THE DETERMINANT OF A SPECIAL FIVE-DIAGONAL MATRIX AND THE FIBONACCI POLYNOMIALS

Jaroslav Seibert
Institute of Mathematics and Quantitative Methods
Faculty of Economics and Administration
University of Pardubice
Studentska 84, Pardubice 532 10, CZECH REPUBLIC

Abstract: Many mathematicians investigated in papers various types of integer matrices the entries of which satisfy a second order recurrence. Some of the authors used methods leading to obtain real or complex factorizations of the Fibonacci or the Lucas numbers. Civciv (2008) computed the determinant of a five-diagonal matrix with the Fibonacci numbers as its entries. His result is given more generally and completely in this paper. It is showed that the determinant of a matrix, the entries of which are the Gibonacci numbers, is related to the values of the Fibonacci polynomial. Calculations are done by using the eigenvalues of the given matrix.

AMS Subject Classification: 11B39, 11C20, 15B36
Key Words: generalized Fibonacci number, determinant, five-diagonal matrix, eigenvalue, Fibonacci polynomial

1. Introduction

The study of matrices with entries given as the Fibonacci and related numbers has a long history. Some application problems are often solved using graphs or
digraphs associated with this type of matrices (see more details in [6]). One of the main purposes of the investigation of matrices with the Fibonacci and the Lucas numbers is to derive various factorizations of these numbers. The well-known Fibonacci numbers \(F_n \) and Lucas numbers \(L_n \) are defined as terms of the sequences given by the same recurrence with the different initial terms. Concretely, \(F_{n+2} = F_{n+1} + F_n, F_0 = 0, F_1 = 1 \) or \(L_{n+2} = L_{n+1} + L_n, L_0 = 2, L_1 = 1 \), respectively. Cahill et al. [2] studied certain families of tridiagonal matrices and their connection to these sequences and derived the following complex factorizations

\[
F_n = \prod_{j=1}^{n-1} \left(1 - 2i \cos \frac{j\pi}{n} \right), \quad n \geq 2, \tag{1}
\]

and

\[
L_n = \prod_{j=1}^{n} \left(1 - 2i \cos \frac{(2j - 1)\pi}{2n} \right), \quad n \geq 1. \tag{2}
\]

They proved the factorizations by considering in what way these numbers can be connected to the Chebyshev polynomials by determinants of suitable tridiagonal matrices.

The Fibonacci-like numbers \(U_n \) are given by the second-order recurrence \(U_{n+2} = pU_{n+1} - qU_n \) for arbitrary integer parameters \(p, q \) different from 0, with \(U_0 = 0, U_1 = 1 \). Some results on the factorization of the Fibonacci-like numbers and their squares are given in [7]. These factorizations were found using the circulant matrices, their determinants and eigenvalues. Then

\[
U_n = \prod_{j=1}^{n-1} \left(p - 2\sqrt{q} \cos \frac{j\pi}{n} \right), \quad n \geq 2,
\]

and

\[
U_n^2 = \prod_{j=1}^{n-1} \left(p^2 - 2q - 2q \cos \frac{2j\pi}{n} \right), \quad n \geq 2.
\]

The Lucas-like numbers \(V_n \) are defined by the same recurrence as the numbers \(U_n \) with \(V_0 = 2, V_1 = p \). However, no similar factorizations for the Lucas-like numbers were found by using the determinant of circulant matrices.

Some classes of polynomials can be defined by the Fibonacci-like recurrence relations. Catalan studied polynomials \(f_n(x) \) called the Fibonacci polynomials. He defined these polynomials by the recurrence relation \(f_{n+2}(x) = xf_{n+1}(x) + \)
\[f_n(x), \text{ where } f_0(x) = 0, f_1(x) = 1. \] There is an explicit formula for them

\[f_n(x) = \frac{\alpha^n(x) - \beta^n(x)}{\alpha(x) - \beta(x)}, \]

where \(\alpha(x) = \frac{x + \sqrt{x^2 + 4}}{2} \), \(\beta(x) = \frac{x - \sqrt{x^2 + 4}}{2} \).

If \(x \) is a positive integer then the numbers \(f_n(x) \) are sometimes called the Fibonacci numbers of the \(x \)-th order. It is obvious that \(f_n(1) = F_n \) are the common Fibonacci numbers, \(f_n(2) = P_n \) are the well-known Pell numbers and so on.

The Fibonacci polynomials can be factored (see e.g. [6], p. 478) as

\[f_n(x) = x^{n-1} \prod_{j=1}^{n} \left(1 - 2iF_n \cos \frac{j\pi}{k+1} - 4F_n F_{n-1} \cos^2 \frac{j\pi}{k+1} \right), \quad n \text{ odd}, \]

\[\prod_{j=1}^{k} \left(1 - 2iF_{n-2} \cos \frac{j\pi}{k+1} + 4F_n F_{n-1} \cos^2 \frac{j\pi}{k+1} \right), \quad n \text{ even}. \]

But this result is imprecise with respect to a small mistake at the end of derivation. The correct relation can be expressed in the form

\[\det A_k^{(n)} = \prod_{j=1}^{k} \left(1 - 2iF_{n+1} \cos \frac{j\pi}{k+1} - 4F_n F_{n-1} \cos^2 \frac{j\pi}{k+1} \right) \quad (3) \]

as we will show in the next section of this paper.

Some of the following ideas are based on one of our previous contributions [8].
2. The Main Results

There are many connections between the determinants of tridiagonal matrices and the Fibonacci numbers or numbers which are given by their generalization. Some five-diagonal matrices and their determinants have also this property. We can investigate a generalization of the Civciv’s matrix $A_k^{(n)}$. The entries of the new matrix are the generalized Fibonacci numbers G_n, sometimes called the Gibonacci numbers. The Gibonacci sequence satisfies the Fibonacci recurrence $G_{n+2} = G_{n+1} + G_n$, but its initial terms can be arbitrary integers G_0, G_1, where at least one of them is different from 0.

Theorem 1. Let M_k be a five-diagonal square matrix of an order $k \geq 3$ given as

$$M_k = \begin{pmatrix}
1 & G_n & 0 & \cdots & \cdots \\
-2G_n & 1 & G_n & \cdots & \cdots \\
G_n & -2G_n & 1 & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
G_n & -2G_n & 1 & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
\end{pmatrix}.$$

Then

$$\det M_k = \prod_{j=1}^{k} \left(1 - 2iG_{n+1} \cos \frac{j\pi}{k+1} - 4G_n G_{n-1} \cos^2 \frac{j\pi}{k+1} \right). \quad (4)$$

Proof. It is easy to see that $M_k = P_k Q_k$, where P_k, Q_k are the following three-diagonal square matrices of an order k

$$P_k = \begin{pmatrix}
1 & G_n & 0 & \cdots & \cdots \\
-2G_n & 1 & G_n & \cdots & \cdots \\
G_n & -2G_n & 1 & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
G_n & -2G_n & 1 & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
\end{pmatrix},$$

$$Q_k = \begin{pmatrix}
1 & G_{n-1} & 0 & \cdots & \cdots \\
-2G_{n-1} & 1 & G_{n-1} & \cdots & \cdots \\
G_{n-1} & -2G_{n-1} & 1 & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
G_{n-1} & -2G_{n-1} & 1 & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
\end{pmatrix}.$$
It means that \(\det M_k = \det P_k \det Q_k \). As \(P_k, Q_k \) are tridiagonal matrices the following recurrences of the second order hold for their determinants \((k \geq 3)\)

\[
\begin{align*}
\det P_k &= \det P_{k-1} + G_n^2 \det P_{k-2}, \quad \det P_1 = 1, \quad \det P_2 = 1 + G_n^2, \\
\det Q_k &= \det Q_{k-1} + G_{n-1}^2 \det Q_{k-2}, \quad \det Q_1 = 1, \quad \det Q_2 = 1 + G_{n-1}^2.
\end{align*}
\]

It is easy to see that \(\det P_k \) is also equal to \(\det \overline{P_k} \), where

\[
\overline{P_k} = \begin{pmatrix}
1 & iG_n & 0 & \cdots & \cdots \\
iG_n & 1 & iG_n & \cdots & \cdots \\
0 & iG_n & 1 & \cdots & \cdots \\
\vdots & \vdots & \vdots & \ddots & \ddots \\
\vdots & \vdots & \vdots & \ddots & \ddots \\
\cdots & \cdots & \cdots & \cdots & 1 & iG_n \\
\cdots & \cdots & \cdots & \cdots & iG_n & 1
\end{pmatrix}
\]

as the sequence of \(\det \overline{P_k} \) satisfies the same recurrence as the sequence of \(\det P_k \). The numbers \(G_n \) are only changed to \(G_{n-1} \) for \(\det Q_k = \det \overline{Q_k} \).

We know that the determinant of a square matrix can be expressed as the product of its eigenvalues. We can write

\[
\overline{P_k} = I + iG_n \begin{pmatrix}
0 & 1 & 0 & \cdots & \cdots \\
1 & 0 & 1 & \cdots & \cdots \\
0 & 1 & 0 & \cdots & \cdots \\
\vdots & \vdots & \vdots & \ddots & \ddots \\
\vdots & \vdots & \vdots & \ddots & \ddots \\
\cdots & \cdots & \cdots & \cdots & 0 & 1 \\
\cdots & \cdots & \cdots & \cdots & 1 & 0
\end{pmatrix} = I + iG_n E,
\]

where \(I \) is the identity matrix of an order \(k \).

The eigenvalues of the square matrix \(E \) are the real numbers \(-2 \cos \frac{j\pi}{k+1} \), \(j = 1, 2, \ldots, k \), (more details e.g. in [2]) and therefore the eigenvalues \(\lambda_j \) of \(\overline{P_k} \) have the form \(\lambda_j = 1 - 2iG_n \cos \frac{j\pi}{k+1} \).

Thus, \(\det P_k = \det \overline{P_k} = \prod_{j=1}^{k} \lambda_j = \prod_{j=1}^{k} \left(1 - 2iG_n \cos \frac{j\pi}{k+1} \right) \) and similarly
det \(Q_k = \det \overline{Q_k} = \prod_{j=1}^{k} \left(1 - 2iG_{n-1} \cos \frac{j\pi}{k+1} \right) \). Then
\[
\det M_k = \det P_k \det Q_k =
= \prod_{j=1}^{k} \left(1 - 2iG_n \cos \frac{j\pi}{k+1} \right) \left(1 - 2iG_{n-1} \cos \frac{j\pi}{k+1} \right) =
= \prod_{j=1}^{k} \left(1 - 2i(G_n + G_{n-1}) \cos \frac{j\pi}{k+1} - 4G_nG_{n-1} \cos^2 \frac{j\pi}{k+1} \right) =
= \prod_{j=1}^{k} \left(1 - 2iG_{n+1} \cos \frac{j\pi}{k+1} - 4G_nG_{n-1} \cos^2 \frac{j\pi}{k+1} \right)
\]
which completes the proof of identity (4).

Corollary 2. The relation
\[
\det M_k = G_{n-1}^k G_n^k f_{k+1} \left(\frac{1}{G_{n-1}} \right) f_{k+1} \left(\frac{1}{G_n} \right)
\]
holds for an arbitrary positive integer \(n \geq 1 \) if \(G_0 \neq 0, G_1 \neq 0 \) and \(f_k(x) \) is the \((k+1)\)-st Fibonacci polynomial.

Proof. We can write
\[
\det M_k = \prod_{j=1}^{k} \left(1 - 2iG_{n-1} \cos \frac{j\pi}{k+1} \right) \prod_{j=1}^{k} \left(1 - 2iG_n \cos \frac{j\pi}{k+1} \right) =
= G_{n-1}^k G_n^k \prod_{j=1}^{k} \left(\frac{1}{G_{n-1}} - 2i \cos \frac{j\pi}{k+1} \right) \prod_{j=1}^{k} \left(\frac{1}{G_n} - 2i \cos \frac{j\pi}{k+1} \right) =
= G_{n-1}^k G_n^k f_{k+1} \left(\frac{1}{G_{n-1}} \right) f_{k+1} \left(\frac{1}{G_n} \right)
\]
with respect to the factorization of the Fibonacci polynomials.

Now, we will consider some special cases.

Example 3. Let \(G_n = F_n \), we obtain the Civciv’s determinant \(\det A_k^{(n)} \) from [4]. Then for \(n \geq 2 \) we have
\[
\det A_k^{(n)} = \prod_{j=1}^{k} \left(1 - 2iF_{n+1} \cos \frac{j\pi}{k+1} - 4F_n F_{n-1} \cos^2 \frac{j\pi}{k+1} \right)
\]
which is relation (3) of the previous section. It follows from (5) that

\[
\det A_n^{(n)} = F_n^{k} F_{n-1}^{k} f_{k+1} \left(\frac{1}{F_{n-1}} \right) f_{k+1} \left(\frac{1}{F_n} \right).
\]

If \(n = 2 \) then the determinant \(\det A_k^{(2)} \) is the same as that of the open Problem 1 in [4]. It means that

\[
\text{det } A_k^{(2)} = \left| \begin{array}{ccccccc}
0 & 2 & 1 & \cdots & \cdots & \cdots & \cdots \\
-2 & -1 & 2 & \cdots & \cdots & \cdots & \cdots \\
1 & -2 & -1 & \cdots & \cdots & \cdots & \cdots \\
\vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \ddots \\
\vdots & \vdots & \vdots & \cdots & \cdots & \cdots & -1 \\
\vdots & \vdots & \vdots & \cdots & \cdots & \cdots & -2 \\
\end{array} \right| = F_1^k F_2^k f_{k+1} (1) f_{k+1} (1) = F_{k+1}^2
\]

and the problem is solved up.

If \(n = 3 \) then the matrix \(A_k^{(3)} \) has this form

\[
A_k^{(3)} = \begin{pmatrix}
-1 & 3 & 2 & \cdots & \cdots \\
-3 & -3 & 3 & \cdots & \cdots \\
2 & -3 & -3 & \cdots & \cdots \\
\vdots & \vdots & \vdots & \ddots & \ddots \\
\vdots & \vdots & \vdots & \cdots & \cdots \\
\end{pmatrix}
\]

and the following relation holds for its determinant

\[
\det A_k^{(3)} = \prod_{j=1}^{k} \left(1 - 2iF_4 \cos \frac{j\pi}{k+1} - 4F_3F_2 \cos^2 \frac{j\pi}{k+1} \right) =
\]

\[
= F_2^k F_3^k f_{k+1} \left(\frac{1}{F_2} \right) f_{k+1} \left(\frac{1}{F_3} \right) = 2^k f_{k+1} (1) f_{k+1} \left(\frac{1}{2} \right) =
\]

\[
= 2^k F_{k+1} f_{k+1} \left(\frac{1}{2} \right),
\]

where \(f_{k+1} \left(\frac{1}{2} \right) = 2 \frac{\left(\frac{1+\sqrt{17}}{4} \right)^{k+1} - \left(\frac{1-\sqrt{17}}{4} \right)^{k+1}}{\sqrt{17}} \).

Example 4. Let \(G_n = L_n \), the following \(k \times k \) five-diagonal matrix

\[
B_k^{(n)} = \begin{pmatrix}
1 - L_n L_{n-1} & L_{n+1} & L_n L_{n-1} & \cdots & \cdots \\
-1 & -2L_n L_{n-1} & L_{n+1} & \cdots & \cdots \\
-2L_n L_{n-1} & -1 & -2L_n L_{n-1} & \cdots & \cdots \\
\vdots & \vdots & \vdots & \ddots & \ddots \\
\vdots & \vdots & \vdots & \cdots & \cdots \\
\end{pmatrix}
\]
has the determinant
\[
\det B_k^{(n)} = \prod_{j=1}^{k} \left(1 - 2iL_{n+1} \cos \frac{j\pi}{k+1} - 4L_{n-1}L_{n+1} \cos^2 \frac{j\pi}{k+1} \right) = \\
= L_{n-1}^k L_n^k f_{k+1} \left(\frac{1}{L_{n-1}} \right) f_{k+1} \left(\frac{1}{L_n} \right)
\]
using identity (5).

If \(n = 2 \) then the matrix \(B_k^{(2)} \) has this form
\[
B_k^{(2)} = \begin{pmatrix}
-2 & 4 & 3 & \cdots & \cdots \\
-4 & -5 & 4 & \cdots & \cdots \\
3 & -4 & -5 & \cdots & \cdots \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\vdots & \vdots & \vdots & \vdots & -5 & 4 \\
\vdots & \vdots & \vdots & \vdots & -4 & -2
\end{pmatrix}
\]
and the following relation holds for its determinant
\[
\det B_k^{(2)} = \prod_{j=1}^{k} \left(1 - 2iL_3 \cos \frac{j\pi}{k+1} - 4L_2L_1 \cos^2 \frac{j\pi}{k+1} \right) = \\
= L_1^k L_2^k f_{k+1} \left(\frac{1}{L_1} \right) f_{k+1} \left(\frac{1}{L_2} \right) = 3^k f_{k+1} \left(1 \right) f_{k+1} \left(\frac{1}{3} \right) = \\
= 3^k F_{k+1} f_{k+1} \left(\frac{1}{3} \right),
\]
where \(f_{k+1} \left(\frac{1}{3} \right) = 3 \left(\frac{1+\sqrt{37}}{6} \right)^{k+1} - \left(\frac{1-\sqrt{37}}{6} \right)^{k+1} \frac{1}{\sqrt{37}} \).

References

