CHAINABILITY IN TOPOLOGICAL SPACES THROUGH CONTINUOUS FUNCTIONS

Vijeta Iyer¹,², Kiran Shrivastava², Priya Choudhary³
1,2,3Department of Mathematics
S.N.G.G.P.G. College
Shivaji Nagar, Bhopal, 462016, INDIA

Abstract: In this paper concept of ε−chainability in topological spaces has been introduced using continuity. Several well known results prove perquisites to results established in the paper. In case of metric spaces the equivalence of ε−chainability and function−ε−chainability is also established in the paper.

AMS Subject Classification: 54A99

Key Words: ε-chain, uniform−ε-chainability, uniform chainability, ε-chain preserving map, chain preserving map, strongly −ε-chain preserving map, strong chain preserving map.

* For the definitions of ε-chain, uniform-ε-chainability, uniform chainability refer [1].

Throughout this paper [0,∞) has usual metric topology and ε is positive real number unless mentioned otherwise.

Received: February 9, 2013
Definition 1. (see [2]) A map f from a metric space X into another metric space Y is said to be an \(\varepsilon\) – chain preserving map if and only if for every \(\varepsilon\) – chain between any two points in X there is an \(\varepsilon\) – chain between images of these two points under f in Y where $\varepsilon > 0$.

Definition 2. (see [2]) A map f from a metric space X into another metric space Y is said to be a strongly \(\varepsilon\) – chain preserving map if and only if for every \(\varepsilon\) – chain between any two points x_0, x_1, \ldots, x_n of X, $f(x_0), f(x_1), \ldots, f(x_n)$ is an \(\varepsilon\) – chain between $f(x_0)$ and $f(x_n)$.

Definition 3. (see [2]) A map f from a metric space X into another metric space Y is said to be chain preserving if and only if f is \(\varepsilon\)–chain preserving for every $\varepsilon > 0$.

Definition 4. (see [2]) A map f from a metric space X into another metric space Y is said to be strongly chain preserving if and only if f is strongly ε-chain preserving for every $\varepsilon > 0$.

Definition 5. A topological space (X, τ) is said to be function – f – \(\varepsilon\) – chainable if for $\varepsilon > 0$ there exists a non-constant continuous function $f : X \rightarrow [0, \infty)$ such that for every pair of elements x, y of X, there is a sequence $x = x_0, x_1, \ldots, x_n = y$ of elements in X with

\[|f(x_i) - f(x_{i-1})| < \varepsilon; \quad 1 \leq i \leq n. \]

Definition 6. Let (X, τ) be a topological space and let there exist a non-constant continuous function $f : X \rightarrow [0, \infty)$ such that X is function – f – \(\varepsilon\) - chainable for every $\varepsilon > 0$. Then X is said to be function – f – chainable.

Definition 7. Let (X, τ) be a topological space and $A \subset X$. Then A is said to be function – f – \(\varepsilon\) – chainable if (A, τ_A) is function – f – \(\varepsilon\)– chainable subspace of X.

Definition 8. Let (X, τ) be a topological space and $A \subset X$. Let there exist a non-constant continuous function $f : A \rightarrow [0, \infty)$ such that (A, τ_A) is function – f – \(\varepsilon\)-chainable for every $\varepsilon > 0$. Then A is said to be function – f – chainable.

Definition 9. A topological space (X, τ) is said to be uniformly function – f – \(\varepsilon\) – chainable if for $\varepsilon > 0$ there exists a positive integer $l_\varepsilon(f)$ and a non-constant continuous function $f : X \rightarrow [0, \infty)$ such that for every pair of elements x, y of X there is a sequence $x = x_0, x_1, \ldots, x_n = y$ in X with $n \leq l_\varepsilon(f)$ and $|f(x_i) - f(x_{i-1})| < \varepsilon; \quad 1 \leq i \leq n$.
Definition 10. Let \((X, \tau)\) be a topological space and let there exist a non-constant continuous function \(f : X \rightarrow [0, \infty)\) such that \(X\) is uniformly function \(-f - \varepsilon-\) chainable for every \(\varepsilon > 0\). Then \(X\) is said to be uniformly function-\(f\)-chainable.

Theorem 1. For every \(\varepsilon-\) chainable metric space \((X, d)\) with non-constant metric \(d\), there exist a non-negative real valued continuous function \(f\) on \(X\) such that \(X\) is function \(-f - \varepsilon-\) chainable. Moreover \(f\) is a strong \(\varepsilon-\) chain preserving function.

Proof. Let \(\overline{x} \in X\). Define a continuous function \(f : X \rightarrow [0, \infty)\) by \(f(x) = d(x, \overline{x})\) for all \(x \in X\).

Let \(x, y \in X\) and consider an \(\varepsilon\) - chain \(x = x_0, x_1, \ldots, x_n = y\) between them.

Now
\[
|f(x_i) - f(x_{i-1})| = |d(x_i, \overline{x}) - d(x_{i-1}, \overline{x})| < d(x_i, x_{i-1}) < \varepsilon, \quad 1 \leq i \leq n.
\]

Hence \(X\) is function \(-f - \varepsilon-\)chainable.

Obviously, \(f\) is strong \(\varepsilon-\) chain preserving.

Corollary 1. For every chainable metric space \((X, d)\) with non-constant metric \(d\), there exist a non-negative real valued continuous function \(f\) on \(X\) such that \(X\) is function \(-f - \varepsilon-\) chainable. Moreover \(f\) is a strong chain preserving function.

Theorem 2. Let \((X, \tau)\) be a function \(-f - \varepsilon-\) chainable space and let \(f\) be one-to-one function from \(X\) to \([0, \infty)\). Then there exists a metric \(d\) on \(X\) such that \((X, d)\) is \(\varepsilon-\) chainable space and the induced metric topology is coarser than \(\tau\).

Proof. Define a function \(d(x, y) = |f(x) - f(y)|\) for all \(x, y \in X\).

Then as \(f\) is one-to-one, \(d\) is a metric on \(X\).

Let \(x, y \in X\). Then there is a sequence of elements \(x = x_0, x_1, \ldots, x_n = y\) of \(X\) such that
\[
|f(x_i) - f(x_{i-1})| < \varepsilon, \quad 1 \leq i \leq n.
\]
or
\[
d(x_i, x_{i-1}) < \varepsilon, \quad 1 \leq i \leq n.
\]
or
\[
x \text{ and } y \text{ are } \varepsilon\text{-chainable.}
\]
Let τ_d be the induced topology by metric d.

Now $f^{-1}\{(f(x) - \epsilon, f(x) + \epsilon)\} = \{y \in X : d(x, y) < \epsilon\}$, or $\tau_d \subset \tau$ using continuity of f in (X, τ).

Hence the result is proved.

Corollary 2. Let (X, τ) be a function - f - ϵ - chainable space. If f is a homeomorphism from X to $[0, \infty)$ then X is metrizable ϵ - chainable space.

Proof. Since f is a homeomorphism from X to $[0, \infty)$, every inverse image of every open set in $[0, \infty)$ is open in both τ as well as in τ_d, it follows that $\tau = \tau_d$.

Hence (X, τ) is metrizable ϵ - chainable space.

Theorem 3. Let (X, τ) be a topological space and $f : X \rightarrow [0, \infty)$ be continuous onto function then X is function $-f$-chainable.

Proof. Let $x, x' \in X$ and $\epsilon > 0$. Let n be the least positive integer greater than $(|f(x) - f(x'|))\epsilon$.

Without loss of generality, let $f(x') > f(x)$.

Choose

\[y_0 = f(x), \]
\[y_1 = y_0 + \frac{|f(x) - f(x')|}{n}, \]
\[y_2 = y_0 + \frac{2(|f(x) - f(x')|)}{n}, \]
\[\vdots \]
\[y_n = f(x') \text{ in } [0, \infty). \]

Also $|y_i - y_{i-1}| < \epsilon$, $1 \leq i \leq n$.

Then there exists a sequence $x, x_1, x_2, \ldots, x_{n-1}, x_n$ in X such that

\[|f(x_i) - f(x_{i-1})| = |y_i - y_{i-1}| < \epsilon, \]

or X is function-f-chainable.

Theorem 4. The relation of function - f - ϵ - chainability in a topological space is an equivalence relation.

Proof. Obvious.

Theorem 5. Let (X, τ) be a topological space and $A \subset X$. If for every $\epsilon > 0$ there exists a continuous function $f : X \rightarrow [0, \infty)$ such that A is function $-f_A - \epsilon$ - chainable, then \bar{A} is function $-f_{\bar{A}} - \epsilon$ - chainable.
Proof. Let \(x, y \in \overline{A} \).

As \(f(\overline{A}) \subset \overline{f(A)} \), \(f(x), f(y) \in \overline{f(A)} \) or there exist \(x', y' \in A \) such that

\[
|f(x) - f(x')| < \varepsilon \text{ and } |f(y) - f(y')| < \varepsilon.
\]

Hence there exist a sequence of elements \(x' = x_1, x_2, \ldots, x_{n-1} = y' \) in \(A \) such that

\[
|f_A(x_i) - f_A(x_{i-1})| = |f(x_i) - f(x_{i-1})| < \varepsilon, \quad 2 \leq i \leq n-1,
\]
or there exist a sequence of elements \(x = x_0, x' = x_1, x_2, \ldots, x_{n-1} = y', x_n = y \in \overline{A} \) such that

\[
|f_A(x_i) - f_A(x_{i-1})| = |f(x_i) - f(x_{i-1})| < \varepsilon, \quad 1 \leq i \leq n.
\]

Hence, we obtain the result.

Theorem 6. Let \(A \) be a dense subset of a topological space \((X, \tau) \) and for every \(\varepsilon > 0 \) and let there exist a continuous function \(f : X \to [0, \infty) \) such that \(A \) is function \(-f_A - \varepsilon\)-chainable. Then \(X \) is function \(-f - \varepsilon\)-chainable.

Proof. Follows from Theorem 5.

Theorem 7. Let \(f : (X, \tau) \to (Y, u) \) be an onto continuous function. If \(Y \) is function \(-g - \varepsilon\)-chainable then \(X \) is function \(-gof - \varepsilon\)-chainable.

Proof. Let \(x, x' \in X \). Then there is a sequence of elements \(f(x) = y_0, y_1, \ldots, y_n = f(x') \) in \(Y \) such that \(|g(y_i) - g(y_{i-1})| < \varepsilon ; \quad 1 \leq i \leq n \), or there is a sequence of elements \(x = x_0, x_1, \ldots, x_n = x' \) in \(X \) such that

\[
f(x_i) = y_i ; 1 \leq i \leq n
\]

and \(|gof(x_i) - gof(x_{i-1})| < \varepsilon ; \quad 1 \leq i \leq n \).

Hence \(X \) is function \(-gof - \varepsilon\)-chainable.

Theorem 8. Let \(f : (X, \tau) \to (Y, u) \) be one-one onto open map. If \(X \) is function \(-g - \varepsilon\)-chainable then \(Y \) is function \(-gof^{-1} - \varepsilon\)-chainable.

Proof. Let \(f(x), f(x') \in Y \) where \(x, x' \in X \). Now there is a sequence of elements \(x = x_0, x_1, \ldots, x_n = x' \) in \(X \) such that

\[
|g(x_i) - g(x_{i-1})| < \varepsilon ; \quad 1 \leq i \leq n.
\]

Or there is a sequence of elements \(f(x) = f(x_0), f(x_1), \ldots, f(x_n) = f(x') \) in \(Y \) such that

\[
|gof^{-1}(x_i) - gof^{-1}(x_{i-1})| = |g(x_i) - g(x_{i-1})| < \varepsilon ; \quad 1 \leq i \leq n.
\]
or Y is function $-gof^{-1}-\varepsilon$ - chainable.

Theorem 9. Let $f : (X, \tau) \to (Y, u)$ be a homeomorphism. Then X is function $-g-\varepsilon$ - chainable iff Y is function $-gof^{-1}-\varepsilon$ - chainable.

Proof. Follows from Theorems 7 and 8.

Theorem 10. Let $f : (X, \tau) \to (Y, \tau^*)$ be one-one open map. Let $A \subset X$ and $f(A) = B$. If A is function $-g-\varepsilon$ - chainable then B is function $-gof^{-1}_A-\varepsilon$ - chainable.

Proof. Follows from Problem 24, chap. 7 [5] and Theorem 8.

Theorem 11. Let $f : (X, \tau) \to (Y, \tau^*)$ be a homeomorphism. Let $A \subset X$ and $f(A) = B$. Then A is function $-g-\varepsilon$ - chainable iff B is function $-gof^{-1}_A-\varepsilon$ - chainable.

Proof. Follows from Problem 25, chap. 7 [5] and Theorem 9.

Theorem 12. Let $X = A \cup B$ where A and B are closed sets in X. Let A be function $-f-\varepsilon$ - chainable and B be function $-g-\varepsilon$ - chainable such that $f(x) = g(x)$ for every $x \in A \cap B$.

Then X is function $-h-\varepsilon$ - chainable where

$$h(x) = \begin{cases} f(x), & x \in A \\ g(x), & x \in B \end{cases}$$

Proof. By pasting lemma the function $h : X \to [0, \infty)$ is continuous.

Then X is function $-h-\varepsilon$ - chainable follows directly from definition of h and function $-f-\varepsilon$ - chainability of A and function $-g-\varepsilon$ - chainability of B.

Theorem 13. Let (X, τ) be a topological space and $A, B \subset X$ such that $A \sim B$ and $B \sim A$ are separated sets and $X = A \cup B$. Let for every $\varepsilon > 0$ there exist a function $f : X \to [0, \infty)$ such that $f_A : A \to [0, \infty)$ and $f_B : B \to [0, \infty)$ are continuous. If A is function $-f_A-\varepsilon$ - chainable and B is function $-f_B-\varepsilon$ - chainable then X is function $-f-\varepsilon$ - chainable.

Proof. Now $f_A : A \to [0, \infty)$ and $f_B : B \to [0, \infty)$ are continuous functions. By Problem B, chap. 3[4] , f is continuous on X.

Again $f(x) = \begin{cases} f_A(x), & x \in A \\ f_B(x), & x \in B \end{cases}$ and $f_A(x) = f_B(x)$ for every $x \in A \cap B$.

Then by Theorem 12, X is function $-f-\varepsilon$-chainable.

Theorem 14. Let X be a compact space and Y be a Hausdorff space and $f : X \to Y$ be a continuous bijection. Then X is function $-g-\varepsilon$ - chainable iff Y is function $-gof^{-1}-\varepsilon$ - chainable.
Proof. Now f is a homeomorphism by Corollary 2.4, Chap. 7 in [3]. The result then follows from Theorem 9.

Theorem 15. Let X be a topological space and $\{f_n\}$ be a sequence of continuous functions from X to $[0, \infty)$ such that $\{f_n\}$ uniformly converges to a function $f : X \to [0, \infty)$. If X is function - f_n - chainable for each $n \in \mathbb{N}$ then X is function - f - chainable.

Proof. Now $f : X \to [0, \infty)$ is continuous, by Theorem 4.4 in [3].

By uniform convergence; there is $m \in \mathbb{N}$ such that $|f_n(x) - f(x)| < \varepsilon$ for all $x \in X$ and for all $n \geq m$.

Let $n \geq m$ and let $x, y \in X$.

Then there is a sequence of elements $x = x_0, x_1, \ldots, x_n = y$ such that

$$|f_n(x_i) - f_n(x_{i-1})| < \varepsilon \quad ; \quad 1 \leq i \leq n .$$

Also $|f_n(x_i) - f(x_i)| < \varepsilon$; and $|f_n(x_{i-1}) - f(x_{i-1})| < \varepsilon$.

Consequently, $|f(x_i) - f(x_{i-1})| < 3\varepsilon \quad ; \quad 1 \leq i \leq n$.

Hence the result.

Theorem 16. Let X be a function - f - chainable metric space. Then f is a chain preserving map.

Proof. Now $f : X \to [0, \infty)$ is continuous map where $[0, \infty)$ is a chainable metric space with usual metric on it. By theorem 17 [2], f is chain preserving.

Theorem 17. For every $\varepsilon > 0$, a normal space X is function - $f - \varepsilon$ - chainable for some function f on X.

Proof. Choose two non-negative real numbers a and b such that $b - a < \varepsilon$.

Let A and B be disjoint closed subsets of X.

By Urysohns Lemma, there is a continuous function $f : X \to [a, b]$ where $f(x) = a$ for all $x \in A$ and $f(x) = b$ for all $x \in B$.

Or $|f(x) - f(y)| \leq b - a < \varepsilon$ for all $x, y \in X$.

As $f : X \to [0, \infty)$ is continuous, X is $f - \varepsilon$ - chainable.

Theorem 18. Let X be a compact uniformly function - f - chainable space for some positive real valued function f on X. Then there exists a positive real number e such that

$$l_e(f) + 1 > \frac{f(\overline{x})}{f(\overline{y})} \quad \text{for some} \quad \overline{x}, \overline{y} \in X.$$
Proof. Let \(x, y \in X \) such that
\[
 f(x) = \inf_{x \in X} f(x) \quad \text{and} \quad f(y) = \sup_{x \in X} f(x)
\]

By Problem A(b) and (c), chap. 5 [4], there is an \(e > 0 \) such that
\[
 f(x) > e \quad \text{for all} \quad x \in X.
\]

Now there is a sequence of elements \(x_0, x_1, \ldots, x_n = y \) in \(X \) with
\[
|f(x_i) - f(x_{i-1})| < \varepsilon \quad \text{and} \quad n \leq l_e(f)
\]
or
\[
 f(y) - f(x) < l_e(f) \varepsilon.
\]

Setting \(f(y) = k f(x) \) for some \(k > 1 \),
\[
 f(x) < \frac{e l_e(f)}{k - 1} \neq e.
\]

Hence
\[
 l_e(f) + 1 > \frac{f(x)}{f(y)}.
\]

Examples

1. Let \(X \) be an odd-even topology which is partition topology generated by
\[
P = \{ \{1, 2\}, \{3, 4\}, \{5, 6\}, \ldots \}\]

 (a) Let \(f : X \to [0, \infty) \) defined by \(f(2k) = k \), \(f(2k - 1) = k \) is continuous.

 Then \(X \) is function - \(f - \varepsilon \) - chainable for \(\varepsilon > 1 \).

 (b) Let \(f : X \to [0, \infty) \) defined by \(f(2k) = 1/k \), \(f(2k - 1) = 1/k \) is continuous.

 Then \(X \) is function - \(f - \varepsilon \) - chainable for \(\varepsilon > 0.5 \).

 (c) Let \(\varepsilon > 0 \) choose \(n \in \mathbb{N} \) with \(n > 1/\varepsilon \).

 Define \(f_\varepsilon : X \to [0, \infty) \) by \(f_\varepsilon(2k) = 1/n^k \), \(f_\varepsilon(2k - 1) = 1/n^k \) is continuous. Then \(X \) is function - \(f_\varepsilon - \varepsilon \) - chainable for any \(\varepsilon > 0 \).
2. Let τ be a discrete topology on space $X = [0, \infty)$ and let identity map $i : X \to [0, \infty)$ be continuous.
Then (X, τ) is function $-i$-chainable.

3. Let (X, τ) be a discrete topological space where $X = [0, 1)$.
Let $f : X \to [0, \infty)$ defined by $f(x) = x/(1 - x)$ be continuous.
Then (X, τ) is function $-f$-chainable.

4. Let τ be a partition topology on space $X \subset [0, \infty) \times \mathbb{R}$ generated by the sets
$A_{\alpha} = \{(\alpha, \beta) : \beta \in \mathbb{R} \} ; \alpha \geq 0$.
Then X is function $-\pi$-chainable where π is the projection map given by
$\pi(\alpha, \beta) = \alpha ; (\alpha, \beta) \in [0, \infty) \times \mathbb{R}$.

References

