ON FUZZY ALMOST CONTRA γ-CONTINUOUS FUNCTIONS

K. Balasubramaniyan1, S. Sriram2, O. Ravi3

$^1,^2$Department of Mathematics
Faculty of Engineering and Technology
Annamalai University
Chidambaram, Tamilnadu, INDIA

3Department of Mathematics
P.M. Thevar College
Usilampatti, Madurai District, Tamilnadu, INDIA

Abstract: Joseph and Kwack (see [11]) introduced the notion of (θ, s)-continuous functions in order to investigate S-closed due to Thompson [23]. A function f is called (θ, s)-continuous if the inverse image of each regular open set is closed. Moreover, to investigate some properties of such fuzzy functions.

AMS Subject Classification: 57A40, 57C08

Key Words: fuzzy γ-open set, fuzzy γ-closed set, fuzzy γ-continuity, fuzzy almost contra γ-continuity, fuzzy weakly almost contra γ-continuity, fuzzy strong normal space

1. Introduction

Joseph and Kwack (see [11]) introduced (θ, s)-continuous functions in order to investigate S-closed due to Thompson [23]. A function f is called (θ, s)-continuous if the inverse image of each regular open set is closed. Moreover,
Chang in [3] introduced fuzzy S-closed spaces in 1968. Fuzzy continuity is one of the main topics in fuzzy topology. Various authors introduce various types of fuzzy continuity. One of them is fuzzy γ-continuity. In 1999, Hanafy in [9] introduced the concept of fuzzy γ-continuity.

The purpose of this paper is to introduce fuzzy almost α-continuous function and to investigate some of its properties. Using these properties of fuzzy almost contra continuous functions, properties of fuzzy almost contra α-continuous functions, fuzzy almost contra precontinuous functions, fuzzy almost contra β-continuous and fuzzy almost contra semicontinuous functions are obtained.

2. Preliminaries

In the present paper, X and Y are always fuzzy topological spaces. The class of fuzzy sets on a universal set X will be denoted by I^X and fuzzy sets on X will be denoted by Greek letters as μ, ρ, η, etc. A family τ of fuzzy sets in X is called a fuzzy topology for X if

1. $0, 1 \in \tau$,
2. $\mu \land \rho \in \tau$, whenever $\mu, \rho \in \tau$ and
3. $\lor\{\mu_\alpha : \alpha \in I\} \in \tau$, whenever each $\mu_\alpha \in \tau (\alpha \in I)$.

Moreover, the pair (X, τ) is called a fuzzy topological space. Every member of τ is called a fuzzy open set. The complement of a fuzzy open set is fuzzy closed.

Let μ be a fuzzy set in X. We denote the complement, the interior and the closure of μ by $1 - \mu$ or μ^1, $\text{int}(\mu)$ and $\text{cl}(\mu)$, respectively. A fuzzy set in X is called a fuzzy point if and only if it takes the value 0 for all $y \in X$ except one, say, $x \in X$. If its value at x is $\alpha (0 < \alpha \leq 1)$ we denote this fuzzy point by x_α where the point x is called its support, see [16]. For any fuzzy point x_ϵ and any fuzzy set μ, we write $x_\epsilon \in \mu$ if and only if $\epsilon \leq \mu(x)$. Two fuzzy sets λ and β are said to be quasi-coincident (q-coincident, shortly), denoted by $\lambda q \beta$, if there exists $x \in X$ such that $\lambda(x) + \beta(x) > 1$ (see [16]) and by \overline{q} we denote “is not q-coincident”. It is known (see [16]) that $\lambda \leq \beta$ if and only if $\lambda \overline{q}(1 - \beta)$.

Definition 2.1. A fuzzy set μ in a space X is called

1. fuzzy β-open [12] if $\mu \leq \text{cl}(\text{int}(\text{cl}(\mu)))$;
2. fuzzy semi-open [1] if $\mu \leq \text{cl}(\text{int}(\mu))$;
(3) fuzzy \(\alpha\)-open \([2]\) if \(\mu \leq \text{int}(\text{cl}(\text{int}(\mu)))\);

(4) fuzzy preopen \([1]\) if \(\mu \leq \text{int}(\text{cl}(\mu))\);

(5) fuzzy \(\gamma\)-open \([9]\) if \(\mu \leq \text{int}(\text{cl}(\mu)) \lor \text{cl}(\text{int}(\mu))\).

The complements of the above mentioned open sets are called their respective closed sets.

Remark 2.2. (see \([14]\))

- Fuzzy open set
- Fuzzy \(\alpha\)-open
- Fuzzy preopen set
- Fuzzy \(\beta\)-open set
- Fuzzy \(\gamma\)-open set
- Fuzzy semi-open set

None of the above implications is reversible.

Definition 2.3. \([8]\) A space \(X\) is said to be fuzzy extremely disconnected if the closure of every fuzzy open set of \(X\) is fuzzy open in \(X\).

Definition 2.4. \([1]\) Let \((X, \tau)\) be a fuzzy topological space. A fuzzy set \(\mu\) of \(X\) is called

(1) fuzzy regular open if \(\mu = \text{int}(\text{cl}(\mu))\);

(2) fuzzy regular closed if \(\mu = \text{cl}(\text{int}(\mu))\).

The complement of fuzzy regular open set is fuzzy regular closed.

The collection of all fuzzy regular closed sets of \(X\) is denoted by \(\text{FRC}(X)\).

Definition 2.5. \([17]\) A subset \(\rho\) in a space \(X\) is said to be a fuzzy locally closed (briefly, a fuzzy LC) set if \(\rho = \alpha \land \beta\), where \(\alpha\) is a fuzzy open set and \(\beta\) is a fuzzy closed set.

Theorem 2.6. \([20]\) Let \(X\) be a fuzzy extremely disconnected space and \(\mu \leq X\), the following properties are equivalent.

(1) \(\mu\) is a fuzzy open set.

(2) \(\mu\) is fuzzy \(\alpha\)-open and a fuzzy LC set,
(3) μ is fuzzy preopen and a fuzzy LC set.

(4) μ is fuzzy semi-open and a fuzzy LC set.

(5) μ is fuzzy γ-open and a fuzzy LC set.

Let μ be a fuzzy set in a fuzzy topological space X. The fuzzy γ-closure and fuzzy γ-interior of μ are defined as $\wedge\{\rho : \mu \leq \rho, \rho$ is fuzzy γ-closed}, $\vee\{\rho : \mu \geq \rho, \rho$ is fuzzy γ-open} and denoted by $\gamma\text{-cl}(\mu)$ and $\gamma\text{-int}(\mu)$, respectively.

A fuzzy set μ is quasi-coincident with a fuzzy set ν, denoted by $\mu \circ \nu$, if there exists $x \in X$ such that $\mu(x) + \nu(x) > 1$. If μ is not quasi-coincident with ν, then we write $\mu \not\circ \nu$. It is known that $\mu \leq \nu$ iff $\mu \circ \mu \not\circ \nu$.

Lemma 2.7. [10] Let A and B be fuzzy sets in a fuzzy topological space (X, τ). Then

1. if $A \cap B = 0_X$, then $A \circ B$,
2. $A \leq B$ iff $x_r \circ B$ for each $x_r \circ A$,
3. $A \circ B$ iff $A \leq B^1$.
4. $x_r(\cup A_\alpha)(\alpha \in \Lambda)$ iff there is $\alpha_0 \in \Lambda$ such that $x_r \circ A_{\alpha_0}$.

Definition 2.8. [3] Let $f : (X, \tau) \to (Y, \rho)$ be a function. Let A be a fuzzy subset in X and B be a fuzzy subset in Y. Then the Zadeh’s functions $f(A)$ and $f^{-1}(B)$ are defined by

1. $f(A)$ is a fuzzy subset of Y where $f(A) = \begin{cases} \sup_{z \in f^{-1}(y)} A(z), & \text{if } f^{-1}(y) \neq \emptyset \\ 0, & \text{otherwise} \end{cases}$ for each $y \in Y$.
2. $f^{-1}(B)$ is a fuzzy subset of X where $f^{-1}(B)(x) = B(f(x))$, for each $x \in X$.

Lemma 2.9. [3] Let $f : (X, \tau) \to (Y, \rho)$ be a function. For fuzzy sets A and B of X and Y respectively, the following statements hold:

1. $f f^{-1}(B) \leq B$;
2. $f^{-1} f(A) \geq A$;
3. $f(A^1) \geq (f(A))^1$;
4. $f^{-1}(B^1) = (f^{-1}(B))^1$;
(5) if f is injective, then $f^{-1}(f(A)) = A$;

(6) if f is surjective, then $f f^{-1}(B) = B$;

(7) if f is bijective, then $f(A^1) = (f(A))^1$.

Definition 2.10. [3] Let $f : (X, \tau) \to (Y, \rho)$ be a function. Then f is said to be

1. fuzzy open if the image of every fuzzy open set of X is fuzzy open in Y.
2. fuzzy closed if the image of every fuzzy closed set of X is fuzzy closed in Y.
3. fuzzy continuous if the inverse image of every fuzzy open set of Y is fuzzy open in X.

Let $f : X \to Y$ be a fuzzy function from a fuzzy topological space X to a fuzzy topological space Y. Then the function $g : X \to X \times Y$ defined by $g(x_\epsilon) = (x_\epsilon, f(x_\epsilon))$ is called the fuzzy graph function of f, see [1].

Recall that for a fuzzy function $f : X \to Y$, the subset $\{(x_\epsilon, f(x_\epsilon)) : x_\epsilon \in X\} \leq X \times Y$ is called the fuzzy graph of f and is denoted by $G(f)$.

3. Fuzzy Almost Contra γ-Continuous Functions

In this section, the notion of fuzzy almost contra γ-continuous functions is introduced.

Definition 3.1. Let X and Y be fuzzy topological spaces. A fuzzy function $f : X \to Y$ is said to be fuzzy almost contra γ-continuous if inverse image of each fuzzy regular open set in Y is fuzzy γ-closed in X.

Theorem 3.2. For a fuzzy function $f : X \to Y$, the following statements are equivalent:

1. f is fuzzy almost contra γ-continuous,
2. for every fuzzy regular closed set μ in Y, $f^{-1}(\mu)$ is fuzzy γ-open,
3. for any fuzzy regular closed set $\mu \leq Y$ and for any $x_\epsilon X$ if $f(x_\epsilon)q\mu$, then $x_\epsilon q\gamma\text{-int}(f^{-1}(\mu))$,
4. for any fuzzy regular closed set $\mu \leq Y$ and for any $x_\epsilon \in X$ if $f(x_\epsilon)q\mu$, then there exists a fuzzy γ-open set η such that $x_\epsilon q\eta$ and $f(\eta) \leq \mu$,.
(5) \(f^{-1}(\text{int}(\text{cl}(\mu))) \) is fuzzy \(\gamma \)-closed for every fuzzy open set \(\mu \),

(6) \(f^{-1}(\text{cl}(\text{int}(\rho))) \) is fuzzy \(\gamma \)-open for every fuzzy closed subset \(\rho \),

(7) for each fuzzy singleton \(x_\varepsilon \in X \) and each fuzzy regular closed set \(\eta \) in \(Y \) containing \(f(x_\varepsilon) \), there exists a fuzzy \(\gamma \)-open set \(\mu \) in \(X \) containing \(x_\varepsilon \) such that \(f(\mu) \leq \eta \).

Proof. (1) \(\Leftrightarrow \) (2) : Let \(\rho \) be a fuzzy regular open set in \(Y \). Then, \(\rho^1 \) is fuzzy regular closed. By (2), \(f^{-1}(\rho^1) = (f^{-1}(\rho))^1 \) is fuzzy \(\gamma \)-open. Thus, \(f^{-1}(\rho) \) is fuzzy \(\gamma \)-closed.

Converse is similar.

(2) \(\Leftrightarrow \) (3) : Let \(\mu \leq Y \) be a fuzzy regular closed set and \(f(x_\varepsilon)q\mu \). Then \(x_\varepsilon qf^{-1}(\mu) \) and from (2), \(f^{-1}(\mu) = \gamma-\text{int}(f^{-1}(\mu)) \). Hence \(x_\varepsilon q\gamma-\text{int}(f^{-1}(\mu)) \). Thus, (3) holds.

The reverse is obvious.

(3) \(\Rightarrow \) (4) : Let \(\mu \leq Y \) be any fuzzy regular closed set and for \(x_\varepsilon \in X \) let \(f(x_\varepsilon)q\mu \). Then \(x_\varepsilon q\gamma-\text{int}(f^{-1}(\mu)) \). Take \(\eta = \gamma-\text{int}(f^{-1}(\mu)) \), then \(f(\eta) = f(\gamma-\text{int}(f^{-1}(\mu))) \leq f(\gamma-\text{int}(f^{-1}(\mu))) \leq \mu \), where \(\eta \) is fuzzy regular open in \(X \) and \(x_\varepsilon q\eta \).

(4) \(\Rightarrow \) (3) : Let \(\mu \leq Y \) be any fuzzy regular closed set and let \(f(x_\varepsilon)q\mu \). From (4), there exists fuzzy \(\gamma \)-open set \(\eta \) such that \(x_\varepsilon q\eta \) and \(f(\eta) \leq \mu \). Hence \(\eta \leq f^{-1}(\mu) \) and then \(x_\varepsilon q\gamma-\text{int}(f^{-1}(\mu)) \).

(1) \(\Leftrightarrow \) (5) : Let \(\mu \) be a fuzzy open set. Since \(\text{int}(\text{cl}(\mu)) \) is fuzzy regular open, by (1), it follows that \(f^{-1}(\text{int}(\text{cl}(\mu))) \) is fuzzy \(\gamma \)-closed.

The converse can be shown easily.

(2) \(\Leftrightarrow \) (6) : It can be obtained similar as (1) \(\Leftrightarrow \) (5).

(2) \(\Leftrightarrow \) (7) : Obvious.

Theorem 3.3. Let \(f : X \to Y \) be a fuzzy function and let \(g : X \to X \times Y \) be the fuzzy graph function of \(f \), defined by \(g(x_\varepsilon) = (x_\varepsilon, f(x_\varepsilon)) \) for every \(x_\varepsilon \in X \). If \(g \) is fuzzy almost contra \(\gamma \)-continuous, then \(f \) is fuzzy almost contra \(\gamma \)-continuous.

Proof. Let \(\eta \) be a fuzzy regular closed set in \(Y \), then \(X \times \eta \) is a fuzzy regular closed set in \(X \times Y \). Since \(g \) is fuzzy almost contra \(\gamma \)-continuous, then \(f^{-1}(\eta) = g^{-1}(X \times \eta) \) is fuzzy \(\gamma \)-open in \(X \). Thus, \(f \) is fuzzy almost contra \(\gamma \)-continuous.

Definition 3.4. [20] A fuzzy filter base \(\Lambda \) is said to be fuzzy \(\gamma \)-convergent to a fuzzy singleton \(x_\varepsilon \) in \(X \) if for any fuzzy \(\gamma \)-open set \(\eta \) in \(X \) containing \(x_\varepsilon \), there exists a fuzzy set \(\mu \in \Lambda \) such that \(\mu \leq \eta \).

Definition 3.5. [5] A fuzzy filter base \(\Lambda \) is said to be fuzzy \(rc \)-convergent to a fuzzy singleton \(x_\varepsilon \) in \(X \) if for any fuzzy regular closed set \(\eta \) in \(X \) containing
there exists a fuzzy set \(\mu \in \Lambda \) such that \(\mu \leq \eta \).

Theorem 3.6. If a fuzzy function \(f : X \to Y \) is fuzzy almost contra \(\gamma \)-continuous, then for each fuzzy singleton \(x_\epsilon \in X \) and each fuzzy filter base \(\Lambda \) in \(X\gamma \)-converging to \(x_\epsilon \), the fuzzy filter base \(f(\Lambda) \) is fuzzy rc-convergent to \(f(x_\epsilon) \).

Proof. Let \(x_\epsilon \in X \) and \(\Lambda \) be any fuzzy filter base in \(X\gamma \)-converging to \(x_\epsilon \). To prove that the fuzzy filter base \(f(\Lambda) \) is fuzzy rc-convergent to \(f(x_\epsilon) \), let \(\lambda \) be a fuzzy regular closed set in \(Y \) containing \(f(x_\epsilon) \). Since \(f \) is almost fuzzy contra \(\gamma \)-continuous, there exists a fuzzy \(\gamma \)-open set \(\mu \) in \(X \) containing \(x_\epsilon \) such that \(f(\mu) \leq \lambda \). Since \(\Lambda \) is fuzzy \(\gamma \)-converging to \(x_\epsilon \), there exists a \(\xi \in \Lambda \) such that \(\xi \leq \mu \). This means that \(f(\xi) \leq \lambda \) and therefore the fuzzy filter base \(f(\Lambda) \) is fuzzy rc-convergent to \(f(x_\epsilon) \).

Definition 3.7. [20] A space \(X \) is called fuzzy \(\gamma \)-connected if \(X \) cannot be expressed as \(X = \mu_1 \lor \mu_2 \) where

- (1) \(\mu_1, \mu_2 \) are fuzzy \(\gamma \)-open sets.
- (2) \(\mu_1, \mu_2 \neq 0_X \).
- (3) \(\mu_1 \not=q \mu_2 \).

Definition 3.8. [18] A space \(X \) is called fuzzy connected if \(X \) cannot be expressed as \(X = \mu_1 \lor \mu_2 \) where

- (1) \(\mu_1, \mu_2 \) are fuzzy open sets.
- (2) \(\mu_1, \mu_2 \neq 0_X \).
- (3) \(\mu_1 \not=q \mu_2 \).

Theorem 3.9. If \(f : X \to Y \) is a fuzzy almost contra \(\gamma \)-continuous surjection and \(X \) is fuzzy \(\gamma \)-connected, then \(Y \) is fuzzy connected.

Proof. Suppose that \(Y \) is not a fuzzy connected. Then there is a proper fuzzy clopen subset \(\eta \) in \(Y \). Therefore \(\eta \) is fuzzy regular clopen in \(Y \). Since \(f \) is fuzzy almost contra \(\gamma \)-continuous surjection, \(f^{-1}(\eta) \) is a proper fuzzy \(\gamma \)-clopen set in \(X \). Thus \(X \) is not fuzzy \(\gamma \)-connected and this is a contradiction. Hence \(Y \) is fuzzy connected.

Definition 3.10. A fuzzy space \(X \) is said to be fuzzy \(\gamma \)-normal if every pair of fuzzy closed sets \(\mu \) and \(\eta \) with \(\mu \neq 0_X, \eta \neq 0_X \) and \(\mu \not=q \eta \), can be separated by non-quasicoincident fuzzy \(\gamma \)-open sets.
Definition 3.11. [5] A fuzzy space X is said to be fuzzy strongly normal if for every pair of fuzzy closed sets μ and η with $\mu \overline{\eta}$, there exist fuzzy open sets ρ and ξ such that $\mu \leq \rho, \eta \leq \xi$ and $cl(\rho) \overline{cl(\xi)}$.

Theorem 3.12. If Y is fuzzy strongly normal and $f : X \rightarrow Y$ is fuzzy almost contra γ-continuous closed injection, then X is fuzzy γ-normal.

Proof. Let η and ρ be fuzzy closed sets of X with $\eta, \rho \neq 0_X$ and $\eta \overline{\rho}$.

Definition 3.13. [5] A space X is said to be fuzzy weakly T_2 if each element of X is an intersection of fuzzy regular closed sets.

Definition 3.14. [20] A space X is said to be fuzzy γ-T_2 if for each pair of distinct points x_ϵ and y_ν in X, there exist fuzzy γ-open sets μ and η containing x_ϵ and y_ν, respectively such that $\mu \overline{\eta}$.

Definition 3.15. [20] A space X is said to be fuzzy γ-T_1 if for each pair of distinct fuzzy singletons x_ϵ and y_ν in X, there exist fuzzy γ-open sets μ and η containing x_ϵ and y_ν, respectively, such that $y_\nu \notin \mu$ and $x_\epsilon \notin \eta$.

Theorem 3.16. If $f : X \rightarrow Y$ is a fuzzy almost contra γ-continuous injection and Y is fuzzy Urysohn, then X is fuzzy γ-T_2.

Proof. Let x_ϵ and t_γ be any two distinct fuzzy singletons in X. Since f is injective, $f(x_\epsilon) \neq f(t_\gamma)$ in Y. By assumption Y is fuzzy Urysohn and therefore there exist fuzzy open sets η and ρ in Y such that $f(x_\epsilon) \in \eta$ and $f(t_\gamma) \in \rho$ and $cl(\eta) \overline{cl(\rho)}$. Since η and ρ is fuzzy open, $cl(\eta)$ and $cl(\rho)$ are fuzzy regular closed in Y. f is fuzzy almost contra γ-continuous implies that there exists fuzzy γ-open sets μ and ξ in X containing x_ϵ and t_γ, respectively, such that $f(\mu) \leq cl(\eta)$ and $f(\xi) \leq cl(\rho)$. Since $cl(\eta) \overline{cl(\rho)}$, we have $f(\mu) \overline{f(\xi)}$ and hence $\mu \overline{\xi}$. This shows that X is fuzzy γ-T_2.

Theorem 3.17. If $f : X \rightarrow Y$ is a fuzzy almost contra γ-continuous injection and Y is fuzzy weakly T_2, then X is fuzzy γ-T_1.

Proof. Let x_ϵ and t_γ be any two distinct fuzzy points in X. Since f is injective, $f(x_\epsilon)$ and $f(t_\gamma)$ are distinct fuzzy points in Y.

Y is fuzzy weakly T_2 implies that there exist fuzzy regular closed sets η and ρ in Y such that...
\[f(x_\varepsilon) \in \eta, f(t_\gamma) \notin \eta, f(x_\varepsilon) \notin \rho \text{ and } f(t_\gamma) \in \rho. \] Since \(f \) is fuzzy almost contra \(\gamma \)-continuous, by Theorem 3.2, \(f^{-1}(\eta) \) and \(f^{-1}(\rho) \) are fuzzy \(\gamma \)-open sets in \(X \) such that \(x_\varepsilon \in f^{-1}(\eta), t_\gamma \notin f^{-1}(\eta), x_\varepsilon \notin f^{-1}(\rho) \) and \(t_\gamma \in f^{-1}(\rho) \). This shows that \(X \) is fuzzy \(\gamma \)-\(T_1 \).

Theorem 3.18. Let \((X_i, \tau_i)\) be fuzzy topological spaces \(\forall i \in I \) and \(I \) be finite. Let \(f : (X, \tau) \to (\prod_{i \in I} X_i, \sigma) \) be a fuzzy function where \((\prod_{i \in I} X_i, \sigma)\) is the product space. If \(f \) is fuzzy almost contra \(\gamma \)-continuous, then \(pr_i \) of is fuzzy almost contra \(\gamma \)-continuous where \(pr_i \) is projection function for each \(i \in I \).

Proof. Let \(\rho_i \) be a fuzzy regular closed set in \((X_i, \tau_i)\). Since \(pr_i \) is fuzzy continuous and open function, \(pr_i^{-1}(\rho_i) = X_1 \times X_2 \times \cdots \times X_i \times X_{i+1} \times X_{i+2} \times \cdots \times X_n \) where \(I = \{1, 2, \cdots, n\} \) is finite, is a fuzzy regular closed set in \((\prod_{i \in I} X_i, \sigma)\). By assumption \(f \) is fuzzy almost contra \(\gamma \)-continuous

\[f^{-1}((pr_i)^{-1}(\rho_i)) = (pr_i \circ f)^{-1}(\rho_i) \]

is fuzzy \(\gamma \)-open in \(X \). Hence \(pr_i \circ f \) is fuzzy almost contra \(\gamma \)-continuous for each \(i \in I \).

Definition 3.19. The fuzzy graph \(G(f) \) of a fuzzy function \(f : X \to Y \) is said to be fuzzy strongly contra \(\gamma \)-closed if for each \((x_\varepsilon, y_\nu) \in (X \times Y) \setminus G(f)\), there exist a fuzzy \(\gamma \)-open set \(\mu \) in \(X \) containing \(x_\varepsilon \) and a fuzzy regular closed set \(\eta \) in \(Y \) containing \(y_\nu \) such that \((\mu \times \eta) \overline{\text{cl}} G(f)\).

Lemma 3.20. The following properties are equivalent for the fuzzy graph \(G(f) \) of a fuzzy function \(f : X \to Y \):

1. \(G(f) \) is fuzzy strongly contra \(\gamma \)-closed;
2. for each \((x_\varepsilon, y_\nu) \in (X \times Y) \setminus G(f)\), there exist a fuzzy \(\gamma \)-open set \(\mu \) in \(X \) containing \(x_\varepsilon \) and a fuzzy regular closed set \(\eta \) containing \(y_\nu \) such that \(f(\mu) \overline{\text{cl}} \eta \).

Theorem 3.21. If \(f : X \to Y \) is fuzzy almost contra \(\gamma \)-continuous and \(Y \) is fuzzy Urysohn, \(G(f) \) is fuzzy strongly contra \(\gamma \)-closed in \(X \times Y \).

Proof. Suppose that \(Y \) is fuzzy Urysohn. Let \((x_\varepsilon, y_\nu) \in (X \times Y) \setminus G(f)\). It follows that \(f(x_\varepsilon) \neq y_\nu \). Since \(Y \) is fuzzy Urysohn, there exist fuzzy open sets \(\eta \) and \(\rho \) such that \(f(x_\varepsilon) \in \eta, y_\nu \in \rho \) and \(\overline{\text{cl}}(\eta) \overline{\text{cl}}(\rho) \). \(\rho \) are fuzzy open in \(Y \) implies \(\overline{\text{cl}}(\eta) \) and \(\overline{\text{cl}}(\rho) \) are fuzzy regular closed in \(Y \). Since \(f \) is fuzzy almost contra \(\gamma \)-continuous, there exists a fuzzy \(\gamma \)-open set \(\mu \) in \(X \) containing \(x_\varepsilon \) such that \(f(\mu) \leq \overline{\text{cl}}(\eta) \). Therefore, \(f(\mu) \overline{\text{cl}}(\rho) \) and thus \(G(f) \) is fuzzy strongly contra \(\gamma \)-closed in \(X \times Y \).
Theorem 3.22. Let $f : X \to Y$ have a fuzzy strongly contra γ-closed graph. If f is injective and fuzzy almost contra γ-continuous, then X is fuzzy γ-T_1.

Proof. Let x_ϵ and y_ν be any two distinct points of X. Since f is injective $f(x_\epsilon) \neq f(y_\nu)$. Then, we have $(x_\epsilon, f(y_\nu)) \in (X \times Y) \setminus G(f)$. By Lemma 3.20, there exist a fuzzy γ-open set μ in X containing x_ϵ and a fuzzy regular closed set ρ in Y containing $f(y_\nu)$ such that $f(\mu) \nsubseteq \rho$. Since f is fuzzy almost contra γ-continuous, $f^{-1}(\rho)$ is fuzzy γ-open in X such that $y_\gamma \in f^{-1}(\rho)$. As $f(\mu) \nsubseteq \rho$, we have $\mu \nsubseteq f^{-1}(\rho)$. Taking $\eta = f^{-1}(\rho)$, we have fuzzy γ-open sets μ and η in X such that $x_\epsilon \in \mu$, $y_\nu \in \eta$ respectively, whereas $x_\epsilon \notin \eta y_\nu \notin \mu$. This proves that X is γ-T_1.

4. The Relationships

In this section, the relationships between fuzzy almost contra γ-continuity and other forms of continuity are investigated.

Definition 4.1. A function $f : X \to Y$ is called fuzzy weakly almost contra γ-continuous if for each $x \in X$, and each fuzzy regular closed set η of Y containing $f(x_\epsilon)$, there exists a fuzzy γ-open set μ in X containing x_ϵ such that $\text{int}(f(\mu)) \leq \eta$.

Definition 4.2. A function $f : X \to Y$ is called fuzzy (γ, s)-open if the image of each fuzzy γ-open set is fuzzy semi-open.

Theorem 4.3. If a function $f : X \to Y$ is fuzzy weakly almost contra γ-continuous and fuzzy (γ, s)-open, then f is fuzzy almost contra γ-continuous.

Proof. Let $x_\epsilon \in X$ and η be a fuzzy regular closed set containing $f(x_\epsilon)$. Since f is fuzzy weakly almost contra γ-continuous, there exists a fuzzy γ-open set μ in X containing x_ϵ such that $\text{int}(f(\mu)) \leq \eta$. Since f is fuzzy (γ, s)-open, $f(\mu)$ is a semi-open set in Y and so $f(\mu) \leq \text{cl}(\text{int}(f(\mu))) \leq \eta$. This shows that f is fuzzy almost contra γ-continuous.

Definition 4.4. Let X and Y be fuzzy topological spaces. A fuzzy function $f : X \to Y$ is said to be

1) fuzzy almost contra precontinuous [5] if the inverse image of each fuzzy regular open set in Y is fuzzy preclosed in X,

2) fuzzy almost contra semicontinuous [5] if the inverse image of each fuzzy regular open set in Y is fuzzy semi-closed in X,
(3) fuzzy almost contra continuous [5] if the inverse image of each fuzzy regular open set in Y is fuzzy closed in X,

(4) fuzzy almost contra α-continuous if the inverse image of each fuzzy regular open set in Y is fuzzy α-closed in X,

(5) fuzzy almost contra β-continuous [5] if the inverse image of each fuzzy regular open set in Y is fuzzy β-closed in X.

Remark 4.5. We have the following diagram describing the properties of a fuzzy function $f : X \rightarrow Y$:

![Diagram]

where the numbers represent the properties noted against them.

(1) fuzzy almost contra continuous function
(2) fuzzy almost contra α-continuous function
(3) fuzzy almost contra precontinuous function
(4) fuzzy almost contra semi-continuous function
(5) fuzzy almost contra γ-continuous function
(6) fuzzy almost contra β-continuous function

None of the above implications is reversible.

Example 4.6. Fuzzy almost contra α-continuity \nrightarrow fuzzy almost contra continuity.

Let X be a nonempty set and $C_a : X \rightarrow [0,1]$ be defined as $C_a(x) = a \forall x \in X$ and $a \in [0,1]$. Then $\tau_1 = \{C_0, C_{6/10}, C_1\}$ and $\tau_2 = \{C_0, C_{3/10}, C_1\}$ are fuzzy topologies and $(X, \tau_1), (X, \tau_2)$ are fuzzy topological spaces. The identity function $f : (X, \tau_1) \rightarrow (X, \tau_2)$ is fuzzy almost contra α-continuous but not fuzzy almost contra continuous.
In \((X, \tau_2), C_{7/10}\) is the only fuzzy regular closed set other than \(C_0\) and \(C_1\). Also \(f^{-1}(C_{7/10}) = C_{7/10}\), \(f\) being the identity function. In \((X, \tau_1), C_{7/10}\) is fuzzy \(\alpha\)-open since \(C_{7/10} \subseteq C_1 = int(cl(int(C_{7/10})))\). Thus \(f\) is fuzzy almost contra \(\alpha\)-continuous.

Obviously \(C_{7/10}\) is not fuzzy open in \((X, \tau)\). Hence \(f\) is not fuzzy almost contra continuous.

Example 4.7. Fuzzy almost contra semi-continuity \(\not\Rightarrow\) fuzzy almost contra continuity.

In Example 4.6, \(C_{7/10} \in FRC(X)\) in \((X, \tau_2)\). This is the only fuzzy regular closed set other than \(C_0\) and \(C_1\). And \(f^{-1}(C_{7/10}) = C_{7/10}\) is fuzzy \(\alpha\)-open and hence fuzzy semi-open in \((X, \tau_1)\) but not fuzzy open. This proves that \(f\) is fuzzy almost contra semi-continuous but not fuzzy almost contra continuous.

Example 4.8. Fuzzy almost contra semi-continuity \(\not\Rightarrow\) fuzzy almost contra \(\alpha\)-continuity.

Let \(X\) be a nonempty set and \(C_a : X \to [0, 1]\) be defined as \(C_a(x) = a \forall x \in X\) and \(a \in [0, 1]\). Then \(\tau_1 = \{C_0, C_{2/10}, C_1\}\) and \(\tau_2 = \{C_0, C_{3/10}, C_1\}\) are fuzzy topologies. Then \(f : (X, \tau_1) \to (X, \tau_2)\), the identity function is fuzzy almost contra semi-continuous but not fuzzy almost contra \(\alpha\)-continuous.

In \((X, \tau_2)\), the only fuzzy regular closed set other than \(C_0\) and \(C_1\) is \(C_{7/10}\). And \(f^{-1}(C_{7/10}) = C_{7/10}\) in \((X, \tau_1)\), \(f\) being the identity function. \(C_{7/10} \subseteq C_{8/10} = cl(int(C_{7/10}))\). Thus \(C_{7/10}\) is fuzzy semi-open in \((X, \tau_1)\) proving that \(f\) is fuzzy almost contra semi-continuous. But \(C_{7/10} \not\subseteq C_{2/10} = int(cl(int(C_{7/10})))\) and so \(C_{7/10}\) is not fuzzy \(\alpha\)-open in \((X, \tau_1)\). This proves that \(f\) is not fuzzy almost contra \(\alpha\)-continuous.

Example 4.9. Fuzzy almost contra precontinuity \(\not\Rightarrow\) fuzzy almost contra \(\alpha\)-continuity.

Let \(X\) be a nonempty set and \(C_a : X \to [0, 1]\) be defined as \(C_a(x) = a \forall x \in X\) and \(a \in [0, 1]\). The identity function \(f : (X, \tau_1) \to (X, \tau_2)\) where \(\tau_1 = \{C_0, C_{5/10}, C_1\}\) and \(\tau_2 = \{C_0, C_{3/10}, C_1\}\) is fuzzy almost contra precontinuous but not fuzzy almost contra \(\alpha\)-continuous. In \((X, \tau_2), C_{7/10}\) is the only fuzzy regular closed set other than \(C_0\) and \(C_1\). And \(f^{-1}(C_{7/10}) = C_{7/10}C_1 \subseteq C_1int(cl(C_{7/10}))\). Thus \(C_{7/10}\) is fuzzy preopen in \((X, \tau_1)\) and this proves that \(f\) is fuzzy almost contra precontinuous. But \(C_{7/10} \not\subseteq C_{5/10} = int(cl(int(C_{7/10})))\) which proves that \(C_{7/10}\) is not fuzzy \(\alpha\)-open in \((X, \tau_1)\) and hence \(f\) is not fuzzy almost contra \(\alpha\)-continuous.

Example 4.10. fuzzy almost contra \(\gamma\)-continuity \(\not\Rightarrow\) fuzzy almost contra precontinuity.

In Example 4.8, the only fuzzy regular closed set in \((X, \tau_2)\) is \(C_{7/10}\), other
than C_0 and C_1. Also, f being the identity $f^{-1}(C_{7/10}) = C_{7/10}$ in $(X, \tau_1).C_{7/10}$ is fuzzy semiopen in (X, τ_1) and hence fuzzy γ-open in (X, τ_1). Thus f is fuzzy almost contra γ-continuous. But $C_{7/10} \not\leq \text{int}(\text{cl}(C_{7/10}))$ which means that $C_{7/10}$ is not fuzzy preopen in (X, τ_1). This proves that f is not fuzzy almost contra precontinuous.

Example 4.11. Fuzzy almost contra γ-continuity \Rightarrow fuzzy almost contra semi-continuity.

In Example 4.9, $C_{7/10}$ is the only fuzzy regular closed set in (X, τ_2) other than C_0 and C_1. Also, f being the identity function $f^{-1}(C_{7/10}) = C_{7/10}$ in $(X, \tau_1).C_{7/10}$ is fuzzy preopen in (X, τ_1) and hence fuzzy γ-open in (X, τ_1). This proves that f is fuzzy almost contra γ-continuous.

But $C_{7/10} \not\leq C_{5/10} = \text{int}(\text{cl}(C_{7/10}))$ which means that $C_{7/10}$ is not fuzzy semi-open.

Hence f is not contra fuzzy semi-continuity.

Example 4.12. In Example 4.8, $C_{7/10}$ is the only fuzzy regular closed set in (X, τ_2). Also f being the identity function $f^{-1}(C_{7/10}) = C_{7/10}$ in $(X, \tau_1).C_{7/10} \leq C_{8/10} = \text{cl}(\text{int}(\text{cl}(C_{7/10})))$ and hence $C_{7/10}$ is fuzzy β-open in (X, τ_1). This proves that f is fuzzy almost contra β-continuous.

But $C_{7/10} \not\leq C_{2/10} = \text{int}(\text{cl}(C_{7/10}))$ which means that $C_{7/10}$ is not fuzzy preopen. Hence f is not fuzzy almost precontinuous.

Definition 4.13. [5] A fuzzy space is said to be fuzzy P_Σ if for any fuzzy open set μ of X and each $x_\epsilon \in \mu$, there exists fuzzy regular closed set ρ containing x_ϵ such that $x_\epsilon \in \rho \leq \mu$.

Definition 4.14. [9] A fuzzy function $f : X \to Y$ is said to be fuzzy γ-continuous if $f^{-1}(\mu) = \text{fuzzy } \gamma$-open in X for every fuzzy open set μ in Y.

Theorem 4.15. Let $f : X \to Y$ be a fuzzy function. Then, if f is fuzzy almost contra γ-continuous and Y is fuzzy P_Σ, then f is fuzzy γ-continuous.

Proof. Let μ be any fuzzy open set in Y. Since Y is fuzzy P_Σ, there exists a family ψ whose members are fuzzy regular closed sets of Y such that $\mu = \bigvee\{\rho : \rho \in \psi\}$. Since f is fuzzy almost contra γ-continuous, $f^{-1}(\rho)$ is fuzzy γ-open in X for each $\rho \in \psi$ and $f^{-1}(\mu)$ is fuzzy γ-open in X. Therefore, f is fuzzy almost contra γ-continuous.

Definition 4.16. [5] A space is said to be fuzzy weakly P_Σ if for any fuzzy regular open set μ and each $x_\epsilon \in \mu$, there exists a fuzzy regular closed set ρ containing x_ϵ such that $x_\epsilon \in \rho \leq \mu$.

Definition 4.17. A fuzzy function $f : X \to Y$ is said to be fuzzy almost
\(\gamma \)-continuous at \(x_\epsilon \in X \) if for each fuzzy open set \(\eta \) containing \(f(x_\epsilon) \), there exists a fuzzy \(\gamma \)-open set \(\mu \) containing \(x_\epsilon \) such that \(f(\mu) \leq \text{int}(\text{cl}(\eta)) \).

Theorem 4.18. Let \(f : X \to Y \) be a fuzzy almost contra \(\gamma \)-continuous function. If \(Y \) is fuzzy weakly \(P_\Sigma \), then \(f \) is fuzzy almost \(\gamma \)-continuous.

Proof. Let \(\mu \) be any fuzzy regular open set of \(Y \). Since \(Y \) is fuzzy weakly \(P_\Sigma \), there exists a family \(\psi \) whose members are fuzzy regular closed sets of \(Y \) such that \(\mu \vee \{ \rho : \rho \in \psi \} \). Since \(f \) is fuzzy almost contra \(\gamma \)-continuous, \(f^{-1}(\rho) \) is fuzzy \(\gamma \)-open in \(X \) for each \(\rho \in \psi \) and \(f^{-1}(\mu) \) is fuzzy \(\gamma \)-open in \(X \). Hence, \(f \) is fuzzy almost \(\gamma \)-continuous.

Definition 4.19. [9] A fuzzy function \(f : X \to Y \) is called fuzzy \(\gamma \)-irresolute if the inverse image of each fuzzy \(\gamma \)-open set is fuzzy \(\gamma \)-open.

Theorem 4.20. Let \(X, Y, Z \) be fuzzy topological spaces and let \(f : X \to Y \) and \(g : Y \to Z \) be fuzzy functions. If \(f \) is fuzzy \(\gamma \)-irresolute and \(g \) is fuzzy almost contra \(\gamma \)-continuous, then \(g \circ f : X \to Z \) is a fuzzy almost contra \(\gamma \)-continuous function.

Proof. Let \(\mu \leq Z \) be any fuzzy regular closed set. Since \(g \) is fuzzy almost contra \(\gamma \)-continuous, \(g^{-1}(\mu) \) is fuzzy \(\gamma \)-open in \(Y \). But \(f \) is fuzzy \(\gamma \)-irresolute \(\Rightarrow f^{-1}(g^{-1}(\mu)) \) is fuzzy \(\gamma \)-open in \(X \). Thus \((g \circ f)^{-1}(\mu) = f^{-1}(g^{-1}(\mu)) \) is fuzzy \(\gamma \)-open in \(X \) and this proves that \(g \circ f \) is a fuzzy almost contra \(\gamma \)-continuous function.

Definition 4.21. A fuzzy function \(f : X \to Y \) is called always fuzzy \(\gamma \)-open [20] if the image of each fuzzy \(\gamma \)-open set is fuzzy \(\gamma \)-open.

Theorem 4.22. If \(f : X \to Y \) is a surjective always fuzzy \(\gamma \)-open function and \(g : Y \to Z \) is a fuzzy function such that \(g \circ f : X \to Z \) is fuzzy almost contra \(\gamma \)-continuous, then \(g \) is fuzzy almost contra \(\gamma \)-continuous.

Proof. Let \(\mu \leq Z \) be any fuzzy regular closed set. Since \(g \circ f \) is fuzzy almost contra \(\gamma \)-continuous, \((g \circ f)^{-1}(\mu) \) is fuzzy \(\gamma \)-open in \(X \). Therefore \(f^{-1}(g^{-1}(\mu)) = (g \circ f)^{-1}(\mu) \) is fuzzy \(\gamma \)-open in \(X \). \(f \) is always fuzzy \(\gamma \)-open surjection implies \(f(f^{-1}(g^{-1}(\mu))) = g^{-1}(\mu) \) is fuzzy \(\gamma \)-open in \(Y \). Thus \(g \) is fuzzy almost contra \(\gamma \)-continuous.

Corollary 4.23. Let \(f : X \to Y \) be a surjective fuzzy \(\gamma \)-irresolute and always fuzzy \(\gamma \)-open function and let \(g : Y \to Z \) be a fuzzy function. Then, \(g \circ f : X \to Z \) is fuzzy almost contra \(\gamma \)-continuous if and only if \(g \) is fuzzy almost contra \(\gamma \)-continuous.

Proof. It can be obtained from Theorem 4.20 and Theorem 4.22.
Definition 4.24. A space X is said to be fuzzy γ-compact [20] (fuzzy S-closed [3]) if every fuzzy γ-open (respectively fuzzy regular closed) cover of X has a finite subcover.

Theorem 4.25. The fuzzy almost contra γ-continuous image of a fuzzy γ-compact space is fuzzy S-closed.

Proof. Suppose that $f : X \to Y$ is a fuzzy almost contra γ-continuous surjection. Let $\{\eta_i : i \in I\}$ be any fuzzy regular closed cover of Y. Since f is fuzzy almost contra γ-continuous, $\{f^{-1}(\eta_i) : i \in I\}$ is a fuzzy γ-open cover of X and X being fuzzy γ-compact, there exists a finite subset I_o of I such that $X = \vee\{f^{-1}(\eta_i) : i \in I_o\}$. Since f is surjective, we have $Y = \vee\{\eta_i : i \in I_o\}$ and thus Y is fuzzy S-closed.

Definition 4.26. A space X is said to be

1) fuzzy γ-closed-compact [20] if every fuzzy γ-closed cover of X has a finite subcover,

2) fuzzy nearly compact [7] if every fuzzy regular open cover of X has a finite subcover.

Theorem 4.27. The fuzzy almost contra γ-continuous image of a fuzzy γ-closed-compact space is fuzzy nearly compact.

Proof. Suppose that $f : X \to Y$ is a fuzzy almost contra γ-continuous surjection. Let $\{\eta_i : i \in I\}$ be any fuzzy regular open cover of Y. Since f is fuzzy almost contra γ-continuous, $\{f^{-1}(\eta_i) : i \in I\}$ is a fuzzy γ-closed cover of X. Since X is fuzzy γ-closed-compact, there exists a finite subset I_o of I such that $X = \vee\{f^{-1}(\eta_i) : i \in I_o\}$. Thus, we have $Y = \vee\{\eta_i : i \in I_o\}$ and Y is fuzzy nearly compact.

Definition 4.28. Let $f : (X, \tau) \to (Y, \sigma)$ be a function. Then f is said to be

1) fuzzy semi-open [22] if the image of every fuzzy open set of X is fuzzy semiopen in Y.

2) fuzzy α-open [19] if the image of every fuzzy open set of X is fuzzy α-open in Y.

3) fuzzy preopen [22] if the image of every fuzzy open set of X is fuzzy preopen in Y.

4) fuzzy γ-open [9] if the image of every fuzzy open set of X is fuzzy γ-open in Y.
(5) fuzzy \((LC, s)\) if the image of every fuzzy open set of \(X\) is fuzzy \(LC\) set in \(Y\).

Theorem 4.29. For a fuzzy function \(f : X \to Y\), where \(Y\) is a fuzzy extremally disconnected space, the following properties are equivalent.

1. \(f\) is fuzzy open.
2. \(f\) is fuzzy \(\alpha\)-open and a fuzzy \((LC, s)\).
3. \(f\) is fuzzy preopen and a fuzzy \((LC, s)\).
4. \(f\) is fuzzy semi-open and a fuzzy \((LC, s)\).
5. \(f\) is fuzzy \(\gamma\)-open and a fuzzy \((LC, s)\).

Definition 4.30. Let \(f : X \to Y\) be a fuzzy function. Then \(f\) is said to be

1. fuzzy almost continuous [1] if the inverse image of every fuzzy regular open set of \(Y\) is fuzzy open in \(X\).
2. fuzzy almost \(\alpha\)-continuous [15] if the inverse image of every fuzzy regular open set of \(Y\) is fuzzy \(\alpha\)-open in \(X\).
3. fuzzy almost semicontinuous [13] if the inverse image of every fuzzy regular open set of \(Y\) is fuzzy semi-open in \(X\).
4. fuzzy almost precontinuous [21] if the inverse image of every fuzzy regular open set of \(Y\) is fuzzy preopen in \(X\).
5. fuzzy almost \(\gamma\)-continuous if the inverse image of every fuzzy regular open set of \(Y\) is fuzzy \(\gamma\)-open in \(X\).
6. fuzzy almost \((LC, s)\)-continuous if the inverse image of every fuzzy regular open set of \(Y\) is a fuzzy \(LC\) set in \(X\).

Theorem 4.31. For a fuzzy function \(f : X \to Y\), where \(X\) is a fuzzy extremally disconnected space, the following properties are equivalent.

1. \(f\) is a fuzzy almost continuous.
2. \(f\) is fuzzy almost \(\alpha\)-continuous and a fuzzy \((LC, s)\)-continuous.
3. \(f\) is fuzzy almost precontinuous and a fuzzy \((LC, s)\)-continuous.
(4) \(f \) is fuzzy almost semicontinuous and a fuzzy \((LC, s)\)-continuous.

(5) \(f \) is fuzzy almost \(\gamma\)-continuous and a fuzzy \((LC, s)\)-continuous.

Definition 4.32. Let \(f : X \to Y \) be a fuzzy function. Then \(f \) is said to be fuzzy almost contra \((LC, s)\)-continuous if the inverse image of every fuzzy regular closed set of \(Y \) is fuzzy \(LC \) set in \(X \).

Theorem 4.33. For a fuzzy function \(f : X \to Y \), where \(X \) is a fuzzy extremally disconnected space, the following properties are equivalent.

(1) \(f \) is fuzzy almost contra continuous.

(2) \(f \) is fuzzy almost contra \(\alpha\)-continuous and fuzzy contra \((LC, s)\)-continuous.

(3) \(f \) is fuzzy almost contra precontinuous and fuzzy contra \((LC, s)\)-continuous.

(4) \(f \) is fuzzy almost contra semicontinuous and fuzzy contra \((LC, s)\)-continuous.

(5) \(f \) is fuzzy almost contra \(\gamma\)-continuous and fuzzy contra \((LC, s)\)-continuous.

References

