ON SUBSPACE-TRANSITIVE OPERATORS

Sorayya Talebi1§, Meysam Asadipour2

1,2Payame Noor University
P.O. Box 19395-4697, Tehran, IRAN

Abstract: The purpose of the present paper is to treat a notion, which can be viewed as a localization of the recent notion of subspace-transitivity. We conclude this paper to answer in affirmative one question asked by Madore and Martinez-Avandano with an additional assumption.

AMS Subject Classification: 47A16, 47B99
Key Words: topological transitivity, subspace-hypercyclicity, subspace-transitivity, J-class operators

1. Introduction

Let X be a Banach space. In what follows, the symbol T stands for a bounded linear operator acting on T and M will be a nonzero closed subspace of X. Consider any subset C of X. The symbol $\text{Orb}(T, C)$ denotes the orbit of C under T, i.e. $\text{Orb}(T, C) = \{T^n x : x \in C, n = 0, 1, 2, \ldots\}$. If $C = \{x\}$ is a singleton and the orbit $\text{Orb}(T, x)$ is dense in X, then the operator T is called hypercyclic and the vector x is a hypercyclic vector for T. Observe that in case the operator is hypercyclic the underlying Banach space X should be separable. Then it is well known and easy to show that an operator T is hypercyclic if and only if T is topologically transitive, to be precise, for every pair of nonempty open sets U, V of X there exists a non-negative integer n such that $T^n(U) \cap V \neq \emptyset$. The study of hypercyclicity goes back a long way, and has

§Correspondence author
been investigated in more general settings, for example in topological vector spaces. A nice source of examples and properties of hypercyclic operators is the survey article [5], and see also recent books [1], [4].

Recently, B. F. Madore and R. A. Martinez-Avendano in [7] introduced the concept of subspace-hypercyclicity. An operator T is subspace-hypercyclic (or M-hypercyclic) for a subspace M of X if there exists a vector $x \in X$ such that the intersection of its orbit and M is dense in M. Also authors introduced the notion of subspace-transitivity (or M-transitivity) and show that M-transitivity implies M-hypercyclicity, and C. M. Le in [6] construct an operator T such that it is M-hypercyclic but it is not M-transitive. The authors in [7] prove several results analogous to hypercyclicity case. Other sources of examples and some properties of notions relating subspace-hypercyclicity are [8], [9].

The purpose of this paper is twofold. Firstly, we somehow localize the notion of subspace-transitivity by introducing certain set, which we called M-extended limit set of x under T, $J(T, M, x)$, for an operator T and a given vector x. It is worthwhile to mention that the notion of J-class operators was introduced by G. Costakis and A. Manoussos in [3], [2], and with it, the authors localized the notion of hypercyclicity.

In [7] authors raised five questions relating subspace-hypercyclic-ity. We are interested in the first one. The second purpose of this paper is an application of the localization notion of subspace-transitivity in order to answer in the affirmative question:” let T be an invertible operator. If T is subspace-transitive for some M, is T^{-1} subspace-hypercyclic for some space? If so, for which space?”

2. Preliminaries and Some Results

Definition 1. Let $T \in B(X)$. We say that T is M-hypercyclic if there exists $x \in X$ such that $\text{Orb}(T, x) \cap M$ is dense in M. Such a vector x is called an M-hypercyclic vector for T.

Definition 2. Let $T \in B(X)$. We say that T is M-transitive if for any nonempty open subsets U, V of M there exists a non-negative integer n such that $T^{-n} \cap V$ contains a relatively open nonempty subset of M.

The proof of the following proposition can be found in [7].

Proposition 3. Let $T \in B(X)$. Then the following conditions are equivalent:
(i) The operator T is M-transitive.

(ii) For any nonempty sets U and V, both relatively open, there exists $n \geq 0$ such that $T^{-n} \cap V$ is a relatively open nonempty subset of M.

(iii) For any nonempty sets U and V, both relatively open, there exists $n \geq 0$ such that $T^{-n} \cap V$ is nonempty and $T^n(M) \subseteq M$.

In [6], [7] the authors prove that M-transitivity implies M-hypercyclicity and the converse is not always correct.

Theorem 4. Let T is M-transitive. Then for any nonempty open subset U of M, $\bigcap_{n=0}^{\infty} T^n(U) \cap M$ is dense in M.

Proof. Let U be a nonempty subset of M, by previous proposition there exists some $k \geq 0$ such that

$$T^{-k}U \cap V \neq \emptyset \quad \text{and} \quad T^k(M) \subseteq M$$

hence

$$\emptyset \neq T^k(T^{-k}(V) \cap U) \subseteq V \cap T^k(U).$$

Therefore $\bigcap_{n=0}^{\infty} T^n(U) \cap M$ is dense in M. \hfill \Box

Definition 5. Let $T \in B(X)$. Then for any subsets $A, B \subseteq M$, the return set from A to B defined as

$$N_{(T,M)}(A,B) = \{n \geq 0 : T^{-n}(A) \cap B \text{ is nonempty open subset of } M\}$$

In this notation, T is M-transitive if and only if, for any nonempty sets $U \subseteq M$ and $V \subseteq M$, both relatively open, the return set $N_{(T,M)}(U,V)$ is nonempty.

Remark 6. When T is M-transitive, the proposition3 rearrange the return set $N_{(T,M)}(U,V)$ for any nonempty sets $U \subseteq M$ and $V \subseteq M$, both relatively open, as below:

$$N_{(T,M)}(U,V) = \{n \geq 0 : T^{-n}(U) \cap V \neq \emptyset \quad \text{and} \quad T^n(M) \subseteq M\}.$$

Theorem 7. Let T is an M-transitive operator. Then for any pair U,V, both nonempty relatively open subsets of M, the return set $N_{(T,M)}(U,V)$ is infinite.
Proof. Since \(T \) is \(M \)-transitive, there exists \(n \geq 0 \) such that \(W = T^{-n}(U) \cap V \) is nonempty relatively open subset of \(M \). Consider two distinct points \(x, y \) in \(W \) and two relatively open subsets \(W_1 \) and \(W_2 \) of \(M \) such that

\[
x \in W_1, \quad y \in W_2, \quad W_1 \subseteq W, \quad W_2 \subseteq W, \quad W_1 \cap W_2 = \emptyset,
\]

consequently there exists \(k \geq 1 \) such that

\[
T^{-k}(W_1) \cap W_2 \neq \emptyset, \quad T^k(M) \subseteq M
\]

hence

\[
\emptyset \neq T^{-k}(W_1) \cap W_2 \subseteq T^{-k}(W) \cap W \subseteq T^{-(k+n)}(U) \cap V.
\]

(1)

Since \(T^n(M) \subseteq M \), so \(T^{(k+n)}(M) \subseteq M \). Therefore (1) implies that the intersection of \(N_{(T,M)}(U,V) \) and Natural numbers is nonempty. Proceeding inductively we find infinite integers \(n \in N_{(T,M)}(U,V) \).

\[\square \]

Remark 8. An equivalent definition of an \(M \)-transitive operator is the following: for any nonempty sets \(U \subseteq M \) and \(V \subseteq M \), both relatively open, and for any \(N \geq 1 \), there exists a positive integer \(n > N \) such that \(T^{-n}(U) \cap V \) is a relatively open nonempty subset of \(M \).

Definition 9. Let \(T \) be an operator. For every \(x \in M \) the set

\[
J(T, M, x) = \{ y \in M : \text{for every relatively open neighborhoods } U, V \text{ of } x, y \text{ in } M \text{ respectively, and every positive integer } N,
\]

\[
\text{there exists } n > N \text{ such that } T^n(U) \cap V \neq \emptyset \text{ and } T^n(M) \subseteq M \}
\]

denote the \(M \)-extended limit set of \(x \) under \(T \).

Proposition 10. An equivalent definition of \(J(T, M, x) \) is the following.

\[
J(T, M, x) = \{ y \in M : \text{there exists a strictly increasing sequence of positive integers } \{ k_n \} \text{ and a sequence } \{ x_n \} \subseteq M
\]

\[
\text{such that } x_n \rightarrow x \text{ and } T^{k_n}x_n \rightarrow y \text{ and for every } n, \ T^{k_n}(M) \subseteq M \}.
\]

Proof. Let us prove that

\[
J(T, M, x) \subseteq \{ y \in M : \text{there exists a strictly increasing sequence}
\]
of positive integers \(\{k_n\} \) and a sequence \(\{x_n\} \subset M \)
such that \(x_n \rightarrow x \) and \(T^{k_n}x_n \rightarrow y \) and for every
\(n, \ T^{k_n}(M) \subseteq M \). since the converse inclusion is obvious. Let \(y \in J(T, M, x) \) and consider the open balls
\(U_n = B(x, \frac{1}{n}) \cap M, \ V_n = B(y, \frac{1}{n}) \cap M, \) for \(n = 1, 2, ... \)
and \(N = k_{n-1}, \ k_0 = 1 \). Then there exists \(k_n > N = k_{n-1} \) such that
\(T^{k_n}(U_n) \cap V_n \neq \emptyset \) and \(T^{k_n}(M) \subseteq M \).

Hence there exists \(x_n \in U_n \) such that \(T^{k_n} \in V_n \) and \(T^{k_n}(M) \subseteq M \). Therefore \(\{k_n\} \) is an strictly increasing sequence of positive integers and \(\{x_n\} \) is a sequence in \(X \) such that \(x_n \rightarrow x \) and \(T^{k_n}x_n \rightarrow y \) and for every \(n, \ T^{k_n}(M) \subseteq M \). \(\square \)

3. Main Results

The following characterization of \(M \)-transitive operators help us to answer in the affirmative question:” let \(T \) be an invertible operator. If \(T \) is an \(T \)-transitive for some \(M \), is \(T^{-1} \) subspace-hypercyclic for some space? If so, for which space?”.

Theorem 11. Let \(T \) be an operator on \(X \). Then the following conditions are equivalent:

(i) \(T \) is an \(M \)-transitive.

(ii) For every \(x \in M, \ J(T, M, x) = M \).

Proof. We first prove that (i) implies (ii). Let \(x \in U, \ y \in V \) and \(U, V \) be relatively open subsets of \(M \) and \(N \geq 1 \). There exists \(n > N \) such that \(U \cap T^{-n}(V) \) is nonempty and \(T^n(M) \subseteq M \). Thus \(y \in J(T, M, x) \), and consequently \(J(T, M, x) = M \).

We will show that (ii) \(\Rightarrow \) (i). Let \(U \subseteq M, \ V \subseteq M \), both nonempty and relatively open. Consider \(x_0 \in U, \ y_0 \in V \). Since \(J(T, M, x_0) = M \), there exists \(n \geq 1 \) such that \(T^n(V) \cap U \neq \emptyset \) and \(T^n(M) \subseteq M \). Proposition3 implies that \(T \) is an \(M \)-transitive operator. \(\square \)
The next example will show that subspace-hypercyclicity does not imply subspace-transitivity with respect to M.

Example 12. Let $\lambda \in \mathbb{C}$ be of modulus greater than 1 and let B be the backward shift on l^2. Let m be a positive integer and M be the subspace of l^2 consisting of all sequences with zero on the first m entries, that is:

$$M = \{\{a_n\}_{n=0}^{\infty} \in l^2 : a_n = 0 \text{ for } n \leq m\}$$

then $T = \lambda B$ is M-hypercyclic, see [7]. Now consider

$$V = \{\{a_n\}_{n=0}^{\infty} \in l^2 : a_n = 0 \text{ for } n \leq m \text{ and } |a_n| > 0 \text{ for } n > m\}$$

so V is relatively open subset of M. If $N = m + 1$, then for every $n > N$, $T^n(V) \cap M = \emptyset$. Thus for every $x \in M$, $J(T, M, x) \neq M$.

Theorem 13. Let T be an invertible operator and M-transitive. Then T^{-1} is M-hypercyclic.

Proof. Let $x, y \in M$. Since T is M-transitive, so $J(T, M, x) = M$. If U, V are relatively open subsets of M such that contain x, y respectively, then there exists $n > 1$,

$$T^n(U) \cap V \neq \emptyset \quad \text{and} \quad T^n(M) \subseteq M$$

thus invertibility of T implies that

$$T^{-n}(M) \subseteq M \quad \text{and} \quad U \cap T^{-n}(V) \neq \emptyset.$$

Hence for every $x \in M$, $x \in J(T^{-1}, M, y)$. This means for every $y \in M$,

$$M = J(T^{-1}, M, y)$$

or equivalently T^{-1} is M-transitive.

References

