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Abstract: For all positive integers m, d, b let p(m,d) (resp. p(m,d,b)) be the
maximal symmetric tensor rank of any f € Clzg,...,z,] \ {0} homogeneous
of degree d (resp. and with border rank < b). Here we prove that p(m,d) <
(m;rd) —m for all m > 2 and d > 2 (only by 1 better than a far more general
result of Landsberg and Teitler), that p(m,d,b) < p(b—1,d,b) if 2 < b < m
and d > b— 1 and that p(m,d,b) < d- [("*))/(m +1)] if 2 < b < m and
3<d<b-2.
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1. Introduction

Let K be an algebraically closed base field such that char(K) = 0. Let Y C P"
be an integral and non-degenerate subvariety. For each P € P" the Y-rank
ry(P) of Y. For all integers m > 1, d > 0 let K[zo, ..., 2m]q denote the set
of all homogeneous polynomials with degree d. This set is a K-vector space
with dimension (mTJnrd). We have HY(P™, Opm(d)) = Kzg,...,Tm]q. Hence
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K[zg,...,2Zm]q induces the order d Veronese embedding vy : P™ — p("a)-1

Set X4 := vg(P™) (the m-dimensional Veronese variety of order d). For
any f € Klzo,...,zm]q \ {0} the symmetric tensor rank srp, o(f) of f is the
minimal integer s > 0 such that f = >°7_, ¢4 for some ¢; € Klzo,..., 7).

Obviously sy, 4(f) = srm a(Af) for all A € K\ {0}. The non-zero polynomial f
corresponds to a unique P € p("n )1, We set 51y, 4(P) := srm q(f) and call it

m-4d
the symmetric tensor rank of P. Conversely, any P € p(" )1 corresponds to a
unique set {\g}rex\ o} for some g € Klxo, ..., 2m]qa\{0}. Hence the symmetric

tensor rank is defined for all points of P(mwtd)*l. The definition of Veronese
m-+d
embedding gives srp, 4(P) = rx,, ,(P) for all P € P("n )7L, Let p(m,d) be the

maximal of all srp, 4(P), P € p("n) -1,

We first improve (but only by 1) the upper bound p(m,d) < (mntd) —m+1
for all positive integers m,d ([9], Corollary 5.2). Notice that this result by
Landsberg and Teitler is just a very particular case of [9], Proposition 5.1.

Theorem 1. Fix integers m > 2 and d > 2. Then p(m,d) < (m:lrd) —m.

Remark 1. Take m = d = 2 and let ¥ := Xy, C P> be the Veronese
surface. Theorem 1 says that ry(P) < 3 for all P € P°. Since the secant

variety of Xgo has dimension 4, we have ry(P) > 3 for a general P € PPS.
Hence p(2,2) = 3.

Theorem 1 is just a particular case of the following result.

Proposition 1. Let Y C P" be an integral and non-degenerate m-
dimensional variety, r — 2 > m > 1, such that dim(Sing(Y")) < m — 2, with the
convention dim()) = —1. Fix P € P" and set E := {O € Y,y : P € ToY'}.
Assume dim(E) < m — 2. Then ry(P) <r —m.

Now we add a constraint: the border rank. Fix any integral and non-
degenerate variety Y C P". For any integer b > 0 the b-secant variety o3(Y) C
P" is (by definition) the closure in P of of the union of all linear spaces (5),
where S is a subset of Y with cardinality b. The algebraic set o3(Y) is an
integral variety and dim(op(Y)) < min{r, (b + 1) - dim(Y") — 1} for all r, Y, 0.
The dimensions of all varieties 04(X,, 4) are known by a famous theorem of
J. Alexander and A. Hirschowitz ([1], [2], [7]). The points P € op(Xpm.a) \
Om—1(Xym,q4) are said to have border rank b. Hence o0y(X,,q) is the set of
all P € P(m;zrd) ! with border rank < b. For all positive integers m,d,b let
p(m,d,b) be the maximal integer sry, ¢(P), where P € 0,(X,,). Of course,
p(m,d,1) =1 for all m,d, p(m,1,b) = 1 for all m and b, p(m,d,b) < p(m,d)
and and p(m,d,b) < p(m,d,b+ 1) for all m,d,b. A theorem of Sylvester says
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that p(1,d,b) = d for all b > 2 ([5], [8], [9], Theorem 4.1). In this note we prove
the following result.

Theorem 2. Fix integers m,d,b such that 2 < b < m.
(i) If d > b — 1, then p(m,d,b) < p(m —1,d,b).
(i) If 3 < d < b—2, then p(m,d,b) <d- [("™F)/(m +1)].

2. The Proofs

Proof of Proposition 1. If P € Y, then ry(P) = 1. Hence we may assume
P ¢ Y. The case m = 1 is the main result of [3] (Notice that we use that
r > m + 2 = 3 in this case). Hence we may assume m > 2. Let V C P" be a
general linear subspace of codimension m — 1 containing P. Since P ¢ Y, the
restriction to Y of the linear system of all hyperplanes through P has no base
points. Hence Bertini’s theorem implies ENV =@, V N Sing(Y) = () and that
C :=Y NV is an integral and smooth curve spanning V. Since ENV = (), P
is not contained in a tangent line of C. Hence r¢(P) < dim(V) —1=r—m
([3], Theorem 1) (again, we use that r > m + 2). Since ry(P) < r¢(P), we get
ry(P) <r—m. O

Proof of Theorem 1. Fix P € P", r := ( T: ) 1. The variety X,, 4 C P"
is smooth and non-degenerate. Let E := {O € X,,4 : P € ToX,q}. By
Proposition 1 Theorem 1 is true for P if dim(E) < m — 2. In particular
Theorem 1 is true for P if E = (. If E # (), then sry, 4(P) = d by [5], Theorem
32 (the reader may check the proof even in the case d = 2, i.e. in the case
in which F is the image of a line of P™). If E = (), then Proposition 1 gives
8Tm.d(P) < (mT:d) —m. O

Proof of Theorem 2. First assume d > b — 1. In this case there is a zero-
dimensional scheme W C P such that deg(W) = b and P € (vy(W)) ([5],
Proposition 11, [6], Lemma 2.1.6). Set M := (W) C P™. Since deg(W) = b,
we have a := dim(M) < b — 1. Since P € (vg(W)), we have P € (v4(M)). We
have s7, 4(P) = 7,,(m)(P) ([10], Proposition 3.1, for the non-symmetric case;
see [8], Exercise 3.2.2.2, for a stronger statement). Hence sry, 4(P) < p(a,d).
Notice that [8], Exercise 3.2.2.2, implies p(a,d) < p(b —1,d). To conclude it is
sufficient to prove that P € o,(M). By the proof of [5], Proposition 11, W is
smoothable inside P". By [6], Proposition 2.1.5, W is smoothable inside M.
Hence P € 0,(M) (6], Lemma 2.1.6).
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Now assume 3 < d < b— 2. Since d > 3, we have p(m,d) < d- ((m+d)/(m—|—

m

([4], Theorem 1). O
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