
International Journal of Pure and Applied Mathematics

Volume 84 No. 2 2013, 1-13

ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version)
url: http://www.ijpam.eu
doi: http://dx.doi.org/10.12732/ijpam.v84i2.1

PA
ijpam.eu

FRACTIONAL DIFFERENTIATION MATRICES FOR

SOLVING FRACTIONAL ORDERS DIFFERENTIAL

EQUATIONS

M. El-Kady1, Amaal El-Sayed2

1,2Department of Mathematics
Faculty of Science

Helwan University, Cairo, EGYPT

Abstract: This paper gives a new formula for the fractional differentiation
matrix based on shifted Chebyshev polynomials for solving fractional order
ordinary differential equations (FODEs). In addition, we will estimate the error
bound of the in the largest element of that matrix. Some numerical examples
are included to confirm the accuracy of the new formula and illustrate the
practical usefulness of our method.
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1. Introduction

The fractional differential equations are posing many problems in engineering
and physics. The subject of fractional calculus and its applications has gained
considerable popularity and importance during the past three decades or so,
due mainly to its demonstrated applications in numerous seemingly diverse
and widespread fields of science and engineering. These problems have a large
number of applications in many different fields, e.g., mechanical system [3],
automotive vehicle design [11] and manufacturing process [8]. Some of the

Received: March 26, 2012 c© 2013 Academic Publications, Ltd.
url: www.acadpubl.eu



2 M. El-Kady, A. El-Sayed

areas of present-day applications of fractional models include fluid flow, solute
transport or dynamical processes in self-similar, electromagnetic theory and
control theory of dynamical systems.

Recently, fractional differential equations are generalizations of ordinary
differential equations to an arbitrary (non integer) order. Due to the

extensive applications of FDEs in engineering and science, research in this
area has grown significantly all around the world. Several authors have studied
spectral differentiation matrices, mainly for Chebyshev differentiation matrices
[5, 6, 9]. In many applications, the formulae of spectral differentiation matrix
are appeared as a relation between the expansion coefficients of derivatives with
those of the function itself. Clearly, formulae of the expansion coefficients of a
general order derivative of finite differentiable orthogonal polynomials in terms
of those polynomials themselves are available for Chebyshev [8]. These naive
algorithms for computing pseudospectral differentiation matrices suffer from
severe loss of accuracy due to round off errors.

On the other hand, Chebyshev polynomials have proven successfully in the
numerical solution of various boundary value problems [2]. Chebyshev polyno-
mials are important in approximation theory because the roots of the Cheby-
shev polynomials are used as nodes in polynomial interpolation. The resulting
interpolation polynomial minimizes the problem of Runge’s phenomenon and
provides an approximation that is close to the polynomial of best approxima-
tion to a continuous function under the maximum norm. This approximation
leads directly to the method of Clenshaw-Curtis quadrature [1].

This paper aims to formulate the fractional differentiation matrix based
on shifted Chebyshev polynomials and it may use for solving fractional order
ordinary differential equations (FODEs).

The organization of this paper is as follows: In Section 2, basic formulation
of the shifted Chebyshev polynomials are presented. In Section 3, fractional
Chebyshev differentiation matrices are presented. We analyzed the error upper
bounds of the method in Section 4. In Section 5 the proposed matrices are
applied to several examples. Also a conclusion is given in Section 6

2. Preliminaries and Fractional Derivatives

Shifted Chebyshev polynomials of the first kind T ∗
n(X) are defined through the

identity:

T ∗
n(X) = cos(2nθ) (1)
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where x = cos2 θ and 0 ≤ x ≤ 1
The recurrence formula is as follows:

T ∗
n(X) = 2(2x − 1)T ∗

n−1(x)− T ∗
n−2(x), n = 2, 3, . . . (2)

with the initial conditions:

T ∗
0 (x) = 1, t∗1(x) = 2x− 1

The shifted Chebyshev polynomials T ∗
n(X) can be expanded in power series:

T ∗
n(X) = n

n
∑

k=0

(−1)n−k (2)
2k(n+ k − 1)!(x)k

(2k)!(n − k)!
, n > 0 (3)

The orthogonality property of the shifted Chebyshev polynomials of the first
kind is as follows:

∫ 1

0
T ∗
i (x)T

∗
j (x)w(x)dx =







0 i 6= j

π i = j = 0 , 0 ≤ i, j ≤ N
π
2 i = j 6= 0

(4)

we observe that the shifted Chebyshev polynomials form an orthogonal set on
the interval 0 ≤ x ≤ 1 with the weighting function w(x) = (x− x2)−1/2.

One of the major advantages of using shifted Chebyshev polynomials Tn(x)
as expansion functions is the good representation of smooth functions by finite
Chebyshev expansions. Also, the shifted Chebyshev expansion coefficients an
approach zero faster than any inverse power in n as n → ∞ [3].

There are many quadratures of shifted Chebyshev polynomials such as:
1. Shifted Chebyshev zero points for T ∗

n(x):

xi =
1

2
(cos(

π(2i + 1)

2N
) + 1) for 1 ≤ i ≤ N.

2. Shifted Chebyshev extreme points for T ∗
n(x):

xi =
1

2
(cos(

iπ

N
) + 1) 0 ≤ i ≤ N.

Fractional derivatives:

Let α ∈ R+ and n = [α]. The operator Dα is defined by:

Dαf(x) =
1

Γ(n− α)

∫ x

0
(x− t)n−α−1

(

d

dx

)n

f(t)dt (5)
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for n− 1 < α ≤ n, n ∈ N , is called the Caputo differential operator of order α.
We are ready now to define a real-indexed derivative with Dα with α ∈ R, of a
monomial, as

Dα(xβ) =
Γ(β + 1)

Γ(β + 1− α)
xβ−α (6)

One can notice that,
Dα(c) = 0 (7)

where c is constant. There are some properties of fractional derivatives such as:
a) The first property of interest is that of association

Dα(cf(x)) = cDα(f(x)). (8)

b) The second property we would like to introduce into the fractional cal-
culus is the distributive law

Dα(f(x)± g(x)) = Dα(f(x))±Dα(g(x)). (9)

c) The final property is that the operator obeys Leibniz rule for taking the
derivative of the product of two functions

Dα(f(x)g(x)) =

α
∑

k=0

(

α

k

)

Dα−k(g(x))Dk(f(x)) (10)

Fractional derivatives possess a memory effect. This can be very useful in
modeling behavior, but can also be computationally expensive. Any numeri-
cal approximation of a fractional differential equation requires an exponential
increase in work with increasing time. If multiple instances of fractional deriva-
tives are included the workload again increases exponentially.

3. Fractional Shifted Chebyshev Differentiation Matrices

The basic idea of pseudospectral approximations method is to assume the un-
known y(x) of the differential equation can be approximated by sum of N + 1
basis functions φn(x) as follows:

yn(x)
N
∑

n=0

anφn(x) (11)

This series is substituted into the differential equation:

L(α)y = f(x), 0 ≤ x ≤ 1
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where L(α) is a fractional differential operator and f(x) is a given function. The
result is called residual function and defined by:

R(x, a0, a1, a2, . . . , aN ) = LyN − f

This is identically equal to zero for the exact solution. In this paper, the choice
of φn(x) is shifted Chebyshev polynomials which are taken with their associated
Gauss Lobatto points (GLP) in the interval [0, 1]. The set of collocation points
is related to the set of basis function as the nodes of quadrature formulae which
are used in the computation of the spectral coefficients from the grid values.
Consider the function f(x) can be approximated in the interval [0,1] by using
shifted Chebyshev polynomials T ∗

n(x) as follows [1]:

f(x) =

N
∑

n=0

θnanT
∗
n(x)

where

an =
2

N

N
∑

j=0

θjf(xj)T
∗
n(xj)

for θn, θj are equal to 1 for all n, j = 1, 2, . . . , N − 1, and θ0 = θN = 1
2 .

The fractional derivative f (α)(x) at the extreme points xi is given by:

f (α)(xi) =

N
∑

n=0

θnanT
∗(α)
n (xi) (12)

Chebyshev polynomials as follows:

T ∗(α)
n (x) = n

n
∑

k≥⌈α⌉

(−1)n−k (2)
2k(n+ k − 1)!Γ(k + 1)(x)k−α

(2k)!(n − k)!Γ(k + 1− α)
(13)

where k > 0, n = ⌈α⌉, ⌈α⌉ + 1, . . . , N , and

T ∗(α)
n (x) = 0, n = 0, 1, . . . , ⌈α⌉ − 1

The meaning of ⌈α⌉ is the ceiling function which denotes to the smallest integer
greater than or equal to α. The expression of fractional differentiation matrix
can be formulated as follows:

f (α)(xi) =
N
∑

j=0

d
(α)
i,j f(xj) (14)
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where

d
(α)
i,j =

2θj
N

N
∑

n=0

θnT
∗
n(xj)T

∗α
n (xi)

The matrix form is:
f(α) = D(α)f

The elements of the fractional differentiation matrix D(α) are:

d
(α)
i,j =

2

N













0 0 . . . 0

1
2A

(α)
1,0 A

(α)
1,1 . . . 1

2

. . .A
(α)
1,N

...
...

. . .
...

1
2A

(α)
N,0 A

(α)
N,1 . . . 1

2A
(α)
N,N













where,

A
(α)
i,j =

N
∑

n=0

θnT
∗
n(xj)T

∗(α)
n (xi)

In case of α = 0.5 and N = 4, the elements of the fractional differentiation
matrix are as follows:

d
(0.5)
i,j =













0 0 0 0 0
−2.4362 2.1302 0.4392 −0.2286 0.0954
−0.5395 −1.2067 1.3678 0.5987 −0.2204
−0.7706 0.2343 −1.2986 1.2114 0.6235
−0.4621 −0.3568 0.1290 −2.9101 3.6001













4. Error Analysis

In this section the error effects of the largest element of the fractional differ-
entiation matrix in case of integer and fractional numbers is presented. Also,
two numerical tests for integer derivative and fractional derivative are given in
double precision with unit round off ε = 2.22 × 10−16. All the programs have
been written in Matlab 10.

4.1. Error Bound for the First Order Derivatives

We investigate the effect of round off error in the matrix D(α) with α = 1 at
shifted Chebyshev extreme points. In finite precision arithmetic, we have

x̃1 = x1 + δ
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where δ denotes a small error. In this section, we present the error d̃
(α)
01 − d

(α)
01

at the shifted Chebyshev extreme points [9]:

d
(1)
01 =

−2

x0 − x1
=

−2
π2

4N2 +O( 1
N4 )

=
−2

π2

4N2 (1 +O( 1
N2 ))

= −
8N2

π2
(1−O(

1

N2
)).

The element d
(1)
0,1 is the major elements concerning its values. Accordingly, it

bears the major error responsibility comparing the other elements. In Ref. [9],
the authors computed the error as follows:

d̃
(1)
01 − d

(1)
01 =

32N4

π4
(15)

They found that the error is of order O(N4δ), whereas the authors in [6] show

that the error in the element d
(1)
0,1 is of order O(N2δ). By using Eq. (14), we

investigate here the effect of rounding for the element d̃
(1)
01 − d

(1)
01 , i.e.,

d
(1)
01 =

2

N

N
∑

n=0

2(−1)2nθn(2xn − 1)n2

with the error bound

d̃
(1)
01 − d

(1)
01 = 8

N

∑N
n=0(−1)2nθnδn

≤ [83N
2 + 4N + frac43]δ

(16)

where, δ = max
0≤n≤N

{δn}.

The efficiency of presented investigation is shown in Table (4.1).

Table (4.1): Computed error d̃
(1)
01 − d

(1)
01

N Eq.(15) Eq.(16)

8 2.9872e-013 4.5288e-014

12 1.5123e-012 9.6200e-014

16 4.7795e-012 1.6606e-013

20 1.1669e-011 2.5486e-013

24 2.4196e-011 3.6260e-013

28 4.4827e-011 4.8929e-013

On the other hand, the following example is computed for new formula (14)
when α = 1, 2 for the test function f(x) = x8. The results are compared with
the Chebyshev differentiation matrix in [7] for different numbers of GCL points
as shown in Table (4.2).
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Table (4.2): Observed errors for first and second derivatives
N α = 1[7] α = 1(Eq.(14) α = 2[7] α = 2(Eq.(14)

8 4.3656e-011 3.0198e-014 1.1642e-009 4.2633e-014

12 1.0477e-009 3.4106e-013 6.7055e-008 1.5461e-011

16 4.6566e-010 4.5297e-014 5.9605e-008 7.2760e-012

20 5.2387e-009 1.1369e-013 8.4937e-007 2.9104e-011

24 3.2596e-009 5.1159e-012 7.4506e-007 8.7311e-010

28 5.3551e-009 1.1738e-010 7.7486e-007 4.2987e-009

4.2. Error Bound for Fractional Order Derivatives

We deduce the effect of rounding errors on the largest element in the matrix
D(α) in case of at the shifted Chebyshev extreme points by using Eq. (14), i.e.,

d
(0.5)
01 =

2

N

N
∑

n=0

2(−1)nθn(2xn − 1)n2(1 + (−1)n)

with the error bound

d̃
(0.5)
01 − d

(0.5)
01 = 4

N

∑N
n=0 2(−1)nθnn

2[1 + (−1)n]δn
≤ [−8

3 N2 + 4N + (−1)N (1 +N) + 4
3 ]δ

(17)

The error in the element d
(0.5)
01 is of order O(N2δ). Table (4.3) shows the error

bound.

Table (4.3): Computed error d̃
(1)
01 − d

(1)
01

N Eq.(167

8 4.7286e-014

12 9.9086e-014

16 1.6983e-013

20 2.5952e-013

24 3.6815e-013

28 4.9573e-013

Some numerical results with α = 0.2, 0.4 for the test function f(x) = x8

compared with its exact fractional derivatives are shown in Figures (4.1) and
(4.2), respectively.

The examples below show that it is best to compute the fractional differ-
entiation matrix accurately instead of classical matrix. In additional, the well
known the negative sum trick can be applied to the final matrix. The penalty
for ignoring this advice is not always severe. It is most important to compute
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Fig(4.1) Fractional derivative of f(x) = x8 for N = 20 at α = 0.2

Fig(4.2) Fractional derivative of f(x) = x8 for N = 20 at α = 0.4

the first few and last few rows of D(α) accurately. Because of boundary con-
ditions, these are precisely the rows of D(α) which often are removed from the
fractional differentiation matrix.

5. Application

We now consider some of numerical examples to illustrate the comparative
performance of the fractional differentiation matrix given in Eq. (14).

Example 1. Consider the following fractional differentiation equation:

Dαy(x) + y(x) =
2

Γ(3− α)
x2−α −

1

Γ(2− α)
x1−α = +x2 − x, (18)

with initial conditions y(0) = 0, which has exact solution y(x) = x2 − x. The
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following figures (4.3), (4.4), (4.5), and (4.6) show the approximate solutions
compared with the exact solution by using Eq. (14) at α = 0.3, 0.5, 0.7, 0.9,
respectively and N = 20.

Table (4.4):

α N = 8 N = 12 N = 16 N = 20 N = 24

0.3 1.6653e-16 3.6082e-16 4.7184e-16 8.0491e-16 2.5846e-13

0.5 2.2204e-16 1.9429e-16 4.9266e-16 9.7145e-16 7.5495e-15

0.7 6.9389e-16 6.9389e-16 1.2370e-15 9.7145e-16 1.2455e-15

0.9 2.4286e-16 9.7838e-16 4.9960e-16 3.6082e-16 2.0609e-15

Example 2. Consider the following fractional differential equation:

D2y(x) +D3/4y(x) + y(x) = x2 + 6x+
8.533333333

Γ(0.25)
x2.25, (19)

with initial conditions y(0) = y′(0) = 0 which has exact solution y(x) = x3.
The maximum absolute error is shown in Table (4.5) for different numbers of
shifted CGL points compared with the method [4].

Table (4.5) :
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N Ref.[4] Eq.(14)

8 1.91-07 5.74e-12

12 1.52e-08 5.75e-12

16 2.52e-09 5.75e-12

20 6.22e-10 5.69e-12

24 1.96e-10 5.92e-12

Example 3. Consider the following nonlinear fractional differential equa-
tion

Dαy(x) = 1 + y(x)2, n− 1 < α ≤ n (20)

with initial conditions y(i)(0) = 0, i = 0, 1, . . . , n− 1.
The exact solution of Eq. (20) for α = 1 is y(x) = tan(x). The following figure
(4.7) shows the comparison of y(x) for N = 20 and α = 0.9, 0.95, 1, 1.5, 2.5

Fig(4.7) Comparison of the approximate solution for example (3)

Example 4. Consider the following nonlinear fractional differential equa-
tion:

Dαy(x) + y(x)2 = 1, 0 < α ≤ 1, (21)

subject to the initial condition y(0) = 0. The exact solution when α = 1 is

y(x) =
e2x − 1

e2x + 1
.

In the case of α = 0.5.0.7, 0.9, 1, The approximation solution obtained by the
present matrix at N = 20 is shown in Fig. (4.8) to make it easier to compare
with the analytic solution
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Fig(4.8) Copmarison of the approximate solution for example (4)

6. Conclusion

In this paper, the fundamental goal has been constructed by new fractional dif-
ferentiation matrices. We proposed a numerical algorithm to solve the general
nonlinear fractional-order differential equations using CGL points and approx-
imating directly the solution using the shifted Chebyshev polynomials. The
goal has been achieved by using the fractional differentiation matrices. The
illustrative examples confirm the validity of the new differentiation matrix and
it is employed to solve other strongly fractional differential equations. We note
that similar techniques can be applied to tau and collocation methods using
Legendre polynomials.
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