MATCHING AND EDGE COVERING NUMBER ON LEXICOGRAPHICAL PRODUCT OF COMPLETE GRAPHS

Thanin Sitthiwirattham
Department of Mathematics
Faculty of Applied Science
King Mongkut’s University of Technology North Bangkok
Bangkok, 10800, THAILAND

Abstract: Let $\alpha'(G)$ and $\beta'(G)$ be the matching and edge covering number, respectively. The lexicographical product $G_1 \bullet G_2$ of graph of G_1 and G_2 has vertex set $V(G_1 \bullet G_2) = V(G_1) \times V(G_2)$ and edge set $E(G_1 \bullet G_2) = \{(u_1v_1)(u_2v_2)|[u_1u_2 \in E(G_1)] \cup [u_1 = u_2 \text{ and } v_1v_2 \in E(G_2)]\}$. In this paper, we determined generalization of matching and edge covering number on lexicographical product of complete graphs and any simple graph.

AMS Subject Classification: 05C69, 05C70, 05C76
Key Words: lexicographical product, matching number, edge covering number

1. Introduction

In this paper, graphs must be simple graphs which can be the trivial graph. Let G_1 and G_2 be graphs. The lexicographical product of graph G_1 and G_2, denote by $G_1 \bullet G_2$, is the graph with $V(G_1 \bullet G_2) = V(G_1) \times V(G_2)$ and $E(G_1 \bullet G_2) = \{(u_1v_1)(u_2v_2)|[u_1u_2 \in E(G_1)] \cup [u_1 = u_2 \text{ and } v_1v_2 \in E(G_2)]\}$. There are some properties about lexicographical product of graph. We recall these here.

Proposition 1. Let $H = G_1 \bullet G_2 = (V(H), E(H))$ then:

Received: February 9, 2013 © 2013 Academic Publications, Ltd.
url: www.acadpubl.eu
(i) $|V(H)| = |V(G_1)||V(G_2)|;$
(ii) $|E(H)| = |V(G_1)||V(G_2)|^2 + |V(G_1)||E(G_2)|;$
(iii) for every $(u, v) \in V(H), d_H((u, v)) = 2|V(G_2)| + d_{G_2}(v)$.

Theorem 2. Let G_1 and G_2 be connected graphs, The graph $H = G_1 \cdot G_2$ is connected if and only if G_1 is connected.

Next we get that general form of graph of lexicographical product of K_n and a simple graph.

Proposition 3. Let G be connected graph order m, the graph of $K_n \cdot G$ is

$$[(\bigcup_{i=1}^{n-1} H_i) \cup \bigcup_{i=1}^n R_i; \quad H_i = \bigcup_{j=i+1}^n H_{ij}$$

where $V(H_i) = W_i \cup W_j; \quad W_i = \{(i, 1), ..., (i, m)\}; \quad E(H_{ij}) = \{(i, v)(j, v)/v \in V(G)\}$ and $V(R_i) = W_i; E(R_i) = \{(i, u)(i, v)/uv \in E(G)\}$ Moreover, H_{ij} isomorphic to complete bipartite graph $K_{|V(G)|, |V(G)|}$ and R_i isomorphic to G.

Example

![Figure 1: The graph of $K_4 \cdot G$](image)

Next, we give the definitions about some graph parameters. A subset of the edge set E of G is said to be matching or an independent edge set of G, if no two distinct edges in M have a common vertex. A matching M is maximum matching in G if there is no matching M' of G with $|M'| > |M|$. The cardinality of maximum matching of G is called the matching number of G, denoted by $\alpha'(G)$.
An edge of graph \(G \) is said to cover the two vertices incident with it, and an edge cover of a graph \(G \) is a set of edges covering all the vertices of \(G \). The minimum cardinality of an edge cover of a graph \(G \) is called the edge covering number of \(G \), denoted by \(\beta'(G) \).

By definitions of edge covering number and matching number, clearly that \(\alpha'(K_n) = \left\lfloor \frac{n}{2} \right\rfloor \) and \(\beta'(K_n) = \left\lceil \frac{n}{2} \right\rceil \).

2. Matching Number of the Graph of \(K_n \otimes G \)

We begin this section by giving the definition and theorem for alternating path and augmenting path, the lemma 6 that shows character of matching for each \(H_{ij} \) and \(R_i \).

Definition 4. Given a matching \(M \), an \(M \)-alternating path is a path that alternates between edges in \(M \) and edges not in \(M \). An \(M \)-alternating odd path whose endpoints are unsaturated by \(M \) is an \(M \)-augmenting path.

Theorem 5. A matching \(M \) in a graph \(G \) is a maximum matching in \(G \) if and only if \(G \) has no \(M \)-augmenting path.

Next, we give the lemma 6 which shows character of matching for each \(H_{ij} \) and \(R_i \).

Lemma 6. Let \(K_n \otimes G = [(\bigcup_{i=1}^{n-1} H_i)] \cup \bigcup_{i=1}^{n} R_i; \quad H_i = \bigcup_{j=i+1}^{n} H_{ij}. \) Then \(\alpha'(H_{ij}) = |V(G)| \) and \(\alpha'(R_i) = \alpha'(G). \)

Proof. By proposition 3, we get \(H_{ij} \cong K_{|V(G)|,|V(G)|}, \; R_i \cong G. \) Hence \(\alpha'(H_{ij}) = |V(G)| \) and \(\alpha'(R_i) = \alpha'(G). \) \(\square \)

Next, we establish theorem 7 for a matching number of \(K_n \otimes G \)

Theorem 7. Let \(G \) be connected graph order \(m \), then

\[
\alpha'(K_n \bullet G) = \begin{cases}
\left\{ \frac{mn}{2} \right\}, & n \text{ is even} \\
\left\{ \frac{mn}{2} + \alpha'(G) \right\}, & n \text{ is odd}
\end{cases}
\]

Proof. Let \(V(K_n) = \{u_i, i = 1, 2, ..., n\}, \; V(G) = \{v_j, j = 1, 2, ..., m\}, \; W_i = \{(u_i, v_j) \in V(K_n \bullet G)/j = 1, 2, ..., m\}, \; i = 1, 2, ..., n. \) By lemma 6, we have \(\alpha'(H_{ij}) = |V(G)|. \) Since \(K_n \bullet G \) is \(\bigcup_{i=1}^{n-1} H_i \cup \bigcup_{i=1}^{n} R_i \) which have matching in \(H_k \)
be \{ (u_k, v_j), (u_{k+1}, v_j) / j = 1, 2, ..., m \}; k = 1, 3, ..., 2 \left\lfloor \frac{n}{2} \right\rfloor - 1 where n is even. In the case n is odd, we get matching in \(H_k \) and \(R_n \). Hence

\[
\alpha'(K_n \bullet G) \geq \begin{cases}
\left\lfloor \frac{mn}{2} \right\rfloor & \text{n is even} \\
\left\lfloor \frac{mn}{2} \right\rfloor + \alpha'(G) & \text{n is odd}
\end{cases}
\]

Figure 2: The matching when \(n \) is odd, \(m \) is even

In the case \(n \) is even, if \(\alpha'(K_n \bullet G) > \frac{mn}{2} \). It is impossible because every vertices of \(K_n \bullet G \) are matching out already.

In the case \(n \) is odd, we let \(M \) is maximum matching of \(G \). If \(\alpha'(K_n \bullet G) > \frac{mn}{2} + \alpha'(G) \), then there exist a matching \(M \) is augmenting path. That is not true because each vertices in \(K_n \bullet G \) always incident with edges in \(M \) and another edges which are not in \(M \).

Hence

\[
\alpha'(K_n \bullet G) = \begin{cases}
\left\lfloor \frac{mn}{2} \right\rfloor & \text{n is even} \\
\left\lfloor \frac{mn}{2} \right\rfloor + \alpha'(G) & \text{n is odd}
\end{cases}
\]

3. Edge Covering Number of the Graph of \(K_n \otimes G \)

We begin this section by giving the lemma 8 that shows a relation of matching number and edge covering number and the lemma 9 that show character of edge cover number for each \(H_i \).
Lemma 8. Let G be a simple graph with order n. Then $\alpha'(G) + \beta'(G) = n$

Next we establish theorem 9 for an edge covering number of $K_n \bullet G$.

Theorem 9. Let G be connected graph of order m, then

$$\alpha'(K_n \bullet G) = \begin{cases} \{\frac{mn}{2}\}, & n \text{ is even} \\ \{\beta'(G) - \frac{mn}{2}\}, & n \text{ is odd} \end{cases}$$

Proof. By theorem 7 and lemma 8, we can also show that

$$\alpha'(K_n \bullet G) + \beta'(K_n \bullet G) = mn$$

$$\frac{mn}{2} + \beta'(K_n \bullet G) = mn$$

$$\beta'(K_n \bullet G) = \frac{mn}{2}, \ n \text{ is even}.$$

and,

$$\alpha'(K_n \bullet G) + \beta'(K_n \bullet G) = mn$$

$$[\frac{mn}{2} + \alpha'(G)] + \beta'(K_n \bullet G) = mn$$

$$\beta'(K_n \bullet G) = mn - \frac{mn}{2} - \alpha'(G)$$

$$\quad = \beta'(G) - \frac{mn}{2}, \ n \text{ is odd}.$$

Hence

$$\alpha'(K_n \bullet G) = \begin{cases} \{\frac{mn}{2}\}, & n \text{ is even} \\ \{\beta'(G) - \frac{mn}{2}\}, & n \text{ is odd} \end{cases}$$

\[\square\]

References

