International Journal of Pure and Applied Mathematics

Volume 85 No. 5 2013, 887-890

ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version)

url: http://www.ijpam.eu

doi: http://dx.doi.org/10.12732/ijpam.v85i5.7

ON THE MAXIMAL SYMMETRIC TENSOR RANK FOR MULTIVARIATE HOMOGENEOUS POLYNOMIALS

E. Ballico

Department of Mathematics University of Trento 38 123 Povo (Trento) - Via Sommarive, 14, ITALY

Abstract: For all positive integers m, d, b let $\rho(m, d)$ (resp. $\rho(m, d, b)$) be the maximal symmetric tensor rank of any $f \in \mathbb{C}[x_0, \ldots, x_n] \setminus \{0\}$ homogeneous of degree d (resp. and with border rank $\leq b$). Here we prove that $\rho(m, d) \leq \binom{m+d}{m} - m$ for all $m \geq 2$ and $d \geq 2$ (only by 1 better than a far more general result of Landsberg and Teitler), that $\rho(m, d, b) \leq \rho(b - 1, d, b)$ if $2 \leq b \leq m$ and $d \geq b - 1$ and that $\rho(m, d, b) \leq d \cdot \lceil \binom{m+d}{m} / (m+1) \rceil$ if $2 \leq b \leq m$ and $3 \leq d \leq b - 2$.

AMS Subject Classification: 14N05, 14Q05, 15A69

Received: March 5, 2013

Key Words: symmetric tensor rank, Veronese variety, secant variety, border rank

1. Introduction

Let \mathbb{K} be an algebraically closed base field such that $\operatorname{char}(\mathbb{K}) = 0$. Let $Y \subset \mathbb{P}^r$ be an integral and non-degenerate subvariety. For each $P \in \mathbb{P}^r$ the Y-rank $r_Y(P)$ of Y. For all integers $m \geq 1$, d > 0 let $\mathbb{K}[x_0, \ldots, x_m]_d$ denote the set of all homogeneous polynomials with degree d. This set is a \mathbb{K} -vector space with dimension $\binom{m+d}{m}$. We have $H^0(\mathbb{P}^m, \mathcal{O}_{\mathbb{P}^m}(d)) = \mathbb{K}[x_0, \ldots, x_m]_d$. Hence

© 2013 Academic Publications, Ltd. url: www.acadpubl.eu

E. Ballico

 $\mathbb{K}[x_0,\ldots,x_m]_d$ induces the order d Veronese embedding $\nu_d:\mathbb{P}^m\to\mathbb{P}^{\binom{m+d}{m}-1}$. Set $X_{m,d}:=\nu_d(\mathbb{P}^m)$ (the m-dimensional Veronese variety of order d). For any $f\in\mathbb{K}[x_0,\ldots,x_m]_d\setminus\{0\}$ the symmetric tensor rank $sr_{m,d}(f)$ of f is the minimal integer s>0 such that $f=\sum_{i=1}^s\ell_i^d$ for some $\ell_i\in\mathbb{K}[x_0,\ldots,x_m]$. Obviously $sr_{m,d}(f)=sr_{m,d}(\lambda f)$ for all $\lambda\in\mathbb{K}\setminus\{0\}$. The non-zero polynomial f corresponds to a unique $P\in\mathbb{P}^{\binom{m+d}{m}-1}$. We set $sr_{m,d}(P):=sr_{m,d}(f)$ and call it the symmetric tensor rank of P. Conversely, any $P\in\mathbb{P}^{\binom{m+d}{m}-1}$ corresponds to a unique set $\{\lambda g\}_{\lambda\in\mathbb{K}\setminus\{0\}}$ for some $g\in\mathbb{K}[x_0,\ldots,x_m]_d\setminus\{0\}$. Hence the symmetric tensor rank is defined for all points of $\mathbb{P}^{\binom{m+d}{m}-1}$. The definition of Veronese embedding gives $sr_{m,d}(P)=r_{X_{m,d}}(P)$ for all $P\in\mathbb{P}^{\binom{m+d}{m}-1}$. Let $\rho(m,d)$ be the maximal of all $sr_{m,d}(P)$, $P\in\mathbb{P}^{\binom{m+d}{m}-1}$.

We first improve (but only by 1) the upper bound $\rho(m,d) \leq {m+d \choose m} - m + 1$ for all positive integers m,d ([9], Corollary 5.2). Notice that this result by Landsberg and Teitler is just a very particular case of [9], Proposition 5.1.

Theorem 1. Fix integers $m \ge 2$ and $d \ge 2$. Then $\rho(m, d) \le {m+d \choose d} - m$.

Remark 1. Take m=d=2 and let $Y:=X_{2,2}\subset\mathbb{P}^5$ be the Veronese surface. Theorem 1 says that $r_Y(P)\leq 3$ for all $P\in\mathbb{P}^5$. Since the secant variety of $X_{2,2}$ has dimension 4, we have $r_Y(P)\geq 3$ for a general $P\in\mathbb{P}^5$. Hence $\rho(2,2)=3$.

Theorem 1 is just a particular case of the following result.

Proposition 1. Let $Y \subset \mathbb{P}^r$ be an integral and non-degenerate m-dimensional variety, $r-2 \geq m \geq 1$, such that $\dim(\operatorname{Sing}(Y)) \leq m-2$, with the convention $\dim(\emptyset) = -1$. Fix $P \in \mathbb{P}^r$ and set $E := \{O \in Y_{reg} : P \in T_OY\}$. Assume $\dim(E) \leq m-2$. Then $r_Y(P) \leq r-m$.

Now we add a constraint: the border rank. Fix any integral and non-degenerate variety $Y \subset \mathbb{P}^r$. For any integer b > 0 the b-secant variety $\sigma_b(Y) \subseteq \mathbb{P}^r$ is (by definition) the closure in \mathbb{P}^r of of the union of all linear spaces $\langle S \rangle$, where S is a subset of Y with cardinality b. The algebraic set $\sigma_b(Y)$ is an integral variety and $\dim(\sigma_b(Y)) \leq \min\{r, (b+1) \cdot \dim(Y) - 1\}$ for all r, Y, b. The dimensions of all varieties $\sigma_b(X_{m,d})$ are known by a famous theorem of J. Alexander and A. Hirschowitz ([1], [2], [7]). The points $P \in \sigma_b(X_{m,d}) \setminus \sigma_{m-1}(X_{m,d})$ are said to have border rank b. Hence $\sigma_b(X_{m,d})$ is the set of all $P \in \mathbb{P}^{\binom{m+d}{m}-1}$ with border rank $\leq b$. For all positive integers m,d,b let $\rho(m,d,b)$ be the maximal integer $sr_{m,d}(P)$, where $P \in \sigma_b(X_{m,b})$. Of course, $\rho(m,d,1)=1$ for all $m,d,\rho(m,1,b)=1$ for all m and $b,\rho(m,d,b)\leq \rho(m,d)$ and and $\rho(m,d,b)\leq \rho(m,d,b+1)$ for all m,d,b. A theorem of Sylvester says

that $\rho(1,d,b) = d$ for all $b \ge 2$ ([5], [8], [9], Theorem 4.1). In this note we prove the following result.

Theorem 2. Fix integers m, d, b such that $2 \le b \le m$.

- (i) If $d \ge b 1$, then $\rho(m, d, b) \le \rho(m 1, d, b)$.
- (ii) If $3 \le d \le b-2$, then $\rho(m,d,b) \le d \cdot \lceil {m+d \choose m}/(m+1) \rceil$.

2. The Proofs

Proof of Proposition 1. If $P \in Y$, then $r_Y(P) = 1$. Hence we may assume $P \notin Y$. The case m = 1 is the main result of [3] (Notice that we use that $r \geq m + 2 = 3$ in this case). Hence we may assume $m \geq 2$. Let $V \subset \mathbb{P}^r$ be a general linear subspace of codimension m - 1 containing P. Since $P \notin Y$, the restriction to Y of the linear system of all hyperplanes through P has no base points. Hence Bertini's theorem implies $E \cap V = \emptyset$, $V \cap \operatorname{Sing}(Y) = \emptyset$ and that $C := Y \cap V$ is an integral and smooth curve spanning V. Since $E \cap V = \emptyset$, P is not contained in a tangent line of C. Hence $r_C(P) \leq \dim(V) - 1 = r - m$ ([3], Theorem 1) (again, we use that $r \geq m + 2$). Since $r_Y(P) \leq r_C(P)$, we get $r_Y(P) \leq r - m$.

Proof of Theorem 1. Fix $P \in \mathbb{P}^r$, $r := \binom{m+d}{m} - 1$. The variety $X_{m,d} \subset \mathbb{P}^r$ is smooth and non-degenerate. Let $E := \{O \in X_{m,d} : P \in T_O X_{m,d}\}$. By Proposition 1 Theorem 1 is true for P if $\dim(E) \leq m-2$. In particular Theorem 1 is true for P if $E = \emptyset$. If $E \neq \emptyset$, then $sr_{m,d}(P) = d$ by [5], Theorem 32 (the reader may check the proof even in the case d = 2, i.e. in the case in which E is the image of a line of \mathbb{P}^m). If $E = \emptyset$, then Proposition 1 gives $sr_{m,d}(P) \leq \binom{m+d}{m} - m$.

Proof of Theorem 2. First assume $d \geq b-1$. In this case there is a zero-dimensional scheme $W \subset \mathbb{P}^m$ such that $\deg(W) = b$ and $P \in \langle \nu_d(W) \rangle$ ([5], Proposition 11, [6], Lemma 2.1.6). Set $M := \langle W \rangle \subseteq \mathbb{P}^m$. Since $\deg(W) = b$, we have $a := \dim(M) \leq b-1$. Since $P \in \langle \nu_d(W) \rangle$, we have $P \in \langle \nu_d(M) \rangle$. We have $sr_{m,d}(P) = r_{\nu_d(M)}(P)$ ([10], Proposition 3.1, for the non-symmetric case; see [8], Exercise 3.2.2.2, for a stronger statement). Hence $sr_{m,d}(P) \leq \rho(a,d)$. Notice that [8], Exercise 3.2.2.2, implies $\rho(a,d) \leq \rho(b-1,d)$. To conclude it is sufficient to prove that $P \in \sigma_b(M)$. By the proof of [5], Proposition 11, W is smoothable inside \mathbb{P}^m . By [6], Proposition 2.1.5, W is smoothable inside M. Hence $P \in \sigma_b(M)$ ([6], Lemma 2.1.6).

890 E. Ballico

Now assume $3 \le d \le b-2$. Since $d \ge 3$, we have $\rho(m,d) \le d \cdot \lceil {m+d \choose m}/(m+1) \rceil$ ([4], Theorem 1).

Acknowledgements

The author was partially supported by MIUR and GNSAGA of INdAM (Italy).

References

- [1] J. Alexander, A. Hirschowitz, La méthode d'Horace éclatée: application à l'interpolation en degrée quatre, *Invent. Math.*, **107** (1992), 585-602.
- [2] J. Alexander, A. Hirschowitz, Polynomial interpolation in several variables, J. Alg. Geom., 4, No. 2 (1995), 201-222.
- [3] E. Ballico, On the symmetric tensor rank of non-tangential points of projective curves, *Int. J. Pure Appl. Math.*, **64**, No. 2 (2010), 187-189.
- [4] E. Ballico, An upper bound for the symmetric tensor rank of a low degree polynomial in a large number of variables, *ISRN-Geometry*, To Appear.
- [5] A. Bernardi, A. Gimigliano, M. Idà, Computing symmetric rank for symmetric tensors, *J. Symbolic. Comput.*, **46**, No. 1 (2011), 34-53.
- [6] J. Buczyński, A. Ginensky, J. M. Landsberg, Determinantal equations for secant varieties and the Eisenbud-Koh-Stillman conjecture, arXiv:1007.0192v4 [math.AG]; To appear in: J. London Math. Soc.
- [7] K. Chandler, A brief proof of a maximal rank theorem for generic double points in projective space, *Trans. Amer. Math. Soc.*, **353**, No. 5 (2000), 1907-1920.
- [8] J.M. Landsberg, *Tensors: Geometry and Applications*, Graduate Studies in Mathematics, Vol. 128, Amer. Math. Soc. Providence (2012).
- [9] J.M. Landsberg, Z. Teitler, On the ranks and border ranks of symmetric tensors, *Found. Comput. Math.*, **10**, No. 3 (2010), 339-366.
- [10] L.H. Lim, V. de Silva, Tensor rank and the ill-posedness of the best low-rank approximation problem, SIAM J. Matrix Anal. Appl., 30, No. 3 (2008), 1084-1127.