ON APPLICATIONS OF DIFFERENTIAL SUBORDINATION

A. Selvam¹, P. Sooriya Kala², N. Marikkannan³

¹,² Department of Mathematics
VHNSN College
Virudhunagar, 626001, INDIA
³Department of Mathematics
Government Arts College
Melur, 625106, INDIA

Abstract: Using a generalized differential operator we define certain subclasses of analytic functions and study about their inclusion relationships using differential subordination.

AMS Subject Classification: 30C45, 30C80

Key Words: analytic functions, Hadamard products, starlike functions, convex functions, differential subordination and linear operators

1. Introduction

Let \(A \) denote the class of functions of the form

\[
f(z) := z + \sum_{k=2}^{\infty} a_k z^k, \quad a_k \geq 0 \tag{1.1}
\]

which are analytic in the open unit disk \(U = \{ z \in \mathbb{C} : |z| < 1 \} \). Let \(S, S^*(\alpha) \) and \(K(\alpha) \) denote the subclasses of \(A \) consisting of functions that are univalent, starlike of order \(\alpha \) and convexlike of order \(\alpha \) respectively. Also \(S^*(0) = S^* \) and \(K(0) = K \) are the class of starlike and convex functions defined on \(U \) respectively. For two functions \(f(z) \) given by (1.1) and \(g(z) = z + \sum_{k=2}^{\infty} b_k z^k \),

Received: January 16, 2013

© 2013 Academic Publications, Ltd.
url: www.acadpubl.eu

¹Correspondence author
the Hadamard product or convolution of f and g is denoted by $(f * g)(z)$, defined as
\[
(f * g)(z) := z + \sum_{k=2}^{\infty} a_k b_k z^k.
\]

For complex numbers $\alpha_1, \alpha_2, \ldots, \alpha_q$ and $\beta_1, \beta_2, \ldots, \beta_s$; $(\beta_j \in \mathbb{C} \setminus \mathbb{Z}_0^-; \mathbb{Z}_0^- = \{0, -1, -2, \ldots\}$ for $j = 1, 2, \ldots, s$), we define the generalized hypergeometric function as
\[
_q F_s(\alpha_1, \alpha_2, \ldots, \alpha_q; \beta_1, \beta_2, \ldots, \beta_s; z) := \sum_{k=0}^{\infty} \frac{(\alpha_1)_k (\alpha_2)_k \ldots (\alpha_q)_k}{(\beta_1)_k (\beta_2)_k \ldots (\beta_s)_k k!} z^k,
\]
where \mathbb{N} denotes the set of all positive integers and $(x)_k$ is the Pochhammer symbol defined in terms of gamma function, as
\[
(x)_k = \frac{\Gamma(x + k)}{\Gamma(x)} = \begin{cases} 1 & \text{if } k = 0 \\ x(x+1) \ldots (x+k-1) & \text{if } k \in \mathbb{N}. \end{cases}
\]

Corresponding to the function $g_{q,s}(\alpha_1, \beta_1; z)$, defined by
\[
g_{q,s}(\alpha_1, \beta_1; z) := z_q F_s(\alpha_1, \alpha_2, \ldots, \alpha_q; \beta_1, \beta_2, \ldots, \beta_s; z),
\]
recently in [9] an operator $\mathcal{D}^m_{\lambda, \mu}(\alpha_1, \beta_1)f(z) : \mathcal{A} \to \mathcal{A}$ has been defined by
\[
\mathcal{D}^0_{\lambda, \mu}(\alpha_1, \beta_1)f(z) := f(z) * g_{q,s}(\alpha_1, \beta_1; z), \\
\mathcal{D}^1_{\lambda, \mu}(\alpha_1, \beta_1)f(z) := (1 - \lambda + \mu)(f(z) * g_{q,s}(\alpha_1, \beta_1; z)) \\
+ (\lambda - \mu)z(f(z) * g_{q,s}(\alpha_1, \beta_1; z))' \\
+ \lambda \mu z^2(f(z) * g_{q,s}(\alpha_1, \beta_1; z))'',
\]
\[
\mathcal{D}^m_{\lambda, \mu}(\alpha_1, \beta_1)f(z) := \mathcal{D}^1_{\lambda, \mu}(\mathcal{D}^{m-1}_{\lambda, \mu}(\alpha_1, \beta_1)f(z)),
\]
where $0 \leq \mu \leq \lambda \leq 1$ and $m \in \mathbb{N}_0$. By using the above definition, we can find that
\[
\mathcal{D}^m_{\lambda, \mu}(\alpha_1, \beta_1)f(z) = z \\
+ \sum_{k=2}^{\infty} [1 + (k - 1)(\lambda - \mu + k \mu \lambda)]^m \frac{(\alpha_1)_{k-1}(\alpha_2)_{k-1} \ldots (\alpha_q)_{k-1}}{(\beta_1)_{k-1}(\beta_2)_{k-1} \ldots (\beta_s)_{k-1}(k-1)!} a_k z^k.
\]
For brevity, let us take
\[
B_k = \frac{(\alpha_1)_{k-1}(\alpha_2)_{k-1} \ldots (\alpha_q)_{k-1}}{(\beta_1)_{k-1}(\beta_2)_{k-1} \ldots (\beta_s)_{k-1}(k-1)!}.
\]
Hence we have
\[\mathcal{D}_{\lambda,\mu}^m (\alpha_1, \beta_1) f(z) = z + \sum_{k=2}^{\infty} [1 + (k-1)(\lambda - \mu + k\mu\lambda)]^m B_k a_k z^k. \]

For suitable values of \(\alpha, s, \beta, q, s, \lambda \) and \(\mu \) we can deduce several operators \([1, 6, 14]\) as a special case of this operator. Also a simple computation shows that
\[
(1-\gamma)\mathcal{D}_{\lambda,\mu}^m (\alpha_1, \beta_1) f(z) + \gamma z [\mathcal{D}_{\lambda,\mu}^m (\alpha_1, \beta_1) f(z)]' = \gamma \alpha_1 \mathcal{D}_{\lambda,\mu}^m (\alpha_1 + 1, \beta_1) f(z) \tag{1.2}
\]

\[-(\gamma \alpha_1 - 1) \mathcal{D}_{\lambda,\mu}^m (\alpha_1, \beta_1) f(z).\]

Let \(f(z) \) and \(g(z) \) be analytic in the unit disc \(U \). Then \(f(z) \) is said to be subordinate to \(g(z) \) in \(U \), if there exists a Schwarz function \(w(z) \), analytic in \(U \) with \(w(0) = 0 \) and \(|w(z)| < 1 \) for \(z \in U \), such that \(f(z) = g(w(z)) \). We denote it as \(f \prec g \). Further if \(g(z) \) is univalent then we write \(f \prec g \) if \(f(0) = g(0) \) and \(f(U) \subset g(U) \).

Definition 1.1. Let \(h(z) \) be an analytic convex univalent function in \(U \) with \(h(0) = 1 \) and \(\Re\{h(z)\} > 0 \) for \(z \in U \). Let \(A(\alpha, \beta, \gamma, \lambda, \mu, m, h) \) denote the subclass of \(A \) consisting of functions \(f(z) \) which satisfy the condition
\[
z [\mathcal{D}_{\lambda,\mu}^m (\alpha_1, \beta_1) f(z)]' + \gamma z^2 [\mathcal{D}_{\lambda,\mu}^m (\alpha_1, \beta_1) f(z)]'' < h(z)
\]
for some \(\gamma(0 \leq \gamma \leq 1) \) and for all \(z \in U \).

Definition 1.2. Let \(h(z) \) be an analytic convex univalent function in \(U \) with \(h(0) = 1 \) and \(\Re\{h(z)\} > 0 \) for \(z \in U \). Let \(B(\alpha, \beta, \gamma, \lambda, \mu, m, h) \) denote the subclass of \(A \) consisting of functions \(f(z) \) which satisfy the condition
\[
(1 - \gamma) \frac{\mathcal{D}_{\lambda,\mu}^m (\alpha_1, \beta_1) f(z)}{z} + \gamma [\mathcal{D}_{\lambda,\mu}^m (\alpha_1, \beta_1) f(z)]' < h(z)
\]
for some \(\gamma(0 \leq \gamma \leq 1) \) and for all \(z \in U \).

Definition 1.3. Let \(h(z) \) be an analytic convex univalent function in \(U \) with \(h(0) = 1 \) and \(\Re\{h(z)\} > 0 \) for \(z \in U \). Let \(C(\alpha, \beta, \gamma, \lambda, \mu, m, h) \) denote the subclass of \(A \) consisting of functions \(f(z) \) which satisfy the condition
\[
[\mathcal{D}_{\lambda,\mu}^m (\alpha_1, \beta_1) f(z)]' + \gamma z [\mathcal{D}_{\lambda,\mu}^m (\alpha_1, \beta_1) f(z)]'' < h(z)
\]
for some \(\gamma(0 \leq \gamma \leq 1) \) and for all \(z \in U \).
Note that special cases of \(A(\alpha_1, \beta_1, \gamma, \lambda, \mu, m, h) \), \(B(\alpha_1, \beta_1, \gamma, \lambda, \mu, m, h) \) and \(C(\alpha_1, \beta_1, \gamma, \lambda, \mu, m, h) \) include \(S^*, K, S^*(\alpha), K(\alpha) \) and many other subclasses of \(A \) which were defined earlier in [11, 12, 13]. By specializing the parameters we get the corresponding classes containing Hohlov operator, Ruscheweyh operator, fractional calculus operator, Sălăgean derivative operator, Libera-Bernardi-Livingston integral operator, Dziok-Srivatsava operator and the operator studied in [15].

2. Preliminaries

To prove our main results we need the following lemmas.

Lemma 2.1. [10, p. 81] Let \(h \) be analytic, univalent and convex in \(U \) with \(h(0) = 1 \) and \(\Re\{\beta h(z) + \gamma\} > 0, (\beta, \gamma \in \mathbb{C}, z \in U) \). If \(p \) is analytic in \(U \) with \(p(0) = h(0) \), then

\[
p(z) + \frac{zp'(z)}{\beta p(z) + \gamma} < h(z)
\]

implies that

\[
p(z) \prec h(z) \quad (z \in U).
\]

Lemma 2.2. [10, p. 71] Let \(h \) be analytic, univalent and convex in \(U \) with \(h(0) = 1 \). Also let \(p \) be analytic in \(U \) with \(p(0) = h(0) \). If

\[
p(z) + \frac{zp'(z)}{\gamma} < h(z)
\]

then

\[
p(z) \prec q(z) \prec h(z),
\]

where

\[
q(z) = \frac{\gamma}{z^\gamma} \int_0^z t^{\gamma-1} h(t)dt \quad (z \in U, \Re\{\gamma\} \geq 0; \gamma \neq 0).
\]

3. Inclusion Relations

Theorem 3.1. For \(\alpha_1 \geq 1 \),

\[
A(\alpha_1 + 1, \beta_1, \gamma, \lambda, \mu, m, h) \subset A(\alpha_1, \beta_1, \gamma, \lambda, \mu, m, h).
\]
Proof. Let \(f(z) \in A(\alpha_1 + 1, \beta_1, \gamma, \lambda, \mu, m, h) \) and let
\[
p(z) := \frac{z[D^m_{\lambda, \mu}(\alpha_1, \beta_1)f(z)]'' + \gamma z^2[D^m_{\lambda, \mu}(\alpha_1, \beta_1)f(z)]''}{(1 - \gamma)D^m_{\lambda, \mu}(\alpha_1, \beta_1)f(z) + \gamma z[D^m_{\lambda, \mu}(\alpha_1, \beta_1)f(z)]''}.
\]
By differentiating (1.2) we have,
\[
p(z) + (a - 1) = \frac{\gamma \alpha_1 z [D^m_{\lambda, \mu}(\alpha_1 + 1, \beta_1)f(z)]' + (1 - \gamma) \alpha_1 D^m_{\lambda, \mu}(\alpha_1, \beta_1)f(z)}{(1 - \gamma)D^m_{\lambda, \mu}(\alpha_1, \beta_1)f(z) + \gamma z[D^m_{\lambda, \mu}(\alpha_1, \beta_1)f(z)]''}.
\]
Taking logarithmic differentiation on both sides we get
\[
p(z) + \frac{zp'(z)}{p(z) + (a - 1)} = \frac{z[D^m_{\lambda, \mu}(\alpha_1 + 1, \beta_1)f(z)]' + \gamma z^2[D^m_{\lambda, \mu}(\alpha_1 + 1, \beta_1)f(z)]''}{(1 - \gamma)D^m_{\lambda, \mu}(\alpha_1, \beta_1)f(z) + \gamma z[D^m_{\lambda, \mu}(\alpha_1, \beta_1)f(z)]''}.
\]
As \(f(z) \in A(\alpha_1 + 1, \beta_1, \gamma, \lambda, \mu, m, h) \) we have
\[
p(z) + \frac{zp'(z)}{p(z) + (a - 1)} \prec h(z).
\]
It follows from Lemma 2.1 that
\[
p(z) \prec h(z)
\]
for \(\alpha_1 \geq 1 \). Thus \(f \in A(\alpha_1, \beta_1, \gamma, \lambda, \mu, m, h) \).

\begin{theorem}
If \(f \in A(\alpha_1, \beta_1, \gamma, \lambda, \mu, m, h) \) for \(\alpha_1 \geq 1 \), then \(F_c(f) \in A(\alpha_1, \beta_1, \gamma, \lambda, \mu, m, h) \), where \(F_c \) is the integral operator defined by
\[
F_c(f) = F_c(f)(z) := \frac{c + 1}{z^c} \int_0^z t^{c-1} f(t) \, dt \quad (c \geq 0).
\]
\end{theorem}

Proof. Let \(f \in A(\alpha_1, \beta_1, \gamma, \lambda, \mu, m, h) \) and
\[
p(z) := \frac{z[D^m_{\lambda, \mu}(\alpha_1, \beta_1)F_c(f(z))]' + \gamma z^2[D^m_{\lambda, \mu}(\alpha_1, \beta_1)F_c(f(z))]''}{(1 - \gamma)D^m_{\lambda, \mu}(\alpha_1, \beta_1)F_c(f(z)) + \gamma z[D^m_{\lambda, \mu}(\alpha_1, \beta_1)F_c(f(z))]''}.
\]
A simple computation using (3.1) yields that
\[
z(F_c(f)(z))' + cF_c(f)(z) = (c + 1)f(z)
\]
and so
\[D^m_{\lambda, \mu}(\alpha_1, \beta_1)(zF_c(f(z))') + cD^m_{\lambda, \mu}(\alpha_1, \beta_1)F_c(f)(z) = (c + 1)D^m_{\lambda, \mu}(\alpha_1, \beta_1)f(z). \]

By making use of the identity
\[z[D^m_{\lambda, \mu}(\alpha_1, \beta_1)F_c(f(z))]' = D^m_{\lambda, \mu}(\alpha_1, \beta_1)(zF_c(f(z))'). \]
we get
\[z[D^m_{\lambda, \mu}(\alpha_1, \beta_1)F_c(f(z))]' + cD^m_{\lambda, \mu}(\alpha_1, \beta_1)F_c(f)(z) = (c + 1)D^m_{\lambda, \mu}(\alpha_1, \beta_1)f(z) \tag{3.2} \]
Differentiating (3.2), we have
\[p(z) + c \]
\[= (c + 1) \left(\frac{(1 - \gamma)D^m_{\lambda, \mu}(\alpha_1, \beta_1)f(z) + \gamma z[D^m_{\lambda, \mu}(\alpha_1, \beta_1)f(z)]'}{(1 - \gamma)D^m_{\lambda, \mu}(\alpha_1, \beta_1)F_c(f(z)) + \gamma z[D^m_{\lambda, \mu}(\alpha_1, \beta_1)F_c(f(z))]'} \right). \tag{3.3} \]

Taking logarithmic differentiation of (3.3), we get
\[p(z) + \frac{zp'(z)}{p(z) + c} = \frac{z[D^m_{\lambda, \mu}(\alpha_1, \beta_1)f(z)]' + \gamma z^2[D^m_{\lambda, \mu}(\alpha_1, \beta_1)f(z)]''}{(1 - \gamma)D^m_{\lambda, \mu}(\alpha_1, \beta_1)f(z) + \gamma z[D^m_{\lambda, \mu}(\alpha_1, \beta_1)f(z)]'}. \tag{3.4} \]

By applying Lemma 2.1 in (3.3), it follows that
\[p(z) \prec h(z) \quad (z \in U). \]

Hence \(F_c(f) \in A(\alpha_1, \beta_1, \gamma, \lambda, \mu, m, h). \)

Special cases of Theorems 3.1 and 3.2 include the results which were given in [2, 11, 12, 13]. Interestingly for \(q = 2, s = 1, m = 0, \alpha_1 = \beta_1 = \alpha_2 = 1, h(z) = \frac{1 + z}{1 - z} \) and \(\gamma = 0 \) in Theorem 3.1 we obtain \(K \subset S^* \).

Theorem 3.3. \(f \in A(\alpha_1, \beta_1, \gamma, \lambda, \mu, m, h) \) if and only if \(\gamma zf' + (1 - \gamma)f \in A(\alpha_1, \beta_1, 0, \lambda, \mu, m, h). \)

Proof. Let \(f \in A(\alpha_1, \beta_1, \gamma, \lambda, \mu, m, h) \) and \(g(z) = \gamma zf' + (1 - \gamma)f \). Using the definition of \(D^m_{\lambda, \mu}(\alpha_1, \beta_1)f(z) \) and a property of the Hadamard product, we find that \(g \in A(\alpha_1, \beta_1, 0, \lambda, \mu, m, h) \). Converse is obvious.

Special cases of the Theorem 3.3 includes results which were in [11, 12].

Theorem 3.4. If \(f \in A(\alpha_1, \beta_1, \gamma, \lambda, \mu, m, h) \) then \(\gamma f + (1 - \gamma) \int_0^z \frac{f(t)}{t} dt \in A(\alpha_1, \beta_1, 1, \lambda, \mu, m, h). \)
Proof. Let \(f \in A(\alpha_1, \beta_1, \gamma, \lambda, \mu, m, h) \) then from Theorem 3.3
\[
g(z) = zf' + (1 - \gamma)f \in A(\alpha_1, \beta_1, 0, \lambda, \mu, m, h).
\]
It can be easily seen that \(f \in A(\alpha_1, \beta_1, 1, \lambda, \mu, m, h) \) if and only if \(zf' \in A(\alpha_1, \beta_1, 0, \lambda, \mu, m, h) \). Applying this result for \(g(z) \), we see that
\[
\gamma f + (1 - \gamma) \int_0^z \frac{f(t)}{t} dt \in A(\alpha_1, \beta_1, 1, \lambda, \mu, m, h).
\]

\[\square\]

Theorem 3.5.
\[
B(\alpha_1 + 1, \beta_1, \gamma, \lambda, \mu, m, h) \subset B(\alpha_1, \beta_1, \gamma, \lambda, \mu, m, h).
\]

Proof. Let \(f \in B(\alpha_1 + 1, \beta_1, \gamma, \lambda, \mu, m, h) \) and
\[
p(z) = (1 - \gamma)[D_{\lambda, \mu}^m(\alpha_1, \beta_1)f(z)]' + \gamma[D_{\lambda, \mu}^m(\alpha_1, \beta_1)f(z)]'.
\]
Taking \(\gamma = 1 \) in (1.2) we get
\[
z[D_{\lambda, \mu}^m(\alpha_1, \beta_1)f(z)]' = \alpha_1 D_{\lambda, \mu}^m(\alpha_1 + 1, \beta_1)f(z) - (\alpha_1 - 1) D_{\lambda, \mu}^m(\alpha_1, \beta_1)f(z). \tag{3.5}
\]
Using (3.5) and the differentiation of (3.5), we get
\[
p(z) + \frac{zp'(z)}{\alpha_1} = (1 - \gamma)\frac{D_{\lambda, \mu}^m(\alpha_1 + 1, \beta_1)f(z)}{z} + \gamma[D_{\lambda, \mu}^m(\alpha_1 + 1, \beta_1)f(z)]'. \tag{3.6}
\]
By applying Lemma 2.2 in (3.6), we obtain
\[
p(z) \prec q(z) \quad (z \in U).
\]
Hence the result follows. \(\square\)

Theorem 3.6. If \(f \in B(\alpha_1, \beta_1, \gamma, \lambda, \mu, m, h) \), then
\[
F_c(f) \in B(\alpha_1, \beta_1, \gamma, \lambda, \mu, m, h).
\]

Proof. Assume \(f \in B(\alpha_1, \beta_1, \gamma, \lambda, \mu, m, h) \) and
\[
p(z) = (1 - \gamma)\frac{D_{\lambda, \mu}^m(\alpha_1, \beta_1)f_c(f(z))}{z} + \gamma[D_{\lambda, \mu}^m(\alpha_1, \beta_1)f_c(f(z))]'.
\]
Differentiating (3.2) we have

$$p(z) + \frac{zp'(z)}{c+1} = (1 - \gamma) \frac{D^m_{\lambda,\mu}(\alpha_1, \beta_1)f(z)}{z} + \gamma[D^m_{\lambda,\mu}(\alpha_1, \beta_1)f(z)]'. \tag{3.7}$$

By applying Lemma 2.2 in (3.7) we get

$$p(z) \prec h(z)$$

and hence

$$F_c(f) \in B(\alpha_1, \beta_1, \gamma, \lambda, \mu, m, h).$$

\[\square\]

Theorem 3.7. $C(\alpha_1 + 1, \beta_1, \gamma, \lambda, \mu, m, h) \subseteq C(\alpha_1, \beta_1, \gamma, \lambda, \mu, m, h)$.

Proof. Let $f \in C(\alpha_1 + 1, \beta_1, \gamma, \lambda, \mu, m, h)$ and

$$p(z) = [D^m_{\lambda,\mu}(\alpha_1 + 1, \beta_1)f(z)]' + \gamma z[D^m_{\lambda,\mu}(\alpha_1 + 1, \beta_1)f(z)]''. \tag{3.8}$$

Differentiating (3.5), we have

$$p(z) + \frac{zp'(z)}{\alpha_1} = [D^m_{\lambda,\mu}(\alpha_1 + 1, \beta_1)F_c(f(z))]' + \gamma z[D^m_{\lambda,\mu}(\alpha_1 + 1, \beta_1)F_c(f(z))]''. \tag{3.9}$$

Applying Lemma 2.2 in (3.8), we get

$$p(z) \prec h(z) \quad (z \in U)$$

and the result now follows. \[\square\]

Theorem 3.8. If $f \in C(\alpha_1, \beta_1, \gamma, \lambda, \mu, m, h)$, then

$$F_c(f) \in C(\alpha_1, \beta_1, \gamma, \lambda, \mu, m, h).$$

Proof. Let $f \in C(\alpha_1, \beta_1, \gamma, \lambda, \mu, m, h)$ and

$$p(z) = [D^m_{\lambda,\mu}(\alpha_1, \beta_1)F_c(f(z))]' + \gamma z[D^m_{\lambda,\mu}(\alpha_1, \beta_1)F_c(f(z))]''.$$

Differentiating (3.2) we get

$$p(z) + \frac{zp'(z)}{c+1} = [D^m_{\lambda,\mu}(\alpha_1, \beta_1)f(z)]' + \gamma z[D^m_{\lambda,\mu}(\alpha_1, \beta_1)f(z)]''. \tag{3.9}$$

A simple application of Lemma 2.2 will give the desired result. \[\square\]
Theorem 3.9. $f \in C(\alpha_1, \beta_1, \gamma, \lambda, \mu, m, h)$ if and only if $zf' \in B(\alpha_1, \beta_1, \gamma, \lambda, \mu, m, h)$.

Proof. Using the equality
\[z[D^m_{\lambda,\mu}(\alpha_1, \beta_1)f(z)]' = D^m_{\lambda,\mu}(\alpha_1, \beta_1)(zf'(z)). \]

We see that
\[
(1 - \gamma) \frac{D^m_{\lambda,\mu}(\alpha_1, \beta_1)zf'(z)}{z} + \gamma[D^m_{\lambda,\mu}(\alpha_1, \beta_1)zf'(z)]' = [D^m_{\lambda,\mu}(\alpha_1, \beta_1)f(z)]' + \gamma z[D^m_{\lambda,\mu}(\alpha_1, \beta_1)f(z)]''
\]
which implies the required result.

Theorem 3.10. $C(\alpha_1, \beta_1, \gamma, \lambda, \mu, m, h) \subset B(\alpha_1, \beta_1, \gamma, \lambda, \mu, m, h)$.

Proof. Let $f \in C(\alpha_1, \beta_1, \gamma, \lambda, \mu, m, h)$ and
\[p(z) = (1 - \gamma) \frac{D^m_{\lambda,\mu}(\alpha_1, \beta_1)f(z)}{z} + \gamma[D^m_{\lambda,\mu}(\alpha_1, \beta_1)f(z)]'. \]

Hence
\[p(z) + zp'(z) = [D^m_{\lambda,\mu}(\alpha_1, \beta_1)f(z)]' + \gamma z[D^m_{\lambda,\mu}(\alpha_1, \beta_1)f(z)]'' \]
and the result follows as an application of Lemma 2.2.

Theorem 3.11. For $\gamma > \delta \geq 0$,
\[B(\alpha_1, \beta_1, \gamma, \lambda, \mu, m, h) \subset B(\alpha_1, \beta_1, \delta, \lambda, \mu, m, h). \]

Proof. Let $f \in B(\alpha_1, \beta_1, \gamma, \lambda, \mu, m, h)$ and $p(z) = \frac{D^m_{\lambda,\mu}(\alpha_1, \beta_1)f(z)}{z}$.

When $\delta = 0$, we have
\[
p(z) + zp'(z) = (1 - \gamma) \frac{D^m_{\lambda,\mu}(\alpha_1, \beta_1)f(z)}{z} + \gamma[D^m_{\lambda,\mu}(\alpha_1, \beta_1)f(z)]' \quad (3.10)
\]
Hence the result follows as an application of Lemma 2.2 in (3.10), when $\delta = 0$. Suppose $\delta \neq 0$. Since $f \in B(\alpha_1, \beta_1, \gamma, \lambda, \mu, m, h)$, we have
\[
(1 - \gamma) \frac{D^m_{\lambda,\mu}(\alpha_1, \beta_1)f(z)}{z} + \gamma[D^m_{\lambda,\mu}(\alpha_1, \beta_1)f(z)]' \in h(U) \quad (z \in U).
\]
But \(\frac{D^m_{\lambda,\mu}(\alpha_1, \beta_1)f(z)}{z} \) ∈ \(h(U) \) and \(h(U) \) is convex. Also

\[
(1-\delta) \frac{D^m_{\lambda,\mu}(\alpha_1, \beta_1)f(z)}{z} + \delta[D^m_{\lambda,\mu}(\alpha_1, \beta_1)f(z)]' = (1-\frac{\delta}{\gamma}) \frac{D^m_{\lambda,\mu}(\alpha_1, \beta_1)f(z)}{z}
\]

\[
+ \frac{\delta}{\gamma} \left[(1-\gamma) \frac{D^m_{\lambda,\mu}(\alpha_1, \beta_1)f(z)}{z} \gamma[D^m_{\lambda,\mu}(\alpha_1, \beta_1)f(z)]' \right].
\]

Therefore we have

\[
(1-\delta) \frac{D^m_{\lambda,\mu}(\alpha_1, \beta_1)f(z)}{z} + \delta[D^m_{\lambda,\mu}(\alpha_1, \beta_1)f(z)]' \in h(U).
\]

Hence the result follows.

\[\square\]

Theorem 3.12. For \(\gamma > \delta \geq 0 \),

\[
C(\alpha_1, \beta_1, \gamma, \lambda, \mu, m, h) \subset C(\alpha_1, \beta_1, \delta, \lambda, \mu, m, h).
\]

Proof. Let \(f(z) \in C(\alpha_1, \beta_1, \gamma, \lambda, \mu, m, h) \) and \(p(z) = [D^m_{\lambda,\mu}(\alpha_1, \beta_1)f(z)]' \).

When \(\delta = 0 \), we have

\[
p(z) + \gamma z p'(z) = [D^m_{\lambda,\mu}(\alpha_1, \beta_1)f(z)]' + \gamma z[D^m_{\lambda,\mu}(\alpha_1, \beta_1)f(z)]''.
\]

Hence the result follows as an application of Lemma 2.2, when \(\delta = 0 \).

Suppose \(\delta \neq 0 \). Then

\[
[D^m_{\lambda,\mu}(\alpha_1, \beta_1)f(z)]' + \gamma z[D^m_{\lambda,\mu}(\alpha_1, \beta_1)f(z)]'' \in h(U) \quad (z \in U).
\]

Note that

\[
[D^m_{\lambda,\mu}(\alpha_1, \beta_1)f(z)]' + \delta z[D^m_{\lambda,\mu}(\alpha_1, \beta_1)f(z)]''
\]

\[
= (1-\frac{\delta}{\gamma})[D^m_{\lambda,\mu}(\alpha_1, \beta_1)f(z)]' + \frac{\delta}{\gamma} [D^m_{\lambda,\mu}(\alpha_1, \beta_1)f(z)]' + \gamma z[D^m_{\lambda,\mu}(\alpha_1, \beta_1)f(z)]''.
\]

As \(h(U) \) is convex and \(\frac{\delta}{\gamma} < 1 \) we have

\[
[D^m_{\lambda,\mu}(\alpha_1, \beta_1)f(z)]' + \delta z[D^m_{\lambda,\mu}(\alpha_1, \beta_1)f(z)]'' \in h(U) \quad (z \in U)
\]

and hence the result follows. \[\square\]
References

