IJPAM: Volume 84, No. 5 (2013)
IRREDUCIBLE CHARACTER OF A GIVEN DEGREE
Department of Mathematics
Reed College
3203, SE Woodstock Blvd, Portland, OR 97202, Portland, USA
Abstract. It has been conjectured that PSL (2,q), the projective special linear group
of 2x2 matrices over a field of order q, is the only non-solvable
group satisfying the property that it has a unique irreducible complex
character χ of degree m>1 and every other irreducible complex character is such
that its degree is relatively prime to m. (Such a χ is a particular case
of the Steinberg character of finite Chevalley groups.) In this paper, we
consider finite solvable groups satisfying the above property and obtain a
complete classification.
Received: October 10, 2012
AMS Subject Classification: 20C15
Key Words and Phrases: finite solvable groups, Chevalley groups, Steinberg character, irreducible complex characters
Download paper from here.
DOI: 10.12732/ijpam.v84i5.4 How to cite this paper?
Source: International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2013
Volume: 84
Issue: 5