then

$$D^n(x\alpha y) = D^n(x)\alpha y + \binom{n}{1} D^{n-1}(x)\alpha D(y) + \cdots + \binom{n}{i} D^i(x)\alpha D^i(y)$$
$$\quad + \cdots + \binom{n}{n-1} D(x)\alpha D^{n-1}(y) + x\alpha D^n(y),$$

for all $x, y \in N$ and $\alpha \in \Gamma$.

Proof. By Theorem 3.4 it can easily seen that

$$D(x)\alpha y + nx\alpha D(y) = nx\alpha D(y) + D(x)\alpha y$$

for all $x, y \in N$, $\alpha \in \Gamma$ and n be an integer. The same observation gives

$$nD(x)\alpha y + nx\alpha D(y) = n(D(x)\alpha y + x\alpha D(y))$$

for all $x, y \in N$, $\alpha \in \Gamma$, and n be an integer. (5)

We proceed the proof of Leibniz’s rule by induction on n. Let $n = 2$. Then

$$D^2(x\alpha y) = D(D(x)\alpha y + x\alpha D(y))$$
$$= D(D(x)\alpha y) + D(x\alpha D(y))$$
$$= D^2(x)\alpha y + D(x)\alpha D(y) + x\alpha D^2(y)$$
$$= D^2(x)\alpha y + 2D(x)\alpha D(y) + x\alpha D^2(y).$$

Assume that Leibniz’s rule holds for $n - 1$. That is, if N is $(n - 1)!$-torsion-free. Then
\[D^{n-1}(x\alpha y) = D^{n-1}(x\alpha y) + \cdots + \left(\frac{n-1}{i-1} \right) D^{ni}(x)\alpha D^{i-1}(y) \]

\[+ \left(\frac{n-1}{i} \right) D^{ni-1}(x)\alpha D^i(y) + \cdots + x\alpha D^{n-1}(y). \]

Since \(n! \)-torsion-freeness implies \((n-l)! \)-torsion-freeness, by (5) we have

\[D^n(x\alpha y) = D(D^{n-1}(x\alpha y)) \]

\[= D(D^{n-1}(x\alpha y) + \cdots + \left(\frac{n-1}{i-1} \right) D^{ni}(x)\alpha D^{i-1}(y) + \left(\frac{n-1}{i} \right) D^{ni-1}(x)\alpha D^i(y) + \cdots + x\alpha D^{n-1}(y)) \]

\[= D^n(x\alpha y) + \cdots + \left(\frac{n-1}{i-1} \right) D^{ni+1}(x)\alpha D^{i-1}(y) + \left(\frac{n-1}{i} \right) D^{ni}(x)\alpha D^i(y) + \cdots + x\alpha D^n(y) \]

The proof is complete.

Lemma 3.8. Let \(N \) be a \(\Gamma \)near-ring with center \(Z(N) \), and let \(D \) be a derivation on \(N \). Then \(D(Z(N)) \subseteq Z(N) \).

Proof. By Theorem 3.4, we have
\[x\alpha D(z) + z\alpha D(x) = x\alpha D(z) + D(x)\alpha z = D(x\alpha z) = D(z\alpha x) = D(z)\alpha x + z\alpha D(x) \]

for all \(z \in Z(N), \ x \in N \) and \(\alpha \in \Gamma \).

Therefore \(x\alpha D(z) = D(z)\alpha x \) for all \(x, z \in N \) and \(\alpha \in \Gamma \). Thus \(D(z) \in Z(N) \)

Lemma 3.9. Let \(n \geq 2 \), and let \(N \) be an \(n! \)-torsion free \(\Gamma \) near-ring and \(D \) be a derivation with \(D^n(N) = \{0\} \). Then for each \(y \in N \), either \(D(y) = 0 \) or there exists \(k \) (\(0 < k < n \)) such that \(D^k(y) \) is a nonzero divisor of zero.

Proof. Since \(n! \)-torsion-freeness implies \((n - 1)!\)-torsion-freeness, we may assume that \(D^{n-1}(N) \neq \{0\} \). Choose \(x \) such that \(D^{n-1}(x) \neq 0 \). Assume that \(D(y) \neq 0 \). Then there exists \(k \) with \(0 < k < n \) such that \(D^k(y) \neq 0 \) and \(D^{k+1}(y) = 0 \). Then due to Theorem 3.7 we obtain

\[
0 = D^n(x\alpha D^k(y)) = D^n(x)\alpha D^{k-1}(y) + \binom{n}{1} D^{n-1}(x)\alpha D^k(y) + \binom{n}{2} D^{n-2}(x)\alpha D^{k+1}(y) + \cdots = \binom{n}{1} D^{n-1}(x)\alpha D^k(y) = nD^{n-1}(x)\alpha D^k(y)
\]

for all \(y \in N \) and \(\alpha \in \Gamma \).

Since \(N \) is \(n! \)-torsion-free, then we get \(D^{n-1}(x)D^k(y) = 0 \) for all \(y \in N \) and \(\alpha \in \Gamma \). By Lemma 3.2(i) \(D^k(y) \) is a nonzero divisor of zero.

We finalize the paper by the following two theorems which can be easily proven by using the previous results

Theorem 3.10. Let \(n \) be an integer \(\geq 1 \) and \(N \) be a prime \(\Gamma \) near-ring with center \(Z(N) \), and let \(N \) be \(n! \)-torsion free and \(D \) be a derivation with \(D^n(N) = \{0\} \). Then \(D(Z(N)) = \{0\} \).

Theorem 3.11. Let \(n \) be a positive integer and \(N \) be an \(n! \)-torsion free \(\Gamma \) near-ring with no divisor of zero, then \(N \) admits no nonzero derivation \(D \) with \(D^n = 0 \).

Acknowledgments

The second named author thanks the Institute for Mathematical Research (IN-SPEM), UPM, Malaysia for the hospitality during that this paper has been written.

The research was supported by FRGS grant 01-12-10978FR MOHE, Malaysia.
References

