A CANTOR p–ARY DECOMPOSITION
ON THE HILBERT CUBE

Aniruth Phon-On
Prince of Songkla University
Pattani Campus
Pattani, 94000, THAILAND
and
Centre of Excellence in Mathematics
CHE, Si Ayutthaya Rd., Bangkok, 10400, THAILAND

Abstract: Given a positive odd integer \(p \) with \(p \geq 3 \), the Cantor \(p \)-ary \(C_p \)
set and the Cantor \(p \)-ary function \(f_p \) are constructed. \(C_p \) is a generalization
of the Cantor set in the case that the measure of the set \(C_p \) is still zero and \(f_p^\infty \)
defined on the Hilbert Cube \(Q \) is a generalization of the Cantor function. Also,
for any \(s \in (0,1) \), let

\[
G_s^{f_p^\infty} = \{ \{ s \} \times \left(f_p^\infty \right)^{-1}(c) \mid c \in Q_2 \}
\]

and \(S \) is the set of all singletons in \(\left([0,s) \cup (s,1] \right) \times Q_2 \). Then \(G = G_s^{f_p^\infty} \cup S \)
is an upper semi continuous decomposition on the Hilbert Cube \(Q \). Moreover,
\(Q/G \) is homeomorphic to \(Q \).

AMS Subject Classification: 54C50
Key Words: decomposition, upper semi continuous, Cantor \(p \)-ary set

1. Introduction

A search through literatures about the cantor set and cantor function yields a
well-known construction of the standard cantor set \(C \) and the standard Cantor
function f, see [2], [5], [6]. The purpose of this paper is to construct the Cantor $p-$ary set and the Cantor $p-$ary function where p is an any odd integer with $p \geq 3$. Although the ideas of their constructions in the paper are predictable, it can rarely be found in any papers. It is thus obvious that the Cantor $p-$ary set C_p and the Cantor $p-$ary function f_p are the generalization of the standard cantor set C and the standard Cantor function f, respectively.

In [7], Garity used the map f^k, where f^k is the product of the standard Cantor function f, to construct the decomposition G of \mathbb{R}^n and then showed that \mathbb{R}^n/G is homeomorphic to \mathbb{R}^n. An arising question is that ”Is this still true for an infinite dimensional Hilbert Cube Q?” This paper will provide an answer to that question. That is, we will show that for any positive odd integer with $p \geq 3$, the decomposition G is induced by the f^∞_p where f^∞_p is the infinite product of the Cantor $p-$ary function f_p and show that Q/G is homeomorphic to Q. For $p = 3$, see [10].

2. Notation and Terminology

For the readers who are not familiar with topology, all basic topological terminology, notation, and definitions can be found in [8], [9].

Let I be the interval $[0, 1]$. For each $n \geq 1$, we write

$$I^n = \prod_{i=1}^{n} I_i, \quad Q_{n+1} = \prod_{i=n+1}^{\infty} I_i$$

where $I_i = I$. The **Hilbert Cube** is a countable product of I_i where $I_i = [0, 1]$ for all $i \geq 1$, and is denoted by Q. That is,

$$Q = \prod_{i=1}^{\infty} I_i$$

Also, for each n we can write the Hilbert Cube as

$$Q = I^n \times Q_{n+1}.$$
Definition 1. (see [4]) A decomposition G of Q is said to be upper semicontinuous (usc) if every $g \in G$ is compact and the quotient map

$$
\pi : Q \to Q/G
$$

is a closed map.

Definition 2. (see [4]) A decomposition G of a space Q is realized by a pseudo-isotopy if there exists a pseudo-isotopy Ψ_t of Q to Q such that $\Psi_0 = Id_Q$ and $G = \{\Psi_1^{-1}(x) \mid x \in Q\}$. By a pseudo-isotopy Ψ_t of Q to Q we mean a homotopy $\Psi_t : Q \to Q$ such that Ψ_t is a homeomorphism for each $t \in [0,1)$ and Ψ_1 is a closed surjection. Similarly, by an isotopy Ψ_t of Q to Q we mean a homotopy $\Psi_t : Q \to Q$ such that Ψ_t is a homeomorphism for each $t \in [0,1]$.

Definition 3. A closed set C in \mathbb{R}^n or in an n-dimensional manifold is said to be cellular if there is a nested sequence C_1, C_2, \ldots of n cells with C_{i+1} a subset of the interior of C_i and $C = \bigcap_{i=1}^{\infty} C_i$.

Next we will define a cellularity in Q which is quite similar to the definition in finite dimensional case. Here we replace the term n-cells by normal cubes. The definition of a normal cube and related definitions can be found in [1], [3].

Definition 4. (see [1]) Let X be a closed subset of Q. X is said to be a cellular subset of Q if $X = \bigcap_{i=1}^{\infty} K_i$ where $K_{i+1} \subset int(K_i)$ and K_i is a normal cube for all i.

3. Construction of a Cantor p-ary Set and a Cantor p-ary Function

3.1. Construction of a Cantor p-ary Set

Basically, the standard Cantor set C is constructed by removing middle third interval in each step, see [6], [5], [2]. We will use this idea to construct the p-ary Cantor set C_p so that $C_p \cong C$.

Definition 5. Let $n \in \mathbb{Z}^+$ and $p \in \mathbb{N}$ where p is a positive odd integer p with $p \geq 3$. Define an interval $\Theta(k_1, \ldots, k_n)$ by

$$
\Theta(k_1, \ldots, k_n) = \left[\sum_{i=1}^{i=n} \frac{k_i}{p^i}, \sum_{i=1}^{i=n} \frac{k_i}{p^i} + \frac{1}{p^n} \right] \text{ for } k_i \in K_p
$$

where $K_p = \{0, 1, 2, \ldots, p-1\}$.
It is clear by the definition that the length of $\Theta(k_1, \ldots, k_n)$ is $\frac{1}{p^n}$. Also, for each n,

$$\Theta(k_1, \ldots, k_n) = \cap_{i=1}^n \Theta(k_1, \ldots, k_i)$$

Let us denote the sets $K_p^e = \{0, 2, 4, \ldots, p-1\}$ and $K_p^o = \{1, 3, 5, \ldots, p-2\}$

$$C_n = \{\Theta(k_1, k_2, \ldots, k_n) \mid k_i \in K_p^e\}.$$

Let $C_1^c = \{\Theta(1), \Theta(3), \Theta(5), \ldots, \Theta(p-2)\}$, and for $n \geq 2$, define

$$C_n^c = \{\Theta(k_1, \ldots, k_{n-1}, k_n) \mid k_1, k_2, \ldots, k_{n-1} \in K_p^e, k_n \in K_p^o\}.$$

Also, let $C^c = \bigcup_{n=1}^{\infty} C_n^c$.

Now we will use the definition of C_n to define the Cantor p–ary set. That is, the Cantor p–ary set C_p is defined as:

$$C_p = \bigcap_{n=0}^{\infty} \bigcup C_n.$$

Let M be the Lebesgue measure. Then we have the following lemma.

Lemma 6. Let C_p be the Cantor p–ary set where p is a positive odd integer with $p \geq 3$. Then

$$M(C_p) = 0.$$

In other words, C_p has a zero measure.

Proof. Note that for each n, the sum of the length of all elements Θ in C_n^c is

$$\left(\frac{p-1}{2}\right) \left(\frac{p+1}{2}\right)^{n-1} \left(\frac{1}{p^n}\right).$$

Since $C_n^c \cap C_{n+1}^c = \emptyset$ for all n, we have

$$M(C^c) = \sum_{n=1}^{\infty} \left(\frac{p-1}{2}\right) \left(\frac{p+1}{2}\right)^{n-1} \left(\frac{1}{p^n}\right) \left(\frac{p-1}{2p}\right) \left(\frac{1}{1 - \left(\frac{p+1}{2p}\right)}\right) = 1.$$

But we know that

$$C_p \subset ([0,1] \setminus C^c) \bigcup_{n=1}^{\infty} E_n.$$
where E_n is the set of all endpoints of each interval in C_n^c. It is obvious that each E_n is countable and hence $M(\bigcup_{n=1}^{\infty}E_n) = 0$. Thus,

$$0 \leq M(C_p) \leq ([0,1] \setminus C^c) \bigcup \bigcup_{n=1}^{\infty}E_n = (1 - M(C^c)) + 1 = 1 - 1 + 0 = 0.$$

That is, $M(C_p) = 0$. \hfill \square

Theorem 7. (see [11]) A compact set X is homeomorphic to the standard Cantor set C if and only if X is totally disconnected and perfect.

Lemma 8. Let C_p be the Cantor p-ary set where p is an odd integer. Then C_p is homeomorphic to C where C is the standard Cantor set. Moreover, each element in C_p can be written as a p-ary representation consisting entirely of elements in K_p^e.

Proof. Note that each element in C_n for all n is compact. Since the intersection of the collection of compact sets with the non-empty finite intersection property is compact, it is clear that C_p is compact. Since the size of the components of C_n is going to zero, this implies the totally disconnectedness of C_p. Moreover, each element of C_n has more than two elements of C_{n+1}, this implies every point in C_p is a limit point. Hence C_p is perfect. Therefore, by Theorem 7, C_p is homeomorphic to C. Next, we can see that for each $c \in C_p$, $c \in \bigcup C_n$ for all n. Thus for each i, there exists k_i in K_p^e so that $c \in \cap_{n=1}^{\infty} \Theta(k_1, \ldots, k_i)$. This implies that $c_p = \sum_{i=1}^{\infty} \frac{k_i}{p^i}$. \hfill \square

Remark 9. If $p = 3$, then $C_p = C$ where C is the standard Cantor set.

3.2. Construction of a Cantor p-ary Function

The Cantor p-ary map $f_p : I \to I$ is also defined as a constant on the closure of each component of $I \setminus C_p$ and on C_p is defined by:

$$f_p(\sum_{i=1}^{\infty} \frac{a_i}{p^i}) = \sum_{i=1}^{\infty} \frac{a_i}{2(\frac{p+1}{2})^i},$$

where $a_i \in K_p^e$.

Remark 10. Let P be the set of all $\frac{p+1}{2}$-adic rationals in the closed unit interval where p is an odd integer. That is,

$$P = \left\{ \frac{m}{\left(\frac{p+1}{2}\right)^n} \in [0,1] \mid m,n \in \mathbb{Z} \right\}$$
1. If \(c \in I \), the
\[
 f_p^{-1}(c) = \begin{cases}
 1 - \text{cell} & \text{if } c \in P \\
 \text{singleton} & \text{if } c \notin P.
 \end{cases}
\]

2. \(f_p|_{C_P} \) is two-to-one over the \(\frac{p+1}{2} \)-adic rational in \(P \);

3. \(f_p|_{C_P} \) is one-to-one over the complement of \(P \);

4. \(f_p \) itself is one-to-one over the complement of \(P \).

By Remark 10, for \(c \in C_p \),
\(c \) is \(p \)-adic rational if and only if \(f_p(c) \) is \(\frac{p+1}{2} \)-adic rational.

Thus, if \(f_p(c) = \frac{m}{(p+1)^n} \) for some \(m, n \), then by Remark 10(2), \(c = \frac{2k}{p^n} \) or \(c = \frac{2k+1}{p^n} \) for some \(k \).

Let \(f_p^k : I^k \to I^k \) be defined by
\[
 f_p^k(x) = (f_p(x_1), f_p(x_2), \ldots, f_p(x_k)) \quad \text{for all } x \in I^k
\]

Note that \(f_p^k \) is continuous since each component is continuous.

Lemma 11. Let \(c \in I^k \). Then \((f_p^k)^{-1}(c)\) is either a point or a \(l \)-cell where \(l \) corresponds to the number of \(\frac{p+1}{2} \)-adic rational coordinates that \(c \) has, and hence \((f_p^k)^{-1}(c)\) is either a point or a \(l \)-cell.

Proof. Let \(c = (x_1, \ldots, x_k) \in I^k \). If \(c \) has no \(\frac{p+1}{2} \)-adic rational coordinates, then \(x_i \notin P \) for all \(i = 1, 2, \ldots, k \). Thus, \((f_p^k)^{-1}(x_i)\) is just a point in \(I \) which implies that \((f_p^k)^{-1}(c)\) is a point in \(I^k \). Next assume that the number of \(\frac{p+1}{2} \)-adic rational coordinates of \(c \) is \(l \). Denote each \(b_i \) the \(\frac{p+1}{2} \)-adic rational coordinates of \(c \) for \(i = 1, \ldots, l \). Then each \((f_p^k)^{-1}(b_i)\) is a 1-cell in \(I \) so \((f_p^k)^{-1}(c)\) is a \(l \)-cell in \(I^k \).

Next, we will define the function \(f_p^\infty : Q_2 \to Q_2 \). First for each \(k \) define \(g_p^k : Q_2 \to Q_2 \) by
\[
 g_p^k((x_2, \ldots, x_k, \ldots)) = f_p^k((x_2, \ldots, x_k)) \times \text{Id}_{Q_{k+1}}(x_{k+1}, \ldots).
\]

Thus, the function \(f_p^\infty : Q_2 \to Q_2 \) is defined by
\[
 f_p^\infty(x) = \lim_{k \to \infty} g_p^k(x)
 = (f_p(x_2), f_p(x_3), \ldots).
\]

Since \(Q_2 \) is compact, it is obvious that \(f_p^\infty \) is a closed map.
Lemma 12. For each point \(c \in Q_2 \), \((f_p^\infty)^{-1}(c)\) is either a point, a cell or a copy of \(Q_2 \) and the dimension of these sets corresponds to the number of \(\frac{p+1}{2} \)-adic rational coordinates that \(c \) has.

Proof. If \(c \) has no \(\frac{p+1}{2} \)-adic rational coordinates, it is clear that \((f_p^\infty)^{-1}(c)\) is just a point in \(Q_2 \). If \(p \) has \(l \frac{p+1}{2} \)-adic rational coordinates, then \((f_p^\infty)^{-1}(c)\) is a \(l \)-cell in \(Q^2 \). If \(c \) has infinitely many \(\frac{p+1}{2} \)-adic rational coordinates, then \((f_p^\infty)^{-1}(c)\) is a copy of \(Q_2 \).

4. Construction of the Cantor \(p \)-ary Decomposition \(G \)

Recall that \(f_p^\infty \) is the map from \(Q_2 \rightarrow Q_2 \). To construct a decomposition \(G \) on \(Q \), first we will use the function \(f_p^\infty \) to define the decomposition \(G_{f_p^\infty}^s \) on \(Q^2 \) where \(Q^2 = \{0\} \times Q_2 \). Fix \(s \in (0, 1) \). Let

\[
G_{f_p^\infty}^s = \left\{ \left\{ s \right\} \times (f_p^\infty)^{-1}(c) \mid c \in Q_2 \right\}.
\]

Lemma 13. The decomposition \(G_{f_p^\infty}^s \) defined as above is upper semicontinuous.

Proof. This follows from the fact that \(\pi_{G_{f_p^\infty}^s} = \{s\} \times f_p^\infty \). Moreover, by the Lemma 12, \(G_{f_p^\infty}^s \) is cellular.

Next will show that the decomposition \(G_{f_p^\infty}^s \) is realized by a pseudo-isotopy.

Lemma 14. The decomposition \(G_{f_p^\infty}^s \) is realized by a pseudo-isotopy.

Proof. Recall \(f_p^\infty : Q_2 \rightarrow Q_2 \) is a generalized Cantor \(p \)-ary function in which each component is the Cantor \(p \)-ary function \(f_p : [0, 1] \rightarrow [0, 1] \). To show that the decomposition \(G_{f_p^\infty}^s \) is realized by a pseudo-isotopy, it suffices to show that there exists a pseudo-isotopy \(\Psi_t \) of \(Q^2_s \rightarrow Q^2_s \) such that \(\Psi_0 \) is the identity \(Id_{Q^2_s} \) and \(G_{f_p^\infty}^s = \left\{ \Psi_1^{-1}(c) \mid c \in Q^2 \right\} \). For \(t \in [0, 1] \), define \(\Psi_t : Q^2_s \rightarrow Q^2_s \) by

\[
\Psi_t(s, x) = (s, (1 - t)x + tf_p^\infty(x)).
\]

It is clear that \(\Psi_1 = (s, f_p^\infty) \) which is a closed surjection. For \(t < 1 \), \(\Psi_t \) is onto since each component is onto by the Intermediate Value Theorem. Also, it is
continuous, and hence Ψ_t^{-1} is continuous since Ψ_t is a closed map. It remains to show that for $t < 1$, Ψ_t is one-to-one. Let $(s, x), (s, y) \in Q^2$ be such that $\Psi_t(x) = \Psi_t(y)$. Then

$$(s, (1 - t)x + tf_p^\infty(x)) = (s, (1 - t)y + tf_p^\infty(y))$$

and so

$$(1 - t)x + tf_p^\infty(x) = (1 - t)y + tf_p^\infty(y).$$

It implies that $(1 - t)(x - y) = t(f_p^\infty(y) - f_p^\infty(x))$. If $x \neq y$, then there is i such that $x_i \neq y_i$. Without loss of generality, assume that $x_i < y_i$. We know that $(1 - t)(x_i - y_i) = t(f_p(y_i) - f_p(x_i))$ Then the left hand side of equation is negative but the right hand side of equation is non-negative since the Cantor function f_p is non-decreasing function. This leads to a contradiction. Thus Ψ_t is one-to-one. Also, we can see that

$$G_{f_p^\infty}^s = \left\{ \Psi_1^{-1}(c) \mid c \in Q^2 \right\}.$$

The next lemma follows from the fact that $G_{f_p^\infty}^s$ is realized by a pseudo-isotopy.

Lemma 15. Let $G_{f_p^\infty}^s$ be the decomposition of $Q_s^2 = \{s\} \times Q_2$ induced by the map f_p^∞. Then $\pi_{G_p^\infty}$ from $\{s\} \times Q_2$ to $(\{s\} \times Q_s^2) / G_{f_p^\infty}^s$ is approximable by homeomorphisms.

Lemma 16. The decomposition $G_{f_p^\infty}^s$ is cellular.

Proof. This follows from Lemma 12.

Next we will define a decomposition G on Q. Given $s \in (0, 1)$. Let G be the partition consisting of $G_{f_p^\infty}^s = \{\{s\} \times (f_p^\infty)^{-1}(c) \mid c \in Q_2\}$ and all singletons in $Q - \{s\} \times Q_2$. It is clear that G is a usc decomposition of Q by a similar idea as shown in Lemma 13. Next we also show that G is realized by a pseudo-isotopy. First, for convenience, denote $\Psi_t^s(x) = (1 - t)x + tf^\infty(x)$ the second component of $\phi_t(s, x)$ defined in the previous section. Also, $\phi_t(x)$ is one-to-one since $\Psi_t(s, x)$ is one-to-one. Then define $K_t^s : [0, 1] \times Q_2 \to [0, 1] \times Q_2$ by

$$K_t^s(r, x) = \begin{cases} (r, (s - r)x + (1 + r - s)\Psi_t^s(x)) & \text{if } 0 \leq r \leq s \\ (r, (r - s)x + (1 - r + s)\Psi_t^s(x)) & \text{if } s \leq r \leq 1 \end{cases}$$

Claim that for $t < 1$, K_t^s is homeomorphism. Clearly, K_t^s is onto, continuous and $(K_t^s)^{-1}$ is continuous. It remains to show that K_t^s is one-to-one. Suppose
that \(K_t^s(a, x) = K_t^s(b, y) \) for some \((a, x), (b, y) \in [0, 1] \times Q_2\). Then by the definition of \(K_t^s \) we have \(a = b \). If \(a, b \in [0, s] \), then

\[
(s - a)x + (1 + a - s)\Psi_t^o(x) = (s - a)y + (1 + a - s)\Psi_t^o(y).
\]

Consider

\[
\Psi_t^{o(1+a-s)}(x) = (1 - t(1 + a - s))x + t(1 + a - s)f^\infty(x)
= (s - a)x + (1 + a - s)\Psi_t^o(x)
= (s - a)y + (1 + a - s)\Psi_t^o(y)
= (1 - t(1 + a - s))y + t(1 + a - s)f^\infty(y)
= \Psi_t^{o(1+a-s)}(y).
\]

Since \(t < 1 \) and \(1 + a - s \leq 1 \), it forces \(t(1 + a - s) \neq 1 \). This yields \(\Psi_t^{o(1+a-s)} \) is one-to-one and hence \(x = y \). Similarly, for \(a, b \in [s, 1] \), \(K_t^s \) is one-to-one. Therefore, \(K_t^s \) is one-to-one for all \(t < 1 \). Moreover, we can see that for each \((r, x) \in ([0, s] \cup (s, 1]) \times Q_2\),

\[
K_t^s(r, x) = \begin{cases}
(r, (s - r)x + (1 + r - s)f_p^\infty(x)) & \text{if } 0 \leq r < s \\
(r, (r - s)x + (1 - r + s)f_p^\infty(x)) & \text{if } s < r \leq 1
\end{cases}
\]

is one-to-one since \(r \neq s \). Thus \((K_t^s)^{-1}(r, x)\) is singleton and if \((r, x) \in \{s\} \times Q_2\), \(K_1(s, x) = \{s\} \times f_p^\infty(x) \in G_{f_p}^s \). Thus,

\[
G = \left\{ K_1^{-1}(c) \mid c \in [0, 1] \times Q_2 \right\} = S \cup G_{f_p}^s
\]

where \(S \) is the set of all singleton in \(([0, s] \cup (s, 1]) \times Q_2\). Therefore, we see that \(G = G_{f_p}^s \cup S \) is realized by pseudo-isotopies \(K_t^s \). Thus, we have the following lemma.

Lemma 17. The decomposition \(G \) is realized by pseudo-isotopy.

The result of Lemma 17 gives the following main results.

5. Main Results

Theorem 18. Let \(G \) be the decomposition defined as above. Then \(\pi_G \) from \(Q \) to \(Q/G \) is approximable by homeomorphisms, and hence \(Q/G \cong Q \).

Proof. This follows from Lemma 17. \(\square \)
Lemma 19. The decomposition G is cellular.

Proof. This follows from Lemma 12.

Acknowledgment

This research is supported by the Centre of Excellence in Mathematics, the Commission on Higher Education, Thailand.

References

