LOW SEPARATION AXIOMS IN MINIMAL STRUCTURES

Jesús Ávila¹, Erika Durán², Ximena Moya³
¹,²,³Department of Mathematics and Statistics
University of Tolima
Ibagué, COLOMBIA

Abstract: In this work we generalize some separation notions between T_0 and T_1 to m–spaces. In addition, we study the inclusion relations between the corresponding spaces and prove that the resultant diagram is different from the one in the topological case. Finally, we use the concepts of m–kernel, m–shell, m–derived and m–closure to characterize the new separation notions.

AMS Subject Classification: 54A05, 54D10
Key Words: separation axioms, m–spaces, m–open, m–closed, m–kernel, m–shell, m–derived, m–closure

1. Introduction

Separation axioms constitute a classical topic in General Topology. Its systematic study began with the works of Urysohn in 1925 ([8]). Van Est and Freudenthal ([9]) studied in more detail some axioms stronger than T_1.

The development of the separation axioms between T_0 and T_1 started with the work of Young in 1943 ([11]). Later in 1961, Aull and Thron ([1]) introduced new axioms and found that they all can be described in terms of the derived set of singletons.

Received: August 4, 2012 © 2013 Academic Publications, Ltd.
Correspondence author
The study of more general concepts than the topological structure has taken several directions over the past fifteen years. Maki in 1996 ([4]), studied minimal structures (or $m-$structures) on a set X, that is, collections of subsets of X containing the empty set and X, with no other restriction. On the other hand, Császár since 1997 has studied topological notions in collections which are closed under unions ([3]). They constitute the well-known generalized topologies.

Many classical topological notions have been studied in $m-$spaces and generalized topologies (see [5], [6], [2], [7], [10] and the literature quoted therein). However, the study of separation axioms have been limited to T_0, T_1 and stronger conditions. This paper is, nevertheless, devoted to the study of some low separation axioms between $m-T_0$ and $m-T_1$.

In Section 1 we present the most important separation axioms between T_0 and T_1 studied in [1] and some basic concepts of $m-$spaces. Following [1], in Section 2 we define some separation notions between $m-T_0$ and $m-T_1$ and study the inclusion relations between the corresponding spaces. Finally, in Section 3, we use the concepts of $m-$kernel, $m-$shell, $m-$derived and $m-$closure to characterize the new separation notions.

2. Preliminaries

In this work we will use the classical notations for the derived and the closure of a set. We start with the well known axioms between T_0 and T_1 defined in [1]. We shall simply x to denote the singleton $\{x\}$. In addition, we use the notation $A \vdash B$ to indicate that there exists an open set G such that $A \subseteq G$ and $G \cap B = \emptyset$. Moreover, the derived set and the closure set of A will be denoted by $\text{Der}(A)$ and $\text{Cl}(A)$ respectively.

Definition 1. The topological space (X, τ) is called:

1. T_0 if for each $p, q \in X$ ($p \neq q$), there exists an open set G such that $p \in G$, $q \notin G$ or $q \in G$, $p \notin G$.

2. T_1 if for each $p, q \in X$ ($p \neq q$), there exist open sets G, H such that $p \in G, q \notin G$ and $q \in H, p \notin H$.

3. T_D if for each $x \in X$, $\text{Der}(x)$ is closed.

4. T_{UD} if for each $x \in X$, $\text{Der}(x)$ is the union of disjoint closed sets.

5. T_{DD} if it is T_D and for each $x, y \in X$ ($x \neq y$), $\text{Der}(x) \cap \text{Der}(y) = \emptyset$.
6. T_F if for any point x and any finite subset F of X such that $x \notin F$, either $x \vdash F$ or $F \vdash x$.

7. T_{FF} if for any two finite subsets F_1 and F_2 of X with $F_1 \cap F_2 = \emptyset$, either $F_1 \vdash F_2$ or $F_2 \vdash F_1$.

8. T_Y if for each $x, y \in X \ (x \neq y)$, $Cl(x) \cap Cl(y)$ is either a singleton or the empty set.

9. T_{YS} if for each $x, y \in X \ (x \neq y)$, $Cl(x) \cap Cl(y)$ is either \emptyset or x or y.

From the notions defined above it is obtained the following diagram of strict implications ([1]).

$$
\begin{array}{c}
T_1 \rightarrow T_{DD} \rightarrow T_D \\
\downarrow \\
T_{YS} \downarrow \\
T_{FF} \rightarrow T_Y \rightarrow T_F \rightarrow T_{UD} \rightarrow T_0
\end{array}
$$

The above axioms can be characterized in terms of the derived, the closure, the shell and the kernel of singletons ([1]). The kernel of $A \subseteq X$, denoted by \hat{A}, is defined as the intersection of the open sets containing A and the shell of A, denoted by \check{A}, as $\hat{A} \setminus A$.

Definition 2. A minimal structure or an $m-$structure on the nonempty set X, is a class m of subsets of X such that $\emptyset, X \in m$.

For a nonempty set X and an $m-$structure m on X, the pair (X, m) is called an $m-$space. Each element of m is said to be $m-$open set and the complement of an $m-$open set is an $m-$closed set. Note that the union and intersection of $m-$open sets are not generally $m-$open sets; thus each topological space is an $m-$space and it is easy to see that there exist $m-$spaces that are not topological spaces.

As in the topological case, if X is an $m-$space and $A \subseteq X$ the $m-$closure of A ($m - Cl(A)$) is the intersection of all $m-$closed sets containing A. It is clear that if A is $m-$closed then $m - Cl(A) = A$ but the converse is not true in general. We will say that the collection m satisfies the Maki’s condition ([4]) if m is closed under unions. Thus under the Maki’s condition the intersection of $m-$closed sets is an $m-$closed and hence also the $m-$closure of any subset.
The $m-$derived set ($m - Der$) is defined similarly to the topological case and it is proved that $m - Cl(A) = A \cup m - Der(A)$ for any $A \subseteq X$.

We finish this section with some special classes of sets, which we will use to characterize some separation axioms in $m-$spaces.

Definition 3. Let X be an m-space and $A \subseteq X$. Then:

1. The m-kernel of A is $m - \hat{A} = \bigcap \{G \subseteq X : G \in m, A \subseteq G\}$.
2. The m-shell of A is $m - \check{A} = m - \hat{A}\setminus A$.
3. $m - \langle A \rangle = m - Cl(A) \cap m - \hat{A}$.

The following properties of the notions defined above will be used in the final section.

Proposition 4. Let X be an $m-$space and $x, y \in X$. The following statements hold:

1. If $y \in m - \hat{x}$, then $m - \hat{y} \subseteq m - \hat{x}$.
2. $y \in m - \hat{x}$ iff $x \in m - Cl(y)$.
3. $y \in m - \hat{x}$ iff $x \in m - Der(y)$.
4. For each $p \in X$, $m - \hat{p}$ is either the empty set or a singleton iff for each $x, y \in X$ ($x \neq y$), $m - Der(x) \cap m - Der(y) = \emptyset$.
5. If $y \in m - \langle x \rangle$, then $m - \langle y \rangle = m - \langle x \rangle$.
6. For each $x, y \in X$, either $m - \langle x \rangle \cap m - \langle y \rangle = \emptyset$ or $m - \langle x \rangle = m - \langle y \rangle$.

3. Some Low Separation Axioms in m-Spaces

Inspired by [1] we define some classes of $m-$spaces, which are related to $m - T_0$ and $m - T_1$ spaces. We recall that the $m-$space X is called $m - T_0$ if for each $x, y \in X$, ($x \neq y$) either $x \vdash y$ or $y \vdash x$; and it is said to be $m - T_1$ if for each $x, y \in X$, ($x \neq y$) one has that $x \vdash y$ and $y \vdash x$.

Definition 5. The $m-$space X is called:

1. $m - T_D$ if for each $x \in X$, $m - Der(x)$ is m-closed.
2. $m - T_{UD}$ if for each $x \in X$, $m - Der(x)$ is the union of disjoint m-closed sets.

3. $m - T_{DD}$ if it is $m - T_D$ and for each $x, y \in X$ ($x \neq y$), $m - Der(x) \cap m - Der(y) = \emptyset$.

4. $m - T_F$ if for any point x and any finite subset F of X such that $x \notin F$, either $x \vdash F$ or $F \vdash x$.

5. $m - T_{FF}$ if for any two finite subsets F_1 and F_2 of X with $F_1 \cap F_2 = \emptyset$, either $F_1 \vdash F_2$ or $F_2 \vdash F_1$.

6. $m - T_Y$ if for each $x, y \in X$ ($x \neq y$), $m - Cl(x) \cap m - Cl(y)$ is either a singleton or the empty set.

7. $m - T_{YS}$ if for each $x, y \in X$ ($x \neq y$), $m - Cl(x) \cap m - Cl(y)$ is either \emptyset or x or y.

8. $m - T(\alpha)$ if for each $y \in X$, $x \in m - Der(y)$ implies $m - Der(x) = \emptyset$.

In the following we will determine the relationship between the classes of $m-$spaces defined above. Note first that the implications $m - T_1 \to m - T_{DD}$, $m - T_D \to m - T_{UD}$ and $m - T_{DD} \to m - T_{YS}$ are evident.

Proposition 6. The following affirmations hold:

1. Every $m - T_{UD}$ space is $m - T_0$.

2. Every $m - T_{FF}$ space is $m - T_Y$.

3. Every $m - T_F$ space is $m - T(\alpha)$.

4. Every $m - T(\alpha)$ space is $m - T_0$.

5. Every $m - T_Y$ space is $m - T(\alpha)$.

Proof. 1. For $x, y \in X$ ($x \neq y$) if $y \in m - Der(x)$, then there exists an $m-$closed set H such that $x \in H^c$ and $y \notin H^c$. Since the other case is evident we conclude that X is $m - T_0$.

2. If there exist $x, y \in X$ ($x \neq y$) such that the set $m - Cl(x) \cap m - Cl(y)$ is neither \emptyset nor a singleton, then there exist $p, q \in X$ ($p \neq q$) such that $p, q \in m - Cl(x) \cap m - Cl(y)$. If $\{p, q\} \cap \{x, y\} = \emptyset$ then for $F_1 = \{p, x\}$ and $F_2 = \{q, y\}$ we have that $F_1 \not\vdash F_2$ and $F_2 \not\vdash F_1$, a contradiction. If $p = x$ and $q \neq y$ then for $F_1 = \{x\}$, $F_2 = \{q, y\}$ is again obtained a contradiction. Finally, since the
other cases are impossible, we conclude that \(m - Cl(x) \cap m - Cl(y)\) is either \(\emptyset\) or a singleton, that is, \(X\) is \(m - T_Y\).

3. Let \(y \in X\) and \(x \in m - \text{Der}(y)\). If \(p \in m - \text{Der}(x)\) and \(p = y\), then \(F = \{y\} \not\in x\) and \(x \not\in F\) which is a contradiction. The case \(p \in m - \text{Der}(x)\) and \(p \neq y\) also leads to a contradiction. Hence \(m - \text{Der}(x) = \emptyset\) and thus \(X\) is \(m - T_\alpha\).

4. Let \(x, y \in X\) with \(x \neq y\). If \(x \in m - \text{Der}(y)\), then by assumption \(y \notin m - \text{Der}(x)\) and the result follows. The other case is analogous, so that \(X\) is \(m - T_0\).

5. Let \(y \in X\) and \(x \in m - \text{Der}(y)\). If \(p \in m - \text{Der}(x)\) and \(p = y\), then \(\{x, y\} \subseteq m - Cl(x) \cap m - Cl(y)\) which is a contradiction. Analogously the case \(p \neq y\) leads to a contradiction. Hence \(m - \text{Der}(x) = \emptyset\) and thus \(X\) is \(m - T_\alpha\). \(\blacksquare\)

The topological version of the \(m - T(\alpha)\) notion was introduced in [1] (Theorem 3.2). However, it is equivalent to the notion \(m - T_F\), which is not true in \(m - \text{spaces}\) (Example 7 (2)).

In the topological case the implications \(T_1 \rightarrow T_{FF}, T_Y \rightarrow T_F, T_Y \rightarrow T_{UD}, T_F \rightarrow T_{UD}\) hold. However, these implications are not true in general in \(m - \text{spaces}\), as we show in the following example.

Example 7. 1. Consider \(\mathbb{R}\) and \(m = \{\emptyset, \mathbb{R}\} \cup \{\mathbb{R} - \{x\} : x \in \mathbb{R}\}\). It is clear that this space is \(m - T_1\). Let \(F_1 = \{0, 1\}, F_2 = \{2, 3\}\). The \(m - \text{open}\) sets containing \(F_1\) have the form \(\mathbb{R} - \{z\}\) with \(z \neq 0, 1\). If \(z \neq 2, 3\) then \(\mathbb{R} - \{z\} \cap F_2 = F_2\) and so \(F_1 \not\in F_2\). If either \(z = 2\) or \(3\) then \(\mathbb{R} - \{z\} \cap F_2 = F_2 - \{z\}\) and \(F_1 \not\in F_2\). Analogously \(F_2 \not\in F_1\) and so this space is not \(m - T_{FF}\). In conclusion \(m - T_1 \not\rightarrow m - T_{FF}\).

2. Let \(X = \{1, 2, 3\}\) and \(m = \{\emptyset, X, \{1\}, \{1, 2\}, \{2, 3\}, \{3\}\}\). Since for each \(x \in X\), \(m - \text{Der}(x) = \emptyset\) then this space is \(m - T_Y\). For \(2 \in X\) and \(F = \{1, 3\}\) we have that \(\{2\} \not\in F\) and \(F \not\in \{2\}\); so this space is not \(m - T_F\). This example shows that \(m - T_Y \not\rightarrow m - T_F\) and \(m - T(\alpha) \not\rightarrow m - T_F\).

3. Consider \(\mathbb{R}\) and \(m = \{\emptyset, \mathbb{R}\} \cup \{A \subseteq \mathbb{R} : 0 \notin A, A\ is\ finite\}\). If \(x \neq 0\) then \(m - \text{Der}(x) = \{0\}\) and if \(x = 0\) then \(m - \text{Der}(0) = \emptyset\), so this space is \(m - T_Y\). Since the nonempty \(m - \text{closed}\) sets are infinite, the set \(m - \text{Der}(x) = \{0\}\) can not be expressed as a union of disjoint \(m - \text{closed}\) sets. Then this space is not \(m - T_{UD}\) and thus \(m - T_Y \not\rightarrow m - T_{UD}\).

4. Let \(X\) be an infinite set, \(p \in X\) a fixed element and \(m = \{\emptyset, X\} \cup \{A \subseteq X : p \in A, |A| \geq 3\ and\ A\ is\ finite\}\). Let \(x \in X\) and \(F\) a finite subset of \(X\) with \(x \notin F\). If \(x = p\) then \(p \not\in F\). If \(x \neq p\) and \(p \in F\) then \(F \not\in x\) and if \(p \notin F\) then \(x \not\in F\). Hence this space is \(m - T_F\). Since the set \(m - \text{Der}(p) = X - \{p\}\)
can not be expressed as a union of disjoint \(m \)-closed sets we conclude that \(X \) is not \(m - T_{UD} \). Thus, \(m - T_F \nleftrightarrow m - T_{UD} \) and \(m - T(\alpha) \nleftrightarrow m - T_{UD} \).

In conclusion we obtain the following diagram of implications.

\[
\begin{array}{cccc}
m - T_1 & \rightarrow & m - T_{DD} & \rightarrow & m - T_D \\
& & \downarrow & & \downarrow \\
& & m - T_{YS} & & \\
& & \downarrow & & \\
m - T_{FF} & \rightarrow & m - T_Y & & m - T_{UD} \\
& & \downarrow & & \downarrow \\
& & m - T_F & & m - T_0 \\
\end{array}
\]

Since each topological space is in particular an \(m \)-space the implications \(m - T_1 \rightarrow m - T_{DD} \rightarrow m - T_D \rightarrow m - T_{UD} \rightarrow m - T_0 \), \(m - T_{DD} \rightarrow m - T_{YS} \rightarrow m - T_Y \) and \(m - T_{FF} \rightarrow m - T_Y \) are strict. Moreover, since each \(m - T_Y \) space is \(m - T(\alpha) \) (Proposition 6 (5)) the Example 7 (2) shows that \(m - T(\alpha) \nleftrightarrow m - T_F \). The remaining implications are also strict as we show below.

Example 8. 1. For \(X = \{1, 2, 3, 4\} \) and \(m = \{\emptyset, X, \{1\}, \{2\}, \{1, 2, 3\}, \{1, 2, 4\}\} \) we have that \(m - \text{Der}(1) = m - \text{Der}(2) = \{3, 4\} \) and \(m - \text{Der}(3) = m - \text{Der}(4) = \emptyset \). So, this space is \(m - T(\alpha) \). Moreover, \(m - \text{Cl}(1) \cap m - \text{Cl}(2) = \{3, 4\} \), that is, \(X \) is not \(m - T_Y \). Then \(m - T(\alpha) \nleftrightarrow m - T_Y \).

2. Consider \(\mathbb{R} \) with \(m = \{\emptyset, \mathbb{R}\} \cup \{[x, \infty) : x \in \mathbb{R}\} \). It is clear that this space is \(m - T_0 \) and it is not \(m - T(\alpha) \). Thus, \(m - T_0 \nleftrightarrow m - T(\alpha) \).

3. Let \(X \) be a set such that \(|X| \geq 4\) and \(m = \{\emptyset, X\} \cup \{\{x\} : x \in X\} \). For different elements \(a, b, c, d \in X \) one has that \(F_1 = \{a, b\} \not\subseteq F_2 = \{c, d\} \) and \(F_2 \not\subseteq F_1 \). So, this space is not \(m - T_{FF} \) but it is \(m - T_F \). Hence \(m - T_F \nleftrightarrow m - T_{FF} \).

Finally, it is easy to see that each topological space \(T_i \) is an \(m - T_i \) space and this implication is strict. Therefore, the class of topological spaces \(T_i \) is strictly contained in the class of \(m - T_i \) spaces.

4. Characterizations

In what follows, we use the concepts of \(m \)-derived, \(m \)-closure, \(m \)-shell and \(m \)-kernel to characterize some low separation axioms in \(m \)-spaces. We start with several characterizations of the \(m - T_0 \) spaces. This result extends the
Theorem 2.3 of [1], the proof follows of the definitions and the application of Proposition 4.

Theorem 9. Let X be an m-space. The following conditions are equivalent:

1. X is m-T_0.

2. If $y \in m - Cl(x)$ with $y \neq x$, then $x \notin m - Cl(y)$.

3. If $y \in m - Der(x)$, then $m - Cl(y) \subseteq m - Der(x)$.

4. If $y \in m - \hat{x}$, then $m - \hat{y} \subseteq m - \hat{x}$.

5. For each $x \in X$, $m - Der(x) \cap m - \hat{x} = \emptyset$.

6. For each $x \in X$, $m - \langle x \rangle = x$.

In a similar way it can be obtained the following characterizations of the m-T_1 spaces. This result extends Theorem 2.4 of [1].

Theorem 10. Let X be an m-space. The following conditions are equivalent:

1. X is m-T_1.

2. For each $x \in X$, $m - Cl(x) = x$.

3. For each $x \in X$, $m - Der(x) = \emptyset$.

4. For each $x \in X$, $m - \hat{x} = x$.

5. For each $x \in X$, $m - \hat{x} = \emptyset$.

6. For each $x, y \in X$ with $x \neq y$, $m - Cl(x) \cap m - Cl(y) = \emptyset$.

7. For each $x, y \in X$ with $x \neq y$, $m - \hat{x} \cap m - \hat{y} = \emptyset$.

8. $m - N_D = X$, where $m - N_D = \{x \in X : m - Der(x) = \emptyset\}$.

9. $m - N_S = X$, where $m - N_S = \{x \in X : m - \hat{x} = \emptyset\}$.

It is well known that the topological spaces T_D are characterized as those where each singleton is the intersection of a closed set with an open set ([1], Theorem 3.1). However, in the m-spaces this property is not true in general but if the Maki’s condition is satisfied then the result is verified.
Theorem 11. If X is m-T_D, then each singleton is the intersection of an m-open set with the m-closure of some subset of X. The converse is true if m satisfies the Maki’s condition.

Proof. For each $x \in X$ we have that $(m - \text{Der}(x))^c \cap (m - \text{Cl}(x)) = x$ and so the result follows.

Conversely, if for each $x \in X$, $x = G_x \cap m - \text{Cl}(A_x)$ where G_x is an m-open and $A_x \subseteq X$, then $x = G_x \cap m - \text{Cl}(x)$ and so $m - \text{Der}(x) = m - \text{Cl}(x) \cap G_x^c$. Thus by the Maki’s condition we obtain that $m - \text{Der}(x)$ is m-closed.

In m-spaces the $m - T(\alpha)$ notion can be used to characterize the $m - T_Y$ axiom. This situation is analogous to the topological case where the T_F notion is used ([1], Theorem 3.6).

Theorem 12. Let X be an m-space. The following conditions are equivalent:

1. X is $m - T_Y$.

2. X is $m - T(\alpha)$ and for each $x, y \in X$ with $x \neq y$ the set $m - \text{Der}(x) \cap m - \text{Der}(y)$ is either empty or a singleton.

3. X is $m - T(\alpha)$ and for each $x, y \in X$ with $x \neq y$ the set $m - \hat{x} \cap m - \hat{y}$ is either empty or a singleton.

4. For each $x, y \in X$ with $x \neq y$ the set $m - \hat{x} \cap m - \hat{y}$ is either empty or a singleton.

Proof. The first implication is evident. For the remaining it is enough to reason by contradiction and to apply 3 and 4 of Proposition 4.

Similar to the last theorem the $m - T(\alpha)$ notion can be used to characterize the $m - T_{YS}$ axiom.

Theorem 13. X is $m - T_{YS}$ iff X is $m - T(\alpha)$ and for each $x, y \in X$ with $x \neq y$, $m - \text{Der}(x) \cap m - \text{Der}(y) = \emptyset$.

Proof. It is clear that X is $m - T(\alpha)$. If for each $x, y \in X$ ($x \neq y$) there exists $p \in m - \text{Der}(x) \cap m - \text{Der}(y)$, then $p \in m - \text{Cl}(x) \cap m - \text{Cl}(y)$, which is false. So the result follows.

Conversely, for each $x, y \in X$ ($x \neq y$) we have that $m - \text{Cl}(x) \cap m - \text{Cl}(y) = (x \cap m - \text{Der}(y)) \cup (y \cap m - \text{Der}(x))$. Since X es $m - T(\alpha)$, that union of sets is necessarily different from $\{x, y\}$. Thus X is $m - T_{YS}$.
Theorem 14. Let X be an m–space. If for each $x, y \in X$ $(x \neq y)$, $m – Der(x) \vdash m – Der(y)$ or $m – Der(y) \vdash m – Der(x)$, then X is $m – TYS$. The converse is true if for each $x \in X$, $m – Cl(x)$ is m–closed.

Proof. If there exist $x, y \in X$ $(x \neq y)$ and p different from x and y such that $p \in m – Cl(x) \cap m – Cl(y)$, then $p \in m – Der(x)$ and $p \in m – Der(y)$. Thus we obtain a contradiction $m – Der(x) \not\vdash m – Der(y)$ and $m – Der(y) \not\vdash m – Der(x)$.

Conversely, if $m – Cl(x) \cap m – Cl(y) = \emptyset$ for $x \neq y$ then $m – Der(y) \vdash m – Der(x)$ with the m–open set $(m – Cl(x))^c$. If $m – Cl(x) \cap m – Cl(y) = x$, then $m – Der(x) \vdash m – Der(y)$ with the m–open set $(m – Cl(y))^c$. Since the other case is analogous we obtain the result.

Note that the previous result suggests the existence of a new separation notion between $m – TDD$ and $m – TYS$, since in each $m – TDD$ space for each $x \neq y$ one has that $m – Der(x) \vdash m – Der(y)$ and $m – Der(y) \vdash m – Der(x)$.

We finish this work with the characterization of the $m – T(\alpha)$ notion, which extends Theorem 3.4 of [1] to m–spaces.

Theorem 15. Let X be an m–space. The following conditions are equivalent:

1. X is $m – T(\alpha)$.
2. For each $x, y \in X$ $(x \neq y)$, $m – Der(x) \cap m – \tilde{y} = \emptyset$.
3. $N_S \cup N_D = X$.
4. For each $x \in X$, $y \in m – \tilde{x}$ implies $m – \tilde{y} = \emptyset$.

Proof. 1 ⇒ 2. If $p \in m – Der(x) \cap m – \tilde{y}$ for $x \neq y$, then we would have $p \in m – Der(x)$ and $y \in m – Der(p)$ (Proposition 4 (4)), which contradicts 1. Thus 2 follows.

2 ⇒ 3. If there exists $x \in X$ such that $m – Der(x) \neq \emptyset$ and $m – \tilde{x} \neq \emptyset$, then there exist $p, q \in X$ $(p \neq q)$ such that $x \in m – \tilde{p} \cap m – Der(q)$ (Proposition 4 (4)), which contradicts 2. Hence $N_S \cup N_D = X$.

3 ⇒ 4. If $y \in m – \tilde{x}$ and $m – \tilde{y} \neq \emptyset$, then $x \in m – Der(y)$ (Proposition 4 (4)) and by 3 $m – Der(y) = \emptyset$, which is a contradiction. Then 4 follows.

4 ⇒ 1. If $x \in m – Der(y)$ and $m – Der(x) \neq \emptyset$, then we would have $y \in m – \tilde{x}$ and $x \in m – \tilde{p}$ for some $p \in X$ (Proposition 4 (4)), which contradicts 4. It follows that X is $m – T(\alpha)$. □
References

