
International Journal of Pure and Applied Mathematics

Volume 85 No. 4 2013, 781-811

ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version)
url: http://www.ijpam.eu
doi: http://dx.doi.org/10.12732/ijpam.v85i4.14

PA
ijpam.eu

COMPUTER GRAPHICS AND

GEOMETRIC MODELLING – A HYBRID APPROACH

Alexander Penev

Faculty of Mathematics and Informatics
Plovdiv University “Paisii Hilendarski”

236, Bulgaria Blvd., Plovdiv 4003, BULGARIA

Abstract: The present paper describes an approach to geometric modelling,
in which the representation of solids is hybrid and consists of an easily expand-
able collection of representations. We also consider an experimental prototype
of a framework for the development of systems for geometric modelling based
on open hybrid representation schemes. We present a method for creating
software-hardware (hybrid) systems based on this approach.
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1. Introduction

The need for automation of the design work led to the emergence and de-
velopment of a research area that aims to provide the necessary knowledge
on hardware and mathematical provision in system analysis and engineering
methodology for the specification, design, implementation, deployment and use
of computer systems for design purposes. This led to the development of the
so-called CAD [1] systems (and later to CAM [1], [6] and CAE [4] systems).
The problems in the development were mainly due to the lack of complete in-
formation models of three-dimensional objects. Research investigations of these
problems form and develop the scientific field geometric modelling – a central
part of computer graphics [5].
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1.1. Computer Graphics and Geometric

Modelling

One of the main tasks of Computer Graphics (CG) is the construction of mod-
els of scenes from the physical world and their visualization as images. This
task is fundamental in the so-called geometric modelling. Geometric modelling
includes theories, methods and systems aimed at creating complete information
representations of three-dimensional real objects, which allow as to automati-
cally calculate any well-defined geometric property of the objects they describe
[5], [16].

1.2. Problems and Goals

In order to work with the models in the computer systems, they should be stored
in the computer memory, which allows processing, converting, and ultimately
displaying them. One problem is the choice of the representation scheme. There
are many known and well studied in theory and practice representation schemes
(B-Rep, CSG, F-Rep, etc.), as well as various visualization algorithms providing
different speed and quality of their results.

The different purposes lead to the choice of different representation schemes
(representations of solids) because each of them has its advantages and disad-
vantages – for example, one scheme may be faster when implementing some
algorithms and slower in others. Experience shows that the advantages of dif-
ferent representation schemes are likely to complement each other in the so-
called hybrid representation schemes. Today, almost all modern systems for
graphic/geometric modelling use hybrid representation schemes, but in them
the set of selected schemes is fixed, they are homogenized “by hand” and their
processing algorithms are created in accordance with the specific combination
of schemes, and usually one of them dominates the others.

The main objective/goal of this work is to explore the possibility and to
propose a concept for building an open hybrid system for geometric modelling
based on an open hybrid (non-homogenized) representation scheme, and to de-
velop a prototype framework for creating such a system. Of course, such a
framework should be open regarding the used representation schemes, because
this would lead to greater applicability, flexibility and compatibility with the
widespread schemes already in use, as well as to an easy adaptation and pos-
sible expansion by new representation schemes. Other areas of openness and
hybridness besides the representations are: programming languages, operating
systems, computer systems, software-hardware implementation of the process-
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ing algorithms or the use of modern graphics hardware, etc.

In order to achieve the main goal the following tasks were planned: Creating
a concept for an open hybrid system for geometric modelling based on an open
hybrid representation scheme; Selecting a framework architecture to support
the development of such systems; Designing and implementing a prototype
of such a framework (called OpenF) and applying it to practically create an
example of an open hybrid system for geometric modelling based on an open
hybrid (non-homogenized) representation scheme. This example will constitute
a constructive proof of the goal in view.

1.3. Related Works

For the first time the concept of a hybrid representation scheme is found in
[16]. Almost all modern systems use two, three or more homogenized represen-
tation schemes. They are hardly a subject to change and expansion with other
representation schemes.

There are hundreds of systems based on the hybrid approach. We will
examine some of them based on the following criteria: to maintain and work
with more than one representation, to be modern representatives of widely-
used (and different) sub-classes of geometric modelling systems or to realize
important algorithms, to have mechanisms to expand the capabilities of the
system, to use some form of specialized graphics hardware, etc.

One example of a similar existing system is HyperFun [3], but it has different
goals, architecture, and is, to a great extent, (only) F-Rep centric. HyperFun
has a scene description language (SDL), a modelling framework and visualiza-
tion algorithms. It relies heavily on the relatively easy homogenization of some
representation schemes and their inclusion as elements of the F-Rep.

Another system is POV-Ray [15] – a Ray tracer with its own scene descrip-
tion language (SDL). In this system different types of representation schemes
can be used relatively freely. A set of primitives is used that is converted to the
internal representation, which uses mathematical definitions of objects (spheres,
planes, cylinders, etc.). The main emphasis is on the visualization of the scenes
described by the algorithm Ray tracing.

Autodesk Maya [13] – a widely used commercial system for geometric mod-
elling. It supports parametrized B-Rep/CSG models (through a constructive
tree and a dependency graph) with possibilities to use other representations
(hybrid, homogenized). Autodesk Maya has a powerful mechanism for extend-
ing the functionality. It visualizes through polygonal meshes and Ray tracing.
It makes maximum use of modern graphics hardware.
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N

Representation schemes Hybridness

B F C V P S P O
Application/ R R S o a w a t
Framework e e G x r e r h Reps Hardware

p p e a e t e
l m p r

1 HyperFun∗∗∗ − + + + ∼ + − ∼ + ∼

2 POV-Ray∗∗∗ + + + − + + ∼ + + −

3 Autodesk Maya∗∗ + − + − + + + ∼ + +
4 Blender∗∗ + − ∼ − − + + + + +
5 OpenSceneGraph∗ + − + ∼ − − + ∼ + ∼

6 OpenF∗ + + # + # # # # open open

Table 1: Comparison of the systems in terms of the supported repre-
sentations and hybridity

Blender [2] – a widely known open source noncommercial system for geo-
metric modelling. It supports B-Rep/CSG models with options for the use of
other representations (hybrid, homogenized). Blender has a powerful mecha-
nism for extending functionality. It visualizes by means of polygonal meshes
and Ray tracing. It uses modern graphics hardware.

OpenSceneGraph [22] – a framework for building systems based on a scene
graph. It mainly supports B-Rep. It has a mechanism for extending func-
tionality, and a mechanism for adding new types of nodes (NodeKits) in the
constructive tree of the scene (using homogenization). OpenSceneGraph uses
the modern graphics hardware (mainly OpenGL) for visualization.

OpenF – a prototype of an experimental framework for creating open hybrid
systems for geometric modelling based on open hybrid representation schemes.
It is one of the main tools for achieving the goals of this work (see section 3).

Analysis and comparison of the capabilities of the systems examined (com-
pared with those of OpenF) are given in Table 1. Here we use the following
symbols: “*” stands for the systems that are frameworks, “**” is used for ap-
plications, “***” denotes the systems having SDL and implementing mainly
visualization of objects described with SDL, “+” / ”-” means that the cor-
responding system supports/does not support the given representation, “˜”
stands for partial support, “#” indicates that support can be readily added,
but is not implemented in the prototype.

From the analysis presented in Table 1 we can conclude that hybridity in
modern systems for geometric modelling is not a novelty, but most of them are
based on the B-Rep (and CSG), the other representations being complementary.
In the cases when more of the known representation schemes are used, usually
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the main goal is just to visualize (HyperFun, POV-Ray). Typically, having
mechanisms for extending the systems (plugins, etc.) for seamless support
of more representation schemes, the approach of homogenization of the new
schemes in some basic ones (e.g. in B-Rep or F-Rep) is applied. It is still not
common to use the specialized graphical hardware in a hybrid way, i.e. one
rarely sees smooth interchangeable use of graphics and other hardware.

2. Geometric Modelling

One of the most frequently used representation schemes in geometric modelling
is Boundary Representation (B-Rep). For this scheme a lot of algorithms are
developed that mainly use its special features and advantages. There are many
programme systems and libraries that are based on this method for describing
geometric information (CAD/CAM, research systems, games, etc.). Hardware
was developed in order to speed up visualization.

Research on a new representation scheme, called Function Representation
(F-Rep) [14], started to develop intensively during the last 15 years. It is based
on the description of the objects included in the scene with the help of explicit
functions, R-functions, etc. Theoretically it is not a new idea and could be
found in V. Rvachev’s work in the 1960s [18], [19]. This scheme allows easy
integration with the elements of other well-known representation schemes such
as CSG, B-Rep, Sweeping, etc. The most important reason for limiting F-Rep’s
usage until now is the necessity of performing a large number of calculations
that are required to obtain accurate algorithm results. An example of this
are the visualization algorithms. Nevertheless, the advantages of the scheme
outnumber its disadvantages, and with the fast growth in computing power the
last mentioned drawback becomes less important.
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Figure 1: Two-stage approach to geometric modelling
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Working with real bodies (three-dimensional solids) in geometric modelling
is usually performed in a two-stage process (see Figure 1). First, the bodies
are modelled in a mathematical space by mathematical objects (sets of points).
Second, these mathematical objects are described by the information models
(language structures or representations). The first stage is called a modelling
method and the second stage is called a representation method or a represen-
tation scheme [16], [5].

2.1. Geometric Information

From the viewpoint of geometric modelling we are interested only in the general
properties of the set of (three-dimensional) solids. This set is called geometric
information, i.e. this term refers to a representation scheme used in geometric
modelling [5].

Definition 1. Geometric information is called a set of attribute classes,
which is perceived by one as a (rigid) solid. We denote it by the ordered triplet:
G = ({s}, {m}, {p}), where {s} is the set of spatial forms, {m} is the set of
metric characteristics, and {p} is the set of parameters giving the location and
orientation.

Geometric information is formed from the sets of attribute classes {s}, {m}
and {p}. They can describe any (rigid) solid. But what exactly will be included
in these sets and the relationships among them depend on the particular rep-
resentation scheme. To use the appropriate attributes, geometric information
must be somehow modelled in the computer system, and the ways to do that
are the so-called representations, i.e. one must have an information model.

Each geometric information G induces in the mathematical space (for ex-
ample in E3) an abstract object (set of points) or a family of abstract objects
defined by the numerical characteristics of {m} and {p}, as well as the form {s}.
Obviously, two different pieces of geometric information G1 and G2 (or as we
will understand from now on – their concrete representations) may describe the
same sets of points. Hence the problem of comparing G1 and G2 arises. Two
of the main tasks of geometric modelling are finding and generating equivalent
and identical pieces of geometric information. [5]

For computer graphics and its applications the concept of geometric infor-
mation is essential. It is the geometric information that is stored as data in
the computer by using representation schemes (one or more). Since computers
process data, the main subject to processing are the concrete representations of
any specific geometric information. There does not exist a universal represen-
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tation and this is due to the various modelling purposes. The characteristics to
be described (i.e. the ones that are important to achieve the objectives), the
way they are processed, the expected results after processing and many others
are influenced by the choice of a representation. Some of the conditions that
frequently contradict each other are: performance of the algorithms (visualiza-
tion, etc.); memory size; flexibility and ease of editing scenes described by the
appropriate representation, etc.

2.2. Representation Schemes. Representations

Consider the second stage of the two-stage process in geometric modelling in
Figure 1.

Definition 2. A representation of an abstract object is called the syn-
tactically correct symbolic structure, built by the characters of some alphabet
according to some rules.

This looks like a language generated by some grammar, and representations
are strings. But the representations are not limited to strings [16].

The set of syntactically correct representations is called a representation
space, and it is indicated by R on the scheme.

A question arises about the meaning of the representations, i.e. their se-
mantics. In geometric modelling, this means whether a real three-dimensional
object (solid) corresponds to a particular representation. If we consider the sets
in the mathematical space, which correspond to the three-dimensional solids
(e.g. the R-sets), then the issue of semantics can be resolved by introducing
rules that link any R-set with a corresponding representation in the space of
representations R. This collection of rules is called a representation method or
a representation scheme.

Definition 3. A representation scheme is called every mapping S : M →
R, where M is a mathematical space, and R is the space of representations.

The domain of S will be denoted by D ⊆ M , and the range of values
by V ⊆ R. Obviously there exist many representation schemes with different
properties. In practice, different representation schemes are used for different
purposes. Some of the most common features of the representation schemes
are: power, reality of the representations; unambiguity; conciseness; uniqueness;
ease of creation; effectiveness of the applications, and others.

The following important question arises in case we have more than one
representation scheme. Can we convert (and how) the representations from
one of them into representations from the other, and vice versa? Under what
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conditions?

2.3. Boundary Representation Schemes

One of the most common representation schemes in geometric modelling and
computer graphics is the boundary representation scheme (B-Rep). It is simple
and clear, and the main algorithms for creating and visualizing are well known.
Another major advantage of B-Rep is the existence of specialized graphics hard-
ware (graphics accelerators) that implements a quick preview of the B-Rep
based models (scenes).

2.3.1. Basic Concepts of B-Rep

The main idea of B-Rep [5], [16], [7] is to describe only the boundary of the
solids as this is usually sufficient to perform the visualization. The boundary
of the solid is represented as a finite number of bounded subsets called faces,
patches or shells. An analogous representation is valid for the faces, and so on.
Usually, the faces are triangles (rectangles, polygons or other NURBS surfaces),
which are defined by their sides (edges), which in turn are defined by their end
points (vertices) plus combinatorial structures describing the affiliation of the
tops of the edges and the edges of the faces.

2.3.2. Visualization

B-Rep allows for a quick (and of relatively good quality/realistic) visualization
of the two types of algorithms – of the object space and the observer. The
algorithm Z-buffer [7] is often used for fast visualization of the scene, and when
it is applied the invisible parts of the solids are removed. The existence of a
hardware implementation of this algorithm in most of the modern computer
systems (in the graphics accelerators) makes it a very good candidate not only
for a quick visualization but also for one of good quality.

For more realistic (and usually slower) visualization the algorithm Ray trac-
ing [7], [5] is usually applied, as in order to implement the algorithm it is suffi-
cient to create an additional algorithm for finding the intersection of a ray with
the solids, i.e. their faces. The large number of faces that describe the solids
is problematic for the performance of this algorithm, so methods (acceleration
structures) for quick elimination of most faces must be used: bounding spheres,
bounding boxes (AABB), kD-trees, BHV-trees and more.



COMPUTER GRAPHICS AND... 789

2.4. Functional Representation Schemes

Functional representation schemes (F-Rep) are schemes that are used for de-
scribing geometric objects (solids). The F-Rep [14] represents a geometric ob-
ject by a real continuous function f defined in an Euclidean space.

2.4.1. Basic Concepts of F-Rep

A real continuous function f, which describes a solid, is defined by:

f : En → R.

This function may define geometric information G = ({f}, ∅, ∅), and it induces
a point set SG = {X ∈ En|f (X) ≥ 0}.

Another way to interpret the value of the function f is as the signed distance
from a point X to the surface of the solid SG. These functions are called signed
distance functions. Modelling by using these functions is more restrictive, but it
also has some advantages (mainly for developing fast visualization algorithms).

The geometric operations in F-Rep are defined analytically. For example,
the set-theoretic operations are implemented by using the so-called R-functions
[18], [19], [21], (see (1)). Other known operations are [14]: blending, offsetting,
Cartesian product, metamorphosis, bijective and linear mapping, projection,
etc.

A fundamental advantage of F-Rep [11] is its openness (extensibility) in view
of the possibility for adding new primitives, operations, and relations. Among
its big advantages is also the easy implementation of nonlinear transformations
and other complicated operations. For example, the operation metamorphosis
(which means morphing one solid into another one) is hard to be implemented
in B-Rep. However, in F-Rep it has a simple solution f(t) ≡ t · f1 + (1 − t) ·
f2, t ∈ [0, 1], where f1 and f2 are functional representations of two solids, t
is a parameter determining the intermediate state of the resulting solid (the
morphing phase). The use of the R-functions makes F-Rep more powerful.
R-functions [18], [19] are real functions of real variables which inherit some
properties of the logical functions (binary or ternary logic). For example, the
conjunction X ∧ Y is called the logical friend of the R-function

f1 ∧a f2 ≡
1

1 + a
·

(

f1 + f2 −
√

f2
1 + f2

2 − 2a · f1 · f2

)

. (1)

If a = 1, from (1) we find f1 ∧1 f2 ≡ min(f1, f2), and if a = 0, we have
f1 ∧0 f2 ≡ f1 + f2 −

√

f2
1 + f2

2 . Analogously, similar functions exist for other
set-theoretical operations.
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The contribution of R-functions to computer graphics, and F-Rep in partic-
ular, is the possibility for composing practical arbitrary solids (functions) based
on other simpler and already constructed functions or primitives as spheres,
cylinders, cones, etc. In general, F-Rep provides an easy opportunity to in-
corporate elements from other representations (not only ones from CSG by
R-functions) in itself.

2.4.2. Visualization of F-Rep

Visualization algorithms are divided into two classes: polygonization [14], [9]
based (for example marching cubes, marching triangles, adaptive polygoniza-
tion, particle systems polygonization) and Ray tracing [14] based. The first
class converts F-Rep into B-Rep, which is visualized by B-Rep approaches (Z-
Buffer, for example). Polygonization is used not only for visualization but also
for other modelling goals. The second class makes visualization directly from
observer’s viewpoint, without intermediate conversion. A basic operation in
these algorithms is finding the nearest point in some direction (the intersection
of a ray with a model). There exists a fast finding method, when functions are
signed distance (normalized).

2.5. Other Representations Schemes

Other popular representation schemes are [7], [16], [5]: parametrized primi-
tive instancing, spatial occupancy enumeration, cell decomposition, construc-
tive solid geometry (CSG), sweeping, parametric and feature based modelling,
etc.

The parametrized primitive instancing scheme [7], [5] is based on the no-
tion of families of objects, each member of a family distinguishable from the
other by a few parameters. Each object family is called a generic primitive,
and individual objects within a family are called primitive instances. For ex-
ample, a family of spheres is a generic primitive, and a single sphere specified
by a particular set of parameters is a primitive instance. It is a simple and
not particularly flexible scheme, but in combination with other schemes, it is
suitable to describe the basic primitives included in the scenes. When adding
a mechanism for constructing more complex objects based on these primitives,
we remove one of the main weaknesses of this scheme. One such possibility is
the combination of the scheme with the CSG scheme in a hybrid scheme.

The spatial occupancy enumeration scheme (Voxel) [7], [5] represents the
solids as a set of spatial cells. The cells, also called voxels, are usually cubes of
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a fixed size and are arranged in a fixed spatial grid. Each cell may be represented
by the coordinates of the cell’s centroid. They can represent approximations of
objects in the scene and can be used to improve the performance of algorithms.
Very often they are used in combination with CSG.

The cell decomposition scheme [7], [5] describes a solid as a decomposition
of several cells that collected together form the whole solid. The former scheme
is a special case of this one, using a special type of cells (cubes lying in a regular
grid).

The constructive solid geometry (CSG) schemes [7], [5] represent rigid solids
as Boolean constructions or combinations of primitives via the regularized set
operations. CSG and boundary representations are currently the most popular
representation schemes for solids. They are commonly used as a hybrid scheme.
The relatively simple data structure and the elegant recursive algorithms have
further contributed to the popularity of CSG.

The sweeping schemes [7], [5] represent solids as a parametric union of
primitives moving through space. They are applied to CAD systems, since
they can easily describe rotary (or similar) solids. Sweeping schemes easily
describe the removal of material by cutting tools.

The parametric and feature based modelling schemes [17], [7] are defined
to be parametric shapes associated with attributes such as intrinsic geomet-
ric parameters (length, width, depth etc.), position and orientation, material
properties, and references to other features. Thus, features have a semantically
higher level than primitive closed regular sets. Features are generally expected
to form a basis for linking CAD with manufacturing.

The particle systems schemes [7] – in the modern geometric modelling sys-
tems there is an increasing necessity of modelling natural phenomena such as
rain, snow, fire, running water, clouds, wind, tornadoes, fluids, etc. The idea
of the scheme Particle systems is to present these phenomena as a collection
of many (thousands, and sometimes millions), small particles, which by some
rules are added (usually at random), changed (moved, changed colour, etc.)
and removed (typically based on the time elapsed after the creation of the par-
ticle) from the model. In this way models of highly complex special effects can
be created.

From the discussion in this section, it is clear that there exist many rep-
resentation schemes, each of them with different areas of application, power,
usability, visualizing and processing algorithms and so on. Many good combi-
nations of these (and only these) schemes are well known. To study all their
possible combinations and to create hybrid homogeneous schemes is not an easy
task. Homogenization has some advantages, but usually it is a manual and la-
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borious process. This leads to the conclusion that this study of open hybrid
non-homogenized representation schemes is relevant.

2.6. Hybrid Representation Schemes

In practice, representation schemes are rarely used in their pure form. The
combination of two or more schemes for representing objects is commonly used
to benefit from the advantages of both, or to achieve greater power and ease of
representation. For example, CSG schemes are often combined with B-Rep, i.e.
a scheme in which the description of the scene is CSG, and the final (primitive)
objects are described by B-Rep. There are other common fixed combinations
of schemes F-Rep/CSG [14], [3] F-Rep/B-Rep [11], and many others.

Such representation schemes are called hybrid [16] or non-homogeneous or
a multi-representation.

Definition 4. A hybrid representation scheme is a solid representation
scheme which describes the solids by combining two or more representation
schemes.

Algorithms for calculating the properties of representations with such schemes
are not easily implemented, because they must comply with the specifics of the
scheme.

One approach is the so-called homogenization of the scheme [16], i.e. the
scheme turns into a more complex scheme in which those characteristics of the
original schemes are included that we want to be present in the homogenized
scheme. By this approach we can get the most effective schemes, but they can
no longer be regarded as any of the original schemes nor can they be easily
extended with other systems and their capabilities.

Another possible approach is to do conversions between the representations,
and then easily apply the algorithms, which are available for the resulting rep-
resentation. The strength of the hybrid schemes would be increased if we could
combine the advantages of the schemes, since some algorithms are more effec-
tive in some representations, other algorithms – in other representation, and
so on. The representation conversion is a very important aspect not only in
hybrid representations. Sometimes one has to deal with very difficult and time
consuming algorithms. This requires that special attention be paid to those
representations in a hybrid system. If possible, at the expense of more memory
(excess information), more time efficient systems can be developed.

Definition 5. An open hybrid representation scheme is a hybrid repre-
sentation scheme which describes the solids by combining a non-fixed finite set
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of representation schemes.

Typically, these representation schemes do not require homogenization,
which is their strong point, but sometimes they need more than one conver-
sion (during system operation) to some of the available representation schemes.
This drawback can be eliminated almost completely with an appropriate caching
mechanism at the expense of using more system memory.

2.6.1. The Search for Conversion between Representations

The conversion of representations is usually performed when there is an explicit
indication by the user or there is a need to implement an algorithm that can
only work with certain representations. This is often the case in open hybrid
representation schemes because at any time a new scheme can be dynamically
added to the set of representation schemes, and this distinguishes them from the
classical fixed hybrid representation schemes, where the set and the conversion
between representations are known in advance.

An example of an object with a current representation Format 1 and a de-
sired representation Format 5 is given in Figure 2. Arrows indicate algorithms
for direct conversion between representations available in the system. We see
that in this example there are four ways to reach the desired format from the
current one. These are: F1 → F2 → F4 → F5 (two paths, because there are two
direct converters between Format 2 and Format 4 ), F1 → F3 → F5 → F1, and
F3 → F4 → F5. Also, if there exists more than one path/way of conversion, it
is reasonable to find the fastest path or the one of the best quality (as well as
a path satisfying a more complex requirement).

This is the well known problem of finding the best path in an oriented
multigraph. It can be successfully solved by the Dijkstra’s algorithm for finding
the best path in a graph.

For the purpose of finding optimal paths for conversion, any algorithm for
direct conversion has to have as an additional description a set of attributes with
weights, evaluating its characteristics such as performance, quality of approxi-
mation, etc. Based on these attributes, one can establish criteria for evaluation
and identification of the most appropriate path – for example, the sum of the
attributes for performance of the converters in the whole path from the initial
to the final format.

The results of the paths should be cached for later use without having to
search. The key to identifying the converters must include the initial and final
formats, quality criteria, etc.

When selecting data structures and algorithms in the implementation one
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Figure 2: Finding paths of conversion between representations

must take into account the following characteristics: the number of represen-
tations is relatively small; there may be more than one algorithm for direct
conversion between two representations; in a hybrid system the search of an
optimal path for conversion may turn out to be a frequently used algorithm;
the implementation of the conversion algorithms themselves may be much more
complex and/or consuming more resources and/or running on a much larger
amount of data than in the search for the optimal path of conversion. Further-
more, it is likely that the shortest path (i.e. the path with the least number of
intermediate formats) is the fastest and the one of the best quality, therefore
the use of the wave algorithm, split into two parts (and the use of the back-
ground task for the second part), is a good idea. The search for an optimal path
continues until the first path (usually the shortest one) is found. After that, it
is returned as a result and at the same time a background task is started to
find the other paths. Apart from that, one can use another background task,
using Dijkstra’s algorithm or a similar algorithm to find all the best paths in
advance and store them in the cache.

2.7. A Hybrid System – User Application,

OpenGL, OpenCL, . . . , Hardware

The current state of development of computer graphics and its applications is
unthinkable without the use of modern specialized graphics processors. They
provide an opportunity most of the necessary calculations and processes to run
faster and more parallel.
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Lately, the emergence of General Purpose GPU (GPGPU) created new
opportunities for more numerous and more flexible applications. The previously
difficult RealTime Ray tracing [20] and the realistic kinematics simulations,
fluid dynamics, global illumination in real time, etc., are becoming more real
and even an every day experience.

The technological innovations opened the door for these hardware imple-
mentations in practice. Moreover, since long time ago no one can imagine the
B-Rep applications and the related algorithms for visualization, simulation, and
processing, in a purely software context without a graphics accelerator or GPU.
With the arrival and development of GPGPU, after a while the situation will
certainly be similar for a larger number of representation schemes, algorithms
to work with them, and visualizations based on Ray tracing. This requires that
any modern system for geometric modelling be seen as a set of software and
hardware components with the increasing importance of the latter.

With the advent of OpenGL, the rapid development of applications based
on B-Rep began. The corresponding graphics hardware evolved and became
public. In recent years, the emergence of OpenCL [10], [12], which is a sim-
ilar standard, led to the introduction of a large number more diverse parts
of representations and algorithms related to them, and some new algorithms
as well. Here the hybrid representation schemes will play a more important
role. The development of hybrid systems using hybrid representation schemes
becomes present. Until now almost all hybrid systems and almost all systems
with hybrid representation schemes were somewhat fixed. The purpose of our
investigations is to help change this, so that the systems, and in particular the
schemes, become open and hybrid.

2.7.1. Open Hybrid Scene Graph Model

A geometric modelling system can run with more than one representation
scheme without using a hybrid representation. It can support different rep-
resentations and at some time work with one of them or have a single conver-
sion of all representations to a basic representation. Such a system would have
greater applicability and would provide its users with greater convenience, but
the real capabilities of the hybrid schemes would offer even more than this.
Therefore, systems that enable simultaneous work with multiple representa-
tions in a scene graph are called hybrid (in terms of the representation), and
the systems that non-simultaneously support more than one representation –
multi-representation systems.

The hybrid scene model can be defined using the design pattern Compo-
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Figure 3: A hybrid scene graph

sition [8] as follows. We use a basic class/interface for a graphic/geometric
element (object). Its successors will be all kinds of graphic/geometric elements
and relations (i.e. the relation is also an element or the graphic/geometric el-
ement is a relation of its points), and one of the main successors is a scene
graph, i.e. a special type of a composite element containing and managing
(effectively) sub-elements of the base class (or implementing the base interface
for a graphic/geometric object). This means that the scene graph is a rela-
tion and it gives a hierarchical structure to the scene, and in addition it may
contain as a sub-element other scene graphs, i.e. sub-scenes. In other words,
the scene graph is a set of objects (with different representations) and relations
(over one or more elements, including relations over relations, etc.). This al-
lows for easy adding of new elements/representations/ relations, an arbitrarily
complex structure of the graph, as well as a uniform way to work over elements
and relations. The type of representation is determined by whether the class
of the element implements a certain interface. Defining an interface for any
representation gives the opportunity to include the element in more than one
representation at the same time, and to hide the internal data structure that
describes it.

Figure 3 shows an example of a scene graph. The elements are represented
by rectangles, and the relations – by lines connecting or encircling the elements,
which are in a relation.

The elements El.1 and El.5 are in one representation, for example F-Rep;
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El.2, El.3, El.4 and El.7 are in another, for example B-Rep; El.6 is in a third
type of representation. The element SG is a scene sub-graph, i.e. a sub-scene.
This division allows for geometric modelling systems to load into the memory
only a part of the scene based on some criteria (such as visibility, i.e. only those
parts of the graph that are visible to the viewer at the time, or only those parts
of the layers that divide the scene, or only the first level of the scene without
the sub-scenes; in the last case the sub-scenes are loaded when needed or on
command from the user, etc.). One can introduce different types of elements
(not just with different representation) that behave differently, for example
proxy elements that load the sub-scenes when a password is set by the user, etc.
Some elements may be a “cache” of other elements and be used if necessary; for
example, if an F-Rep element has been polygonized, its corresponding element
in B-Rep can be added to the scene (without visualization) and subsequently be
used without polygonization. Other types of elements are the so-called elements
decorators and elements adapters that can modify a certain element or bring
another element into the system – one that exists but is not intended for use
in this system.

In the scene (the scene graph) there might be different relations, and their
type and number are not limited. For example, in Figure 3, El.1 and El.3 are
in one type of relation, El.3 and El.5 are in a second type of relation, and so
on, El.4 and El.5 are in another (again binary) type of relation. El.2, El.6
and El.7 are in a relation, which is not binary (i.e. they are grouped). There
might be unary relations. Examples for types of relations are: group (number
of elements considered by the system as one, or connected and inseparable from
one another), cache (one element is a cache of another), version (one element
is a newer version of another, i.e. the relation “memorizes” the change of the
element in the scene), etc. In Figure 3, R denotes a relation between two other
relations. If the application requires it, relations between elements and other
relations may be established (this is not surprising, since the model distinguishes
between a graphic object and a relation only formally, i.e. they are all elements
of the model). Of course, their meaning and usage depend on the semantics of
the model and the specific application.

2.7.2. Interaction with an Open Hybrid Scene Graph Model

How to modify the model significantly depends on the representation scheme
chosen for its description. For example, in B-Rep we can “catch” the vertices of
the solid and move or remove them, etc. In CSG we can change the constructive
operations applied over the primitives, add or remove primitives, etc. In F-Rep
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we have functions that we can modify by superposition and composition, we
can deform the solids (by applying specific functions over the existing ones),
we can add or remove solids, etc. Even in the same representation scheme,
depending on the specific application, the user can work with different terms
– in a CAD system the solids are details, in a system for creating games the
solids are players.

As we can see, the terms and methods that the users apply may vary, but
most of them ultimately come down to the same. Whatever the representation
scheme is, there always exist the data operations that are performed by users
in the same way. This is not surprising because all the representation schemes
describe the same thing – geometric information. As we have shown, the geo-
metric information has mainly three types of parameters – shape, metrics, and
location/orientation in the space. Hence, whatever the representation is, the
user has to be able to change these characteristics of the model.

The interaction in the hybrid models cannot be defined as in the case of a
model (a scene) with a strictly defined homogeneous composition and structure.
To reach the general idea of the interaction valid for the hybrid models as well,
we will consider in detail some special cases (B-Rep and F-Rep), and based
on them we will summarize our results, so that the summary is valid for both
homogeneous and open hybrid models.

If we only have a boundary representation (B-Rep), then the composition
of the scene consists of vertices associated with edges, defining faces, of which
the solids and the whole scene are built (e.g. vertices, edges, triangles, etc.),
and the structure of the scene is determined by a combinatorial structure, de-
scribing the correlation between these elements (there may be grouping of the
solids, etc.). In this case the interaction occurs as the user selects the elements
(groups, solids, faces, edges or vertices) and modifies their characteristics (lo-
cation, colour, etc.). The user can create and remove parts of the model (the
new vertices, edges, faces, solids, etc.). Besides these simple operations over
the model, one can apply many more complicated operations that work over
the model (the whole model or only a part of it) – operations that are specific
to the area of application, or are borrowed from other representation schemes
(union/intersection of solids, finding rotary surfaces, etc.). After the change of
the scene (or a part of it) a new visualization is triggered.

If the model is F-Rep, then in the general case it is a function (which may
not be defined analytically). Here we shall consider the case when a collection of
functions is given, and the scene is a set of all of them. This is not very different
from having only one function (because we can always combine them into one
using R-functions), but is closer to the logic of the user experience. In this case,
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the scene consists of the functions (describing the solids or parts of the scene),
and the structure of the scene is determined again by the functions and their
composition. It is possible that the functions are composed of sub-functions (a
composition and a superposition of functions) and/or are associated with R-
functions, giving the set-theoretical operations over them, thus introducing an
additional structure in the model. In this case the interaction occurs as the user
works with the model (the functions) as a whole, or modifies them by making
superpositions of functions, existing in the model, and other new functions. The
functions that exist in the model may become parameters of the newly added
(for example, if we intersect two solids, this means to add a new R-function that
has two parameters and they are the solids/functions being intersected) or the
modification may be a replacement of a parameter or a sub-function of some of
the existing in the model. Characteristics such as shape, location, colour, etc.
can be varied for each point of the solid or the solid as a whole. The user can
create or remove parts of the model (new functions). Since there are no specific
points (as the vertices in B-Rep) and parts (as the edges and faces in B-Rep),
then all parts in a solid are “equal” in terms of the operations applied on them,
i.e. the user can select any point on the solid and deform it by using the point
with some nonlinear transformation. For convenience, a grid can be displayed
on the model (UV-lines, working curves and planes, etc.) for easier and more
intuitive work with the solid. After the change of the scene (or a part of it) we
proceed analogously to B-Rep.

Comparing the interaction approach with B-Rep and F-Rep and distancing
ourselves from the specifics of each of them, we obtain the following scheme
that can be applied when interacting with a hybrid model:

• Each representation has a set of operations that can be executed over its
elements;

• If any of the algorithms cannot be applied to a given representation, we
may try to convert it to a representation on which the algorithm can be
applied, and then transfer the result back (if possible);

• If an operation is applied over multiple solids, then the above point is
applied for each of the solids;

• The system must use any available converters between representations to
expand the possible operations over the different representations, without
them having to be implemented specifically for each of the representations;

• In case the model is changed it must be visualized.
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3. OpenF – An Open Hybrid Geometric Modelling Framework

OpenF is a prototype of an open hybrid geometric modelling framework, de-
signed to study such systems. It is an open source system, composed of an
object-oriented framework for hybrid geometric modelling, documentation, and
numerous sample programmes demonstrating how to use some of its applica-
tions. One of the main objectives of developing OpenF is to help research and
training in certain aspects of CG.

3.1. Principles

The system has the following characteristics:

• Openness – the possibility for expanding the system in one or more di-
rections. This is achieved through (see Figure 4 and Figure 5):

– Inclusion of new representations;

– Addition of converters between representations, called converters;

– Addition of logical input, output and input-output system elements,
called Sources, Targets, Storages;

– Inclusion of application elements in the system;

– Inclusion of compound elements (sub-systems) as elements of the
system;

– Inclusion of communication elements in the system – new types of
inter-element communications.

• Hybridness – the availability and the possibility for simultaneous work
with more than one inner representation; the use of compatible software
and hardware resources in order to fully exploit the modern graphics (and
other) hardware;

• Flexibility – the easy adaptation to the different applications; provided
by a powerful configuration sub-system according to the applications;

• Distributiveness – the simultaneous work of the system parts on differ-
ent computer systems; the possibility for realizing elements as software,
hardware or a mixture of both;

• Multi-user orientation – the possibility for parallel (or/and simultaneous)
work of many system users.
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All these features influence the system architecture.

Further, the system architecture allows the system developing to be:

• In stages – to construct the system in separate consecutive stages so that
after each of them the system is efficient at the level of the particular
stage; there are three stages in the system development – system stage,
applied stage and user stage;

• Done by many developers (teams) – to achieve this characteristic we
should have loose coupling among the sub-systems, clearly described ide-
ology for development, documentation, open source construction of the
system, etc.;

• Independent of the programming language or the operating system – the
system architecture and its implementation must not be based on means
and technologies related to a particular programming language or an op-
erating system.

The solutions to these problems lie in the use of modern means and pro-
gramming techniques (methods).

Finally, the desired system should be suitable for research, applied, and
educational purposes.

The above requirements influence both the architecture and the stages of
the system development.

3.2. Architecture

System elements could be considered on three abstract levels: logical, concep-
tual, and physical. On the logical level the elements are elements of a system –
atomic elements, sub-systems and relations. On the conceptual level we have a
core, extension modules, plugins, set of services, inter-element communication
and relations, etc. On the physical level we have classes, methods, interfaces,
dynamic libraries, etc.

The general scheme (Figure 4a) of the system architecture consists of three
layers: a core, expansion modules (plugins), and applications.

Geometric information, as a special type of information, is subject to the
same types of information processing as any other information. Therefore, all
major processes in the system for geometric modelling can be classified as pro-
cesses for collecting, processing, storing and distributing geometric information
or data describing this information.
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Figure 4: (a) Architecture of an OpenF. (b) Registration of the elements
in the system

Main kinds (types/classes) of elements of the system (Figure 4b) in ac-
cordance with their functions in it are: Sources, Targets, Transformation-
elements, System-core, Registration-elements, and Configuration-elements, etc.
Sub-system configuration is a very important element of any modern software
system. In the OpenF architecture a special attention is paid to this sub-system.

In Figure 5, we show the possible cases for the distribution of the elements
of the system. They can be included in one computer system or distributed in
a network. Each host in the network has its own core and necessary items, and
the communication between the systems is realized by a core sub-system. The
elements can be both software and hardware implementations (communication
between the software and hardware part of each element is performed either by
a message exchange or by specialized API, such as OpenGL, OpenCL, etc.).

The goals of the system and its architecture determine three stages of de-
velopment:

(I) System stage – creating a core (registration-elements, configuration-elements,
communication, transformation, statistics, visualization, interaction, stor-
age, supporting sub-systems, etc.);

(II) Applied stage – developing basic elements (converters, communications,
etc.);

(III) User stage – developing and using the system.

With respect to realization, each of the last two stages includes two as-
pects depending on whether new capabilities (system realization) are realized
or already existing ones are adjusted and used (applied realization).
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Figure 5: Distributed architecture of a multiuser system for geometric
modelling

3.3. Implementation

The realization of the prototype system (OpenF) is done in C# and uses some
basic classes of the .NET framework. The choice of this language is due to sev-
eral reasons. One of them is the fact that the .NET platform is portable among
the most widespread operating systems. Another advantage of .NET, which
is essential for our requirements to the system, is that it does not limit the
programming languages used for writing applications and for OpenF. However,
the main advantage is that the language C# provides great tools for simple
and clear description of the algorithms using a well-developed object model. Of
course, the choice of the .NET platform has not only advantages. The main
disadvantage is that at least for now the JIT compiler of .NET is not sufficiently
oriented towards algorithms with large-scale computations. The performance
of the systems for geometric modelling is essential for them. Overcoming this
deficiency can be done in two ways – using newer versions of the JIT compiler
(which are still not available, or just recently came out), or using additional re-
sources for preliminary (automatic) processing of the programmes and libraries
of the OpenF framework, in order to achieve better performance without chang-
ing the source code. The latter approach was chosen for the framework OpenF.
The idea is to use the compiled code of the system as a model to automati-
cally generate a code from it that is completely optimized (OpenCL, C, etc.).
Of course, this converter is not universal, but corresponds to the specifics of
the application domain and the limitations of the particular implementation of



804 A. Penev

OpenF.

The implementation of the prototype with OpenF is accomplished by apply-
ing many good practices and design patterns [8] used in modern object-oriented
programming.

3.3.1. Modelling

The modelling in OpenF is based on the concept (given in sections 2.6 and
2.7) for an open hybrid representation scheme, realized as an open hybrid scene
graph. Unlike other similar systems/frameworks, in OpenF there is no problem-
oriented language for description of the scenes. Defining another specialized
language would be pointless and would not help to realize the objectives of the
system. Furthermore, programming languages (like C#, etc.) are a sufficiently
powerful and convenient tool for describing not only the models, so duplication
of functionalities in another problem-oriented language is not justified. OpenF
is a framework for creating open hybrid systems by programmers, not a file
format or a scene description language. If it is necessary to save the model
in a file, one can use serialization (binary, XML-based, etc.) or generate a
programme (in IL), which creates the model in the memory.

3.3.2. Extensibility

To be easily expandable a system must have a clear and powerful mechanism
for adding functionality. This can be done in different ways, but one of the
most popular nowadays is the plugin module mechanism. It is selected as the
main mechanism in the framework OpenF. Each plugin module can extend the
system with any number of classes defining new functionality through one or
more services (interfaces that the objects implement). Loose coupling among
the plugin modules and the algorithms that use the services is implemented by
a sub-system of the core of OpenF. Logically it is composed of multiple registers
that store the objects providing certain services.

In practice, the core of OpenF must contain only this sub-system, and all
the other functionality (even the one of the core) is optional and is implemented
as plugin modules. There are two types of modules – core modules and system
modules.
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3.3.3. Visualization

Another major sub-system (a set of services) of OpenF is the sub-system for
visualization of the hybrid model.

As we usually have three-dimensional representations of solids, in these
cases we need to have some kind of projection of the model on a plane. In
geometry there are many projection methods which maintain different char-
acteristics of the projected object, the most important of them – the illusion
of three-dimensionality. Important features of the visualization algorithms are
their speed and quality (i.e. how close the image is to the original/model).
These two features are contradictory, i.e. different algorithms tend to compro-
mise one of them for the other. Of course, all algorithms have their place and
use, because the purposes of visualization can be different and therefore one
algorithm may or may not be suitable to achieve them.

Generally, the visualization algorithms can be divided into two types deter-
mining the design of the sub-system for visualization in OpenF:

• Visualizing from the spatial scene (Figure 6a), i.e. working in the object
space – For these algorithms every object (or the part of it that is in the
clipping volume) is projected onto an image plane, and then displayed in
the viewport (if we want a raster image, the image is rasterized). The
performance of these algorithms depends on the number of objects in the
scene (or the square of their number in some algorithms). The quality
may be very good, as images can be scaled arbitrarily, but it depends
on the representation of the objects. The Z-buffer algorithm is a typical
representative of this class.

• Visualizing from the observer (Figure 6b), i.e. working in the screen
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Figure 6: (a) Visualization from the scene. (b) Visualization from the
observer
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area – With these algorithms one usually gets a raster image, and it is
determined for each pixel which object is projected into it. The viewport
is divided into cells and each of them is assessed. The performance of
these algorithms depends on the number of pixels in the viewport (and
to some extent on the number of objects). The higher the number of the
pixels of the viewport, the better the quality, i.e. we can get the quality
we need. These algorithms very little depend on the representation of
the objects. The Ray tracing algorithm is a typical representative of this
class.

Of course, there may be a mixed approach, in which the algorithm works
bidirectionally.

3.4. Documenting

In [5] the methodology for geometric modelling is described. It is based on
the logical separation of the system functionality for processing geometric in-
formation. Each functional group is called a virtual machine or a processor.
Each virtual machine handles a specific part of the graphic information as it
processes it and interacts with other virtual machines. Their purpose is to
encapsulate relatively independent and similar operations. They communicate
with each other via preliminary defined interface and eventually pass processed
data. This hierarchy of virtual machines consists of: Display processor, Ge-
ometric processor, Structure processor, Semantic processor, Dialog processor.
This approach was used to develop a prototype of a specific open hybrid system
for geometric modelling. This system is a part of the samples of OpenF, and a
part of its documentation.

Besides this application, as part of the documentation, numerous small
sample programmes were implemented, demonstrating various aspects of the
framework functionality.

3.5. Applications

As already mentioned, OpenF may be used for research, educational and applied
purposes.

The use of OpenF for research purposes has already been discussed. At
this stage, it mainly includes the study of open hybrid models, the interaction
with them, the visualization, and a less general study of the properties and
applicability of F-Rep.

Here we will focus on educational purposes and applications.
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OpenF is highly applicable in various fields (thanks to properties such as
openness and flexibility, its architecture and method of construction). Educa-
tion is only one of them. It is not recommended that the content of the basic
course in computer graphics be expanded and complicated, so OpenF currently
finds and will continue to find (more) applications in the accompanying forms
of education.

Here are some possible applications in education: seminar classes using the
libraries of OpenF as a base for developing projects in CG (elective courses);
extracurricular activities with outstanding students interested in CG; individ-
ual investigations of students studying the samples, documentation, and the
object-oriented design of OpenF; graduation theses – development of systems,
applications, etc.; an illustration of (electronic) tests and materials for self-
learning; an illustration of the teaching material using visualization of three-
dimensional (and two-dimensional) models in different areas (mathematics, in-
formatics, chemistry, physics).

Other applications are possible, but their practical implementation depends
on the students’ interest in the subject CG, and the new trends in it as a whole.
During the academic year 2006/2007 a survey explored the students’ attitude
towards the course CG and their receptiveness to applying innovations. An
object of the survey were the third year students who major in informatics,
and the fourth year students who major in mathematics and informatics at the
Faculty of Mathematics and Informatics (FMI) at Plovdiv University “Paisii
Hilendarski”. The survey results were compared with some of the data related
to the system for quality assessment, introduced a few years ago at FMI. Our
survey showed that the students are interested in CG. We also reached other
important conclusions about the teaching and learning process.

A practical aspect of using OpenF is that the framework can be used to cre-
ate a variety of applications. The first ones are already in the process of design
and development. We mean not purely commercial products, but rather exper-
imental prototypes, aimed at creating hybrid systems for geometric modelling
that subsequently, except for research purposes, could develop into systems of
general application. At the moment there are two applications based on the
OpenF prototype with graduate students involved in their development: Open-
Studio (a demonstration hybrid system for geometric modelling based on open
hybrid representation scheme) and F-Rep Designer (a system for geometric
modelling, based on F-Rep, that uses for visualization an OpenCL based Ray
tracer, as well as an optionally analogous to it C# based Ray tracer).
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4. Results

The related theoretical background was studied and documented. A concept
for open hybrid system for geometric modelling, based on an open hybrid rep-
resentation scheme, was created. Architecture, object model and a prototype
of the framework OpenF, which implemented the concept in practice, were es-
tablished. The framework was documented with samples and descriptions of
its modules, classes and methods. A system of test cases was created and the
framework was tested with it.

An open hybrid model for the description of geometric information was
designed and implemented.

A flexible mechanism for visual manipulation of such models was proposed
and implemented in practice, applying practices for hybrid usage of the modern
(graphics) hardware.

By using the framework OpenF, a system was created called OpenStudio –
a sample demo open hybrid system for geometric modelling based on an open
hybrid (non-homogenized) representation scheme.

5. Conclusion

The achievement of the main objective/goal of this work, namely to consider
the implementation of an open hybrid system for geometric modelling, based on
an open hybrid (non-homogenized) representation scheme, was demonstrated
by building and testing a prototype of the framework OpenF. By using this
prototype, a simple demonstration experimental system was built. This is a
constructive proof of the goal and shows in practice how such systems can be
created.

The system architecture of OpenF provides the desired qualities – openness,
hybridness, flexibility, and distributiveness. It can be run by many users and
developers.

The object model and the implementation follow the best practices for
creating object-oriented systems.

The documentation and the samples are easily accessible and understand-
able. The samples are subject to development and expansion in order to con-
struct an even better system of basic templates, ready for use in new applica-
tions.

A system of test cases, which ensures maintaining the efficiency of OpenF
while being modified and developed, is created. Of course, this system of test
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cases should be used and developed together with the system.

The programme implementation of the framework OpenF in this work
mainly includes the system stage, the applied stage (system realization), parts
of the applied stage (applied realization), and small parts of the user stage.

Prospects:

The open architecture and the ideology of the framework OpenF enable its
large improvements in different directions. Future research and development
should be directed towards:

• Improving F-Rep and developing other less common representations;

• Studying the interaction between the user and the hybrid model as a
whole;

• Improving visualization of hybrid models using specialized hardware (sup-
porting OpenCL, Ray tracing based, etc.);

• Creating a library of problem-oriented sub-systems (component approach),
ready for inclusion as blocks in the systems.

In these directions the framework OpenF with its characteristics, such as
openness and hybridness, will help to further the research and applications of
the open hybrid representation schemes in CG.
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