LOW WEIGHT CODEWORDS OF CODES COMING FROM SMOOTH CURVES IN THE HERMITIAN SURFACE

E. Ballico
Department of Mathematics
University of Trento
38 123 Povo (Trento) - Via Sommarive, 14, ITALY

Abstract: Here we describe all codewords with low weight on certain Goppa codes of curves contained in a Hermitian surface \mathcal{H} over \mathbb{F}_q^2. We also show how to construct curves $C \subset \mathcal{H}$ with good cohomological properties (arithmetically Cohen-Macaulay curves).

AMS Subject Classification: 11G20, 14H50, 14N05, 14Q05
Key Words: Hermitian surface, dual code, low weight codeword, evaluation code, algebraic-geometric code, arithmetically Cohen-Macaulay curve

1. Introduction

Let C be a smooth and geometrically connected projective curve defined over K. Fix any line bundle $\mathcal{L} = \mathcal{O}_C(D)$ on C defined over K and any $B \subset C(K)$, with B disjoint from the support of D. Let $\mathcal{C}(B, \mathcal{L})$ denote the Goppa code obtained evaluating the rational functions f on C with $(f) + D \geq 0$ at the points of B ([20], [21]). Under very mild conditions $\mathcal{C}(B, \mathcal{L})$ is an $[n, k]$-code with $n = \#(B)$ and $k = h^0(C, \mathcal{L})$. For each $w \in \mathcal{C}(B, \mathcal{L})^\perp$, $w \neq 0$, the support $\text{supp}(w)$ of B is the set of all $P \in B$ at which w is non-zero. Hence the minimum distance of $\mathcal{C}(B, \mathcal{L})^\perp$ is the minimal integer $\text{supp}(w)$. In many cases...
the vector space $H^0(C, \mathcal{L})$ embeds B into a projective space \mathbb{P}^{k-1} and in that case we may look at the code $\mathcal{C}(B, \mathcal{L})$ as an evaluation code ([15], [16]). In many cases one uses both approaches, i.e. take C as a curve inside a projective space \mathbb{P}^r and then uses this embedding to construct \mathcal{L} (see e.g. [17] for a higher dimensional case). In the case in which \mathcal{L} is of the restriction of some line bundle $\mathcal{O}_{\mathbb{P}^r}(x)$, $x > 0$, and C is a complete intersection inside \mathbb{P}^r, then one can use this approach to guess where to find low weight codewords of $\mathcal{C}(B, \mathcal{L})^\perp$ and often get lower bounds for the minimum distance of $\mathcal{C}(B, \mathcal{L})^\perp$. It is interesting to extend this approach to more general line bundles \mathcal{L} and to many curves C with large $\sharp(C(K))$. Maximal curves always are contained in a Hermitian variety ([10], [14], §10.3, and references therein) and high genus maximal curves are contained in a low dimensional Hermitian variety ([14], Corollary 10.25). Here we look at curves inside the Hermitian surface (all curves, not only the one which are maximal). For the osculating properties of the se curves, see

We take $K = \mathbb{F}_{q^2}$. Take homogeneous coordinates x_0, x_1, x_2, x_3 of \mathbb{P}^3. Set $\mathcal{H} = \{x_0^{q+1} + x_1^{q+1} + x_2^{q+1} + x_3^{q+1} = 0\}$. \mathcal{H} is a geometrically integral and smooth surface. The set $\mathcal{H}(\mathbb{F}_{q^2})$ is so important that it deserved a name: it is the Hermitian surface ([12], Ch. 19, [13], Ch. 23) or the non-singular Hermitian surface of $PG(3,q^2)$. Some maximal curves with large genus are contained in \mathcal{H}. The surface \mathcal{H} has a rich geometry and many line bundles defined over \mathbb{F}_{q^2}, but not isomorphic to some $\mathcal{O}_\mathcal{H}(t)$, $t \in \mathbb{Z}$. Let Φ be the set of all lines contained in \mathcal{H} and defined over \mathbb{F}_{q^2}. We have $\sharp(\Phi) = (q + 1)(q^3 + 1)$ ([12], Theorem 19.1.5). To get nice line bundles on \mathcal{H} we use the geometry of lines contained in \mathcal{H}. A curve $C \subset \mathbb{P}^r$ is said to be arithmetically Cohen-Macaulay if $h^1(\mathbb{P}^r, \mathcal{I}_C(t)) = 0$ for all $t \geq 0$ (e.g. a complete intersection curve is arithmetically Cohen-Macaulay). By definition for these curves the condition $h^1(\mathbb{P}^3, \mathcal{I}_C(x)) = 0$ in the statements of Theorem 1 and 2 below is satisfied. See section 4 for a construction of arithmetically Cohen-Macaulay curves on \mathcal{H}.

For curves we prove the following results.

Theorem 1. Let $C \subset \mathcal{H}$ be a geometrically integral smooth curve defined over \mathbb{F}_{q^2}. Fix an integer x such that $q \leq x \leq q^2 - 1$, $h^1(\mathbb{P}^3, \mathcal{I}_C(x)) = 0$ and a zero-dimensional scheme $E \subset C$ defined over \mathbb{F}_{q^2}. Assume $\deg(E) \leq x + 1$. Fix $B \subset C(\mathbb{F}_{q^2})$ such that $B \cap E_{red} = \emptyset$. For any $L \in \Phi$ set $e_L(E) := \deg(E \cap L)$ and $f_L(B) := \sharp(B \cap L)$. Set $C := C(B, \mathcal{O}_C(x)(-E))$. Assume $\sharp(B) + \deg(E) > x \cdot \deg(C)$. Let Φ_0 be the set of all $L \in \Phi$ such that $e_L(E) + f_L(B) \geq x + 2$
(a) If $\Phi_0 = \emptyset$, then the dual code C^\perp has minimum distance $\geq 2x + 2 - \deg(E)$.

(b) Assume $\Phi_0 \neq \emptyset$. Let w be a non-zero codeword of C with weight $\leq 2x + 1 - \deg(E)$. Then the support, S, of w is a set $S \subseteq L \cap B$ for some $L \in \Psi_0$ and $x + 2 - e_L(E) \leq \sharp(S) \leq f_L(E)$.

(c) Assume $\Phi_0 \neq \emptyset$ and take any $L \in \Phi_0$ and any $S \subseteq L \cap B$ such that $x + 2 - e_L(E) \leq \sharp(S) \leq f_L(E)$. Then S is the support of a codeword of C^\perp.

Remark 1. By [3], Theorem at page 492, every geometrically integral curve $C \subseteq \mathbb{P}^r$, $r \geq 3$, satisfies $h^1(\mathbb{P}^r, \mathcal{I}_C(t)) = 0$ if either $t \geq \deg(C) - r + 1$ or $t = \deg(C) - r$ and C is not isomorphic to \mathbb{P}^1. Hence in the statement of Theorem 1 we may drop the condition “$h^1(\mathbb{P}^3, \mathcal{I}_C(x)) = 0$" if $x \geq \deg(C) - 2$ and (except trivial cases) even if $x = \deg(C) - 2$. If in the statement of Theorem 1 we drop the assumption “$h^1(\mathbb{P}^r, \mathcal{I}_C(t)) = 0$", then parts (a) and (b) are still true. This part for arbitrary C may be used to get a quick test if a curve $C \subseteq \mathcal{H}$ with large $\sharp(C(\mathbb{F}_{q^2}))$ is suitable to get a code (we recall that for any line $L \subseteq \mathcal{H}$ and any curve $C \subseteq \mathcal{H}$ not containing L the integer $\deg(D \cap L)$ is the same for all $D \in |\mathcal{O}_H(C)|$).

Set $n := \sharp(B)$ and $k := h^0(C, \mathcal{O}_C(x)) - \deg(E)$. The code C is an $[n, k]$-code (see Lemma 1).

In the case $E = \emptyset$ an easy modification of the proofs of [2], Theorem 3.5 and 3.8, gives the following result.

Theorem 2. Let $C \subseteq \mathcal{H}$ be a geometrically integral smooth curve defined over \mathbb{F}_{q^2}. Fix an integer x such that $q \leq x \leq q^2 - 1$, $h^1(\mathbb{P}^3, \mathcal{I}_C(x)) = 0$ and a set $B \subseteq C(\mathbb{F}_{q^2})$. For any $L \in \Phi$ set $f_L(B) := \sharp(B \cap L)$. Set $C := C(B, \mathcal{O}_C(x)(-E))$. Assume $\sharp(B) > x \cdot \deg(C)$. For any integer t let $\Phi(t, B)$ be the set of all $L \in \Phi$ such that $f_L(B) \geq t$. Let $\Phi(=, B, x + 1)$ denote the set of all reducible conics $L \cup R$ with $L, R \in \Phi$, $f_L(B) \geq x + 1$, $f_R(B) \geq x + 1$ and $\sharp((L \cap R) \cap B) \geq 2x + 2$.

(a) If $\Phi(x + 2, B) = \emptyset$ and $\Phi(=, x + 1, B) = \emptyset$, then the dual code C^\perp has minimum distance $\geq 3x$.

(b) Every codeword of C^\perp with weight at most $3x - 1$ has either support contained in an element of $\Phi(x + 2, B)$ or the disjoint union of two elements of $\Phi(x + 2, B)$ or an element of $\Phi(=, x + 1, B)$.

(c) Fix a set $S \subseteq B$ such that $\sharp(B) \leq 3x - 1$. S is the support of a codeword of C^\perp if and only if one of the following cases occur:

(i) $\sharp(S) \geq x + 2$ and there is $L \in \Phi(B, x + 2)$ such that $S \subseteq L$;
(ii) $\sharp(S) \geq 2x + 4$; and there are $L, R \in \Phi(B, x + 2)$ such that $S \subseteq L \cup R$, $\sharp(S \cap L) \geq x + 2$ and $\sharp(S \cap R) \geq x + 2$;

(iii) $\sharp(S) \geq 2x + 2$ and there is $L \cup R \in \Phi(=, B, x + 1)$ such that $S \subseteq L \cup R$, $\sharp(S \cap L) \geq x + 1$ and $\sharp(S \cap L) \geq x + 1$.

Obviously, in (ii) (resp. (iii)) we need $x \geq 5$ (resp. $x \geq 3$), because we assumed $\sharp(S) \leq 3x - 1$.

2. Preliminary Lemmas

The following lemma is a straightforward extension of [2], Lemma 3.3.

Lemma 1. Fix an integer $x > 0$ and a smooth and geometrically connected curve $C \subset \mathbb{P}^r$ over a finite field K such that $h^1(\mathbb{P}^r, \mathcal{I}_C(x)) = 0$. Let $E \subset C$ be a zero-dimensional scheme defined over K and $B \subset C(K) \setminus E_{red}$ such that either $\sharp(B) + \deg(E) > x \cdot \deg(C)$ or $h^0(C, \mathcal{O}_C(x)(-E - B)) = 0$. Set $\mathcal{C} := \mathcal{C}(B, \mathcal{O}_C(x)(-E))$. The code \mathcal{C} is an $[n, k]$-code over K with $n := \sharp(B)$ and $k := h^0(C, \mathcal{O}_C(x)(-E))$. A set $A \subseteq B$ contains (resp. is) the support of a codeword of \mathcal{C}^\perp if and only if $h^1(\mathbb{P}^r, \mathcal{I}_{E \cup A}(x)) > h^1(\mathcal{I}_E(x))$ (resp. $h^1(\mathbb{P}^r, \mathcal{I}_{E \cup A}(x)) > h^1(\mathcal{I}_{E \cup A'}(x))$ for all $A' \subsetneq A$). The set of all codewords of \mathcal{C}^\perp whose support is contained in A is a K-vector space of dimension $h^1(\mathbb{P}^r, \mathcal{I}_{E \cup A}(x)) - h^1(\mathcal{I}_E(x))$.

Proof. Since $B \cap E = \emptyset$, we have $h^0(C, \mathcal{O}_C(x)(-E - B)) = 0$ if and only if the evaluation map $H^0(C, \mathcal{O}_C(x)(-E)) \to H^0(B, \mathcal{O}_C(x)(-E))|B$ is injective, i.e. if and only if C is an $[n, k]$-code. If $\sharp(B) + \deg(E) > x \cdot \deg(C)$, then $\deg(\mathcal{O}_C(x)(-E - B)) < 0$ and hence $h^0(C, \mathcal{O}_C(x)(-E - B)) = 0$. A set $A \subseteq B$, $A \neq \emptyset$, contains the support of a codeword of \mathcal{C} if and only if the evaluations associated to the point of A are not linearly independent, i.e. if and only if $h^0(C, \mathcal{O}_C(x)(-E - A)) > h^0(C, \mathcal{O}_C(x)(-E - B)) - \sharp(A)$. Since we assumed $h^1(\mathbb{P}^r, \mathcal{I}_C(x)) = 0$, $E \subset C$ and $E \cap A = \emptyset$, then the restriction map $H^0(\mathbb{P}^r, \mathcal{O}_{\mathbb{P}^r}(x)) \to H^0(C, \mathcal{O}_C(x))$ is surjective. Hence $h^0(\mathbb{P}^r, \mathcal{I}_{E \cup A}(x)) > h^0(\mathbb{P}^r, \mathcal{I}_E(x)) - \sharp(A)$. Since

$$h^1(\mathbb{P}^r, \mathcal{O}_{\mathbb{P}^r}(x)) = 0,$$

$$h^0(\mathbb{P}^r, \mathcal{I}_{E \cup A}(x)) > h^0(\mathbb{P}^r, \mathcal{I}_E(x)) - \sharp(A)$$

if and only if $h^1(\mathbb{P}^r, \mathcal{I}_{E \cup A}(x)) > h^1(\mathcal{I}_E(x))$. \hfill \qedsymbol

With the terminology of [2], §2, the finite set A is said to be minimally x-linked if $h^1(\mathbb{P}^r, \mathcal{I}_A(x)) > h^1(\mathbb{P}^r, \mathcal{I}_{A'}(x))$ for all $A' \subsetneq A$ (it is sufficient to test the
sets $A' \subset A$ such that $\sharp(A') = \sharp(A) - 1$. Theorem 1 and 2 are easily translated in the classifications of certain minimally $\mathcal{I}_E(x)$-linked sets (see Lemmas 7 and 8) for the results quoted later.

Remark 2. Let W be any projective scheme and L a line bundle on it. Fix any subscheme $E \subset Z$. Since Z is zero-dimensional, we have $h^1(Z, \mathcal{I}_{E,Z}(x, y)) > 0$. Hence the restriction map $H^0(Z, L|Z) \to H^0(E, L|E)$ is surjective. Hence if $h^1(W, \mathcal{I}_W \otimes L) > 0$, then $h^1(W, \mathcal{I}_Z \otimes L) > 0$.

Remark 3. For any hypersurface $T \subset \mathbb{P}^r$ and any zero-dimensional subscheme $Z \subset \mathbb{P}^r$ let $\text{Res}_T(Z)$ denote the residual scheme of Z with respect to T, i.e. the closed subscheme of \mathbb{P}^r with $\mathcal{I}_Z : \mathcal{I}_T$ has its ideal sheaf. We have $\deg(Z) = \deg(Z \cap T) + \deg(\text{Res}_T(Z))$. If $Z = Z_1 \cup Z_2$, then $\text{Res}_T(Z) = \text{Res}_T(Z_1) \cup \text{Res}_T(Z_2)$. If Z is reduced (i.e. if Z is a finite set), then $\text{Res}_T(Z) = Z \setminus Z \cap T$. For each $d \in \mathbb{Z}$ we have an exact sequence

$$0 \to \mathcal{I}_{\text{Res}_T(Z)}(d - k) \to \mathcal{I}_Z(d) \to \mathcal{I}_{Z \cap T,T}(d) \to 0 \tag{1}$$

where $k := \deg(T)$. Hence for each integer $i \geq 0$ we have

$$h^i(\mathbb{P}^2, \mathcal{I}_Z(d)) \leq h^i(\mathbb{P}^2, \mathcal{I}_{\text{Res}_T(Z)}(d - k)) + h^i(T, \mathcal{I}_{Z \cap T,T}(d)) \tag{2}$$

The following 6 lemmas are an easy modification of the proofs of [2], Theorem 3.5 and 3.8.

Lemma 2. Fix a line $L \subset \mathbb{P}^2$ and a set $S \subset L$. If $\sharp(S) - \sharp(L \cap S) + \deg(E) - \deg(E \cap L) \leq d$, then $h^1(\mathbb{P}^2, \mathcal{I}_{E \cup S}(d)) = h^1(L, \mathcal{I}_{E \cup S \cap L,L}(d)) = \max\{0, \deg(E \cap L) + \sharp(L \cap S) - d - 1\}$.

Proof. Since $E \cap S = \emptyset$, we have $\deg(E \cup S) = \deg(E) + \deg(S)$, $\deg(\text{Res}_L(E \cup S)) = \deg(\text{Res}_L(E)) + \sharp(S) - \sharp(S \cap L)$ and $\deg(L \cap (E \cup S)) = \deg(E \cap L) + \sharp(S \cap L)$. The latter equality gives $h^1(L, \mathcal{I}_{(E \cup S) \cap L,L}(d)) = \max\{0, \deg(E \cap L) + \sharp(L \cap S) - d - 1\}$, because $L \cong \mathbb{P}^1$. Since $\deg(\text{Res}_L(E \cup S)) \leq d$, we have $h^1(\mathbb{P}^2, \mathcal{I}_{\text{Res}_L(E \cup L)}(d - 1)) = 0$ ([1], Lemma 34, or [8], Remarque (i) at p. 116). Hence (2) gives $h^1(\mathbb{P}^2, \mathcal{I}_{E \cup S}(d)) \leq h^1(L, \mathcal{I}_{(E \cup S) \cap L,L}(d))$. Since $(E \cup S) \cap L \subset E \cup S$, Remark 2 gives $h^1(\mathbb{P}^2, \mathcal{I}_{E \cup S}(d)) \geq h^1(L, \mathcal{I}_{(E \cup S) \cap L,L}(d))$. \(\Box\)

Lemma 3. Fix an integer $x > 0$ and lines $L, R \in \mathbb{P}^r, r \geq 2$, such that $L \neq R$ and $L \cap R \neq \emptyset$. Set $\{O\} := L \cap R$. Fix a finite set $S \subset L \cup R$ such that $\sharp(S \cap L) \geq \sharp(S \cap R)$ and $S \neq \emptyset$.

(a) We have $h^1(\mathbb{P}^r, \mathcal{I}_S(x)) > 0$ if and only if either $\sharp(S \cap L) \geq x + 2$ or $\sharp(S) \geq 2x + 2$.

LOW WEIGHT CODEWORDS OF CODES COMING... 895
(b) We have $h^1(\mathbb{P}^r, \mathcal{I}_S(x)) > h^1(\mathbb{P}^r, \mathcal{I}_{S'}(x))$ for all $S' \subsetneq S$ if and only if either $S \subset L$ and $\sharp(S) \geq x + 2$ or $\sharp(S \cap L) \geq x + 2$ and $\sharp(S \cap R) \geq x + 1$ or $\sharp(S \cap L) = \sharp(S \cap R) = x + 1$ and $O \notin S$.

Proof. Since $\sharp(S \cap L) \geq \sharp(S \cap R)$, we have $\sharp(S \cap L) \leq x + 1$ and $\sharp(S) \geq 2x + 2$ if and only if $\sharp(S \cap L) = \sharp(S \cap R) = x + 1$ and $O \notin S$. Fix a finite set $A \subset L \cup R$ such that $\sharp(A \cap L) \geq \sharp(A \cap R)$. Since the restriction map $H^0(\mathbb{P}^r, \mathcal{O}_{\mathbb{P}^r}(x)) \to H^0(L \cup R, \mathcal{O}_{L \cup R}(x))$ is surjective, we have $h^1(\mathbb{P}^r, \mathcal{I}_S(x)) = h^1(L \cup R, \mathcal{I}_{A, L \cup R}(x))$. Since $h^0(L \cup R, \mathcal{O}_{L \cup R}(x)) = \frac{(x + 2)}{2} - \frac{(x)}{2} = 2x + 1$, we have $h^1(L \cup R, \mathcal{I}_{A, L \cup R}(x)) = \max\{0, \sharp(S) - 2x - 1\}$. Since $h^1(L \cup R, \mathcal{O}_{A, L \cup R}(x)) = 0$, we also have $h^1(L \cup R, \mathcal{I}_{A, L \cup R}(x)) - h^0(L \cup R, \mathcal{I}_{A, L \cup R}(x)) = \sharp(A) - 2x - 1$. Since $L \cong R \cong \mathbb{P}^1$, we have $h^1(L, \mathcal{I}_{F, L}(x)) = \max\{0, \sharp(F) - x - 1\}$ and $h^0(R, \mathcal{I}_{F, L}(x)) = \max\{0, x + 1 - \sharp(F)\}$ for all finite sets $F \subset L$ and similarly for any finite subset of R. Consider the Mayer-Vietoris exact sequence

$$0 \to \mathcal{O}_{L \cup R}(x) \to \mathcal{O}_L(x) \oplus \mathcal{O}_R(x) \to \mathcal{O}_O \to 0 \quad (3)$$

Set $A' := A \setminus A \cap L$. Notice that $A' = A \cap R$ if $O \notin A$ and $A' = A \cap L \setminus \{O\}$ if $O \in A$. First assume $\sharp(A \cap L) \geq x + 1$. Hence $h^0(L, \mathcal{I}_{A \cap L, L}(x)) = 0$. From (3) we get $h^0(L \cup R, \mathcal{I}_{A, L \cup R}(x)) = h^0(R, \mathcal{I}_{A'}(x)) = \max\{0, x - \sharp(A)\}$. Hence $h^1(\mathbb{P}^r, \mathcal{I}_A(x)) = (\sharp(A \cap L) - x - 1) + \max\{0, \sharp(A') - x\}$. Now assume $\sharp(A \cap L) \leq x$. Since $\sharp(S \cap R) \leq \sharp(S \cap L)$, from (3) we get $h^0(L \cup R, \mathcal{I}_{A, L \cup R}(x)) = (x + 1) - \sharp(A \cap L) + x - \sharp(A') = 2x + 1 - \sharp(A)$ and hence $h^1(\mathbb{P}^r, \mathcal{I}_A(x)) = 0$. Applying these relations to S and its subsets we get part (b). Part (a) follows from part (b). □

Lemma 4. Fix an integer $x > 0$ and lines $L, R \in \mathbb{P}^r$, $r \geq 3$, such that $L \cap R = \emptyset$. Fix $S \subset L \cup R$ such that $\sharp(S \cap L) \geq \sharp(S \cap R)$ and $1 \leq \sharp(S) \leq 3x - 1$.

(a) We have $h^1(\mathbb{P}^r, \mathcal{I}_S(x)) > 0$ if and only if $\sharp(S \cap L) \geq x + 2$.

(b) We have $h^1(\mathbb{P}^r, \mathcal{I}_S(x)) > h^1(\mathbb{P}^r, \mathcal{I}_{S'}(x))$ for all $S' \subsetneq S$ if and only if either $S \subset L$ and $\sharp(S) \geq x + 2$ or $\sharp(S \cap R) \geq x + 2$.

Proof. Fix a finite set $A \subset L \cup R$. We have $\mathcal{O}_{L \cup R}(x) \cong \mathcal{O}_L(x) \oplus \mathcal{O}_R(x)$ and hence $h^i(L \cup R, \mathcal{I}_{A, L \cup R}(x)) = h^i(L, \mathcal{I}_{A \cap L}(x)) + h^i(L, \mathcal{I}_{A \cap R}(x))$, $i = 0, 1$. Hence to extend the proof of Lemma 3 it is sufficient to prove the surjectivity of the restriction map $\rho : H^0(\mathbb{P}^r, \mathcal{O}_{\mathbb{P}^r}(x)) \to H^0(L \cup R, \mathcal{O}_{L \cup R}(x))$. Since $L \cap R = \emptyset$, there is a smooth quadric surface $Q \subset \mathbb{P}^r$ such that $Q \supset L \cup R$. Since the restriction map $H^0(\mathbb{P}^r, \mathcal{O}_{\mathbb{P}^r}(x)) \to H^0(Q, \mathcal{O}_Q(x))$ is surjective, it is sufficient to prove the surjectivity of the restriction map $\rho' : H^0(Q, \mathcal{O}_Q(x)) \to H^0(L \cup$
$R, \mathcal{O}_{L \cup R}(x)$. We have $Q \cong \mathbb{P}^1 \times \mathbb{P}^1$, with, say, L and R divisors of type $(1, 0)$ on Q. Hence $\mathcal{O}_Q(x) \cong \mathcal{O}_Q(x, x)$ and $\mathcal{I}_{L \cup R, Q}(x) \cong \mathcal{O}_Q(x-2, x)$. The map ρ' is surjective, because $h^1(Q, \mathcal{O}_Q(t-2, t)) = 0$ for all $t > 0$ (e.g. by K"unneth formula).

Lemma 5. Fix an integer $x > 0$ and a finite set $S \subseteq \mathbb{P}^2$ such that $1 \leq \#(S) \leq 3x - 1$. We have $h^1(\mathbb{P}^2, \mathcal{I}_S(x)) > h^1(\mathbb{P}^2, \mathcal{I}_{S'}(x))$ for all $S' \subsetneq S$ if and only if one of the following cases occurs:

(i) $\#(S) \geq x + 2$ and there is a line $L \subseteq \mathbb{P}^2$ such that $S \subseteq L$;

(ii) there are lines $L, R \in \mathbb{P}^2$ such that $L \neq R$, $\#(S \cap L) \geq x + 2$ and $\#(S \cap R) \geq x + 1$ or $\#(S \cap L) = \#(S \cap R) = x + 1$ and $O \notin S$, where $\{O\} := L \cap R$;

(iii) there is a smooth conic $T_2 \subseteq \mathbb{P}^2$

Proof. For any line L and any finite set $A \subseteq L$ we have $h^1(L, \mathcal{I}_{A, L}(x)) = \max\{0, \#(A) - x - 1\}$. For any smooth conic T we have $h^0(T, \mathcal{O}_T(x)) = 2x + 1$. Hence Lemma 3 gives the “if” part. Now assume $h^1(\mathbb{P}^2, \mathcal{I}_S(x)) > h^1(\mathbb{P}^2, \mathcal{I}_{S'}(x))$ for all $S' \subsetneq S$. Let τ be the maximal integer $t > 0$ such that $h^1(\mathbb{P}^2, \mathcal{I}_S(t)) > 0$. Our assumption implies $\tau \geq x$. Since $\#(S) < 3\tau$, we may apply the case $s = 3$ of [8], Corollaire 2, and get that either there is a line L_1 such that $\#(L_1 \cap S) \geq x + 2$ or there is a conic L_2 such that $\#(S \cap L_2) \geq 2x + 2$. First assume the existence of a conic L_2 such that $\#(S \cap L_2) \geq 2x + 2$. Since $\deg(L_2) = 2$, we have an exact sequence (just (1) for $k = 2$):

$$0 \to \mathcal{I}_{S \setminus S \cap L_2}(x-2) \to \mathcal{O}_S(x) \to \mathcal{I}_{S \cap L_2}(x) \to 0$$ \hspace{1cm} (4)

Since $\#(S \setminus S \cap L_2) \leq 3x - 1 - 2x - 2 \leq x - 1$, we have $h^1(\mathbb{P}^2, \mathcal{I}_{S \setminus S \cap L_2}(x-2)) = 0$. From (4) we get $h^1(\mathbb{P}^2, \mathcal{I}_S(x)) \leq h^1(\mathbb{P}^2, \mathcal{I}_{S \cap L_2}(x))$. Hence $S \subseteq L_2$. If L_2 is smooth, then we are in case (iii). If L_2 is a double line, then we are in case (i) with $L := (L_2)_{\text{red}}$. Now assume $L_2 = L \cup R$ with L, R lines and $L \neq R$. Set $\{O\} := L \cap R$. Without losing generality we may assume $\#(S \cap L) \geq \#(S \cap R)$. If $\#(S \cap (R \setminus \{O\})) \geq x + 1$, then we are in case (ii). Hence we may assume $\#(S \setminus S \cap L) \leq x$. Since $\deg(L) = 1$, we have an exact sequence

$$0 \to \mathcal{I}_{S \setminus L \cap S}(x-1) \to \mathcal{I}_S(x) \to \mathcal{I}_{S \cap L, L}(x) \to 0$$ \hspace{1cm} (5)

Since $\#(S \setminus S \cap L) \leq x$, we have $h^1(\mathbb{P}^2, \mathcal{I}_{S \setminus S \cap L}(x-1)) = 0$. From (5) we get $h^1(\mathbb{P}^2, \mathcal{I}_S(x)) \leq h^1(\mathbb{P}^2, \mathcal{I}_{S \cap L}(x))$. Hence $S \subseteq L$. Hence we are in case (i). Now assume that $\#(S \cap T) \leq 2x + 1$ for each conic T, but that there is a line L such that $\#(S \cap L) \geq x + 2$. If we are not in case (i), then as above we get
\[h^1(\mathbb{P}^2, \mathcal{I}_{S \cap L}(x-1)) > 0. \] Since \(\sharp(S \cap L) \leq 3x - 1 - x - 2 \leq 2(x-1) + 1, \] [1], Lemma 34, gives the existence of a line \(D \) such that \(\sharp(D \cap (S \cap L)) \geq x + 1. \) Hence \(\sharp(S \cap (L \cup D)) \geq 2x + 3, \) contradicting one of our assumptions. \(\Box \)

Lemma 6. Let \(Q \subset \mathbb{P}^3 \) be a smooth quadric surface and \(L, R \subset Q \) disjoint lines. Fix a finite set \(S \subset Q \) such that \(1 \leq \sharp(S) \leq 3x + 1, \) \(\sharp(S \cap L) \geq x + 1 \) and \(\sharp(S \cap R) \geq x + 1. \) We have \(h^1(\mathbb{P}^3, \mathcal{I}_S(x)) > h^1(\mathbb{P}^3, \mathcal{I}_{S'}(x)) \) for all \(S' \subseteq S \) if and only if \(S \subset L \cup R, \) \(\sharp(S \cap L) \geq x + 2 \) and \(\sharp(S \cap R) \geq x + 2. \)

Proof. Without losing generality we may assume that \(L \) and \(R \) are of type \((1, 0)\) on \(Q. \) Since \(L \cup R \in |O_Q(2, 0)|, \) there is an exact sequence on \(Q: \)

\[0 \to \mathcal{I}_{S \cap (L \cup R)}(x-2, x) \to \mathcal{I}_S(x, x) \to \mathcal{I}_{S \cap (L \cup R), L \cup R}(x) \to 0 \quad (6) \]

Since \(\sharp(S \cap (L \cup R)) \leq 3x + 1 - 2x - 2 = x - 1, \) we have \(h^1(Q, \mathcal{I}_{S \cap (L \cup R)}(x - 2, x)) = 0. \) Hence (6) gives \(h^1(Q, \mathcal{I}_S(x)) \geq h^1(Q, \mathcal{I}_{S \cap (L \cup R)}(x)). \) Hence \(S \subset L \cup R. \) Lemma 4 gives \(\sharp(S \cap L) \geq x + 2 \) and \(\sharp(S \cap R) \geq x + 2. \) \(\Box \)

Lemma 7. Fix an integer \(x > 0 \) and a set \(S \subset \mathbb{P}^r, \) \(r \geq 3, \) such that \(1 \leq \sharp(S) \leq 3x - 1. \) We have \(h^1(\mathbb{P}^r, \mathcal{I}_S(x)) > h^1(\mathbb{P}^r, \mathcal{I}_{S'}(x)) \) for all \(S' \subseteq S \) if and only if one of the following cases occurs:

(a) \(\sharp(S) \geq x + 2 \) and there is a line \(L \subset \mathbb{P}^r \) such that \(S \subset L \) and \(\sharp(S) \geq x + 2; \)

(b) there are lines \(L, R \subset \mathbb{P}^r \) such that \(L \cap R = \emptyset, \) \(\sharp(S \cap L) \geq x + 2 \) and \(\sharp(S \cap R) \geq x + 2; \)

(c) there are lines \(L, R \in \mathbb{P}^r \) such that \(L \neq R, \) \(L \cap R \neq \emptyset \) (say, \(\{O\} := L \cap R), \) and either \(\sharp(S \cap L) \geq x + 2 \) and \(\sharp(S \cap R) \geq x + 1 \) or \(\sharp(S \cap L) = \sharp(S \cap R) = x + 1 \) and \(O \notin S; \)

(d) \(\sharp(S) \geq 2x + 2 \) and there is a smooth conic \(T_2 \) such that \(S \subset T_2. \)

Proof. Obviously in case (b) we need \(x \geq 5. \) Since the cases \(x = 1, 2 \) are obvious, we assume \(x \geq 3. \) For any line \(L \) and any finite set \(A \subset L \) we have \(h^1(L, \mathcal{I}_{A \cap L}(x)) = \max\{0, \sharp(A) - x - 1\}. \) Hence Lemmas 3 and 4 give the “ if ” part. Now we prove the “ only if ” part. Fix a finite set \(S \subset \mathbb{P}^r \) such that \(1 \leq \sharp(S) \leq 3x - 1 \) and \(h^1(\mathbb{P}^r, \mathcal{I}_S(x)) > h^1(\mathbb{P}^r, \mathcal{I}_{S'}(x)) \) for all \(S' \subseteq S. \) Set \(s_0 := \sharp(S). \) Let \(H_1 \subset \mathbb{P}^3 \) be a hyperplane such that \(a_1 := \sharp(S \cap H_1) \) is maximal. Set \(S_1 := S_0 \setminus S_0 \cap H_1 \) and \(s_1 := \sharp(S_1). \) The sequence \(\{a_i\} \) is non-decreasing and \(S_{i+1} \subseteq S_i \) for all \(i. \) Since any \(r \) points of \(\mathbb{P}^r \) are coplanar, the maximality
of the integer s_i gives that if $a_i \leq r - 1$, then $a_{i+1} = 0$. Hence $S_i = \emptyset$ for all $i \geq x + 1$. For any integer $i \in \{1, \ldots, x\}$ we have an exact sequence

$$0 \to \mathcal{I}_{S_i}(x - i) \to \mathcal{I}_{S_{i-1}}(x - i + 1) \to \mathcal{I}_{S_{i-1} \cap H_i, H_i}(x - i + 1) \to 0$$

(7)

Since $h^1(\mathbb{P}^r, \mathcal{I}_{S_1}(x)) = 0$, (7) implies the existence of an integer $i \in \{1, \ldots, x\}$ such that $h^1(H_i, \mathcal{I}_{S_{i-1} \cap H_i, H_i}(x - i + 1)) > 0$. Call c the minimal such an integer. Since $h^1(H_e, \mathcal{I}_{S_{c-1} \cap H_e, H_e}(x - c + 1)) > 0$, we have $a_c \geq x - c + 3$ and equality holds only if $S_{c-1} \cap H_e$ is contained in a line ([1], Lemma 34). Since the sequence $\{a_i\}$ is non-decreasing, we get $\sharp(S) \geq c(x - c + 3)$. The function $t \mapsto t(x + 3 - t)$ is non-decreasing if $t \leq (x + 3)/2$ and non-increasing if $t \geq (x + 3)/2$. Since $\sharp(S) < 3x$ and $x(x + 3 - x) = 3x$, we get $c \in \{1, 2\}$.

(a) First assume $r = 3$.

(a1) Here we assume $c = 1$. First assume $a_1 \geq 2x + 2$. Since $\sharp(S_1) = s_0 - a_1 \leq x$, we have $h^1(\mathbb{P}^r, \mathcal{I}_{S_1}(x - 1)) = 0$. Hence from (7) we get $h^1(\mathbb{P}^r, \mathcal{I}_{S_1}(x)) \leq h^1(\mathbb{P}^r, \mathcal{I}_{S_1}(x))$. Since $h^1(\mathbb{P}^r, \mathcal{I}_S(x)) > h^1(\mathbb{P}^r, \mathcal{I}_{S'}(x))$ for all $S' \subsetneq S$, we get $S_1 = S$. Lemma 5 gives that we are either in case (a) or in case (c). Similarly, we conclude if $S_1 = \emptyset$. Hence we may assume $S_1 \neq \emptyset$ and $a_1 \leq 2x + 1$. There is a line $L \subset \mathbb{P}^r$ such that $\sharp(S \cap L) \geq x + 2$. Since $S_1 \neq \emptyset$, we have $h^1(\mathbb{P}^r, \mathcal{I}_S(x)) > h^1(\mathbb{P}^r, \mathcal{I}_{S \cap H_1}(x))$. Hence the case $i = 1$ of (7) gives $h^1(\mathbb{P}^r, \mathcal{I}_{S_1}(x - 1)) > 0$. Since $\sharp(S_1) \leq 2(x - 1) + 1$, there is a line $R \subset H_1$ such that $\sharp(S_1 \cap R) \geq x + 1$ ([1], Lemma 34). First assume $L \cap R \neq \emptyset$. Let N be the plane spanned by $L \cup R$. Since $\sharp(S \cap (L \cup R)) \geq 2x + 3$, we have $a_1 \geq 2x + 3$. Hence $a_2 \leq x - 4$, absurd. Now assume $L \cap R = \emptyset$. There is a smooth quadric surface $Q \supseteq L \cup R$. Since $\deg(Q) = 2$, we have an exact sequence on \mathbb{P}^3:

$$0 \to \mathcal{I}_{S \setminus S \cap Q}(x - 2) \to \mathcal{O}_S(x) \to \mathcal{I}_{S \cap Q, Q}(x) \to 0$$

(8)

Since $\sharp(S \setminus S \cap Q) \leq 3x - 1 - \sharp(S \cap L \cup R)$, we have $h^1(\mathbb{P}^3, \mathcal{I}_{S \setminus S \cap Q}(x - 2)) = 0$. Hence (8) gives $h^1(\mathbb{P}^3, \mathcal{I}_S(x)) \leq h^1(\mathbb{P}^3, \mathcal{I}_{S \setminus S \cap Q}(x)) \leq h^1(\mathbb{P}^3, \mathcal{I}_{S \cap Q}(x))$. Since $h^1(\mathbb{P}^r, \mathcal{I}_S(x)) > h^1(\mathbb{P}^r, \mathcal{I}_{S'}(x))$ for all $S' \subsetneq S$, we get $S = S \cap Q$. Apply Lemma 6.

(a2) Here we assume $c = 2$. Since $a_1 \geq a_2$ and $a_1 + a_2 \leq \sharp(S) < 3x$, we have $a_2 \leq 2(x - 1) + 1$. Hence there is a line $D \subset H_1$ such that $\sharp(D \cap S) \geq x + 1$. Let M be a hyperplane containing D and with maximal $b_1 := \sharp(M \cap S)$. Set $W := S \setminus S \cap M$. Since $\deg(M) = 1$ we have an exact sequence

$$0 \to \mathcal{I}_{S \setminus S \cap M}(x - 1) \to \mathcal{I}_S(x) \to \mathcal{I}_{S \setminus M, M}(x) \to 0$$

(9)
First assume $h^1(P^3, \mathcal{I}_{S \setminus S \cap M}(x - 1)) = 0$. From (9) we get $h^1(P^3, \mathcal{I}_S(x)) \leq h^1(P^3, \mathcal{I}_{S \cap M}(x))$. Hence $S = S \cap M$. Apply Lemma 5. Now assume

$$h^1(P^3, \mathcal{I}_{S \setminus S \cap M}(x - 1)) > 0.$$

There is a line $T \subset P^3$ such that $\sharp(T \cap (S \setminus S \cap M)) \geq x + 1$. If $T \cap D \neq \emptyset$, then we are done, because $M \supset D$. Now assume $T \cap D = \emptyset$. Take a smooth quadric surface $Q' \supset D \cup T$. Since $\sharp(S \setminus S \cap Q') \leq 3x - 1 - 2x - 2 \leq x - 1$, as in step (a1) we get $S = S \cap Q'$. Apply Lemma 6.

(b) Now we assume $r > 3$ and that the lemma is true in P^{r-1}. We conclude as above using the inductive assumption instead of Lemma 5 (in part (a1) we may take a hyperplane containing $L \cup R$ even if $L \cap R = \emptyset$).

Lemma 8. Fix an integer $x > 0$, a zero-dimensional scheme $E \subset P^r$, $r \geq 2$, such that $\deg(E) \leq x$ and a finite set $S \subset P^r$ such that $1 \leq \sharp(S) \leq 2x + 1 - \deg(E)$ and $S \subset E = \emptyset$. We have $h^1(P^r, \mathcal{I}_{E \cup S}(x)) > h^1(P^r, \mathcal{I}_{E \cup S'}(x))$ for all $S' \subset S$ if and only if there is a line $L \subset P^r$ such that $S \subset L$ and $\sharp(S) + \deg(E \cap L) \geq x + 2$.

Proof. Since $\deg(E) + \sharp(S) \leq 2x + 1$, we have $h^1(P^r, \mathcal{I}_{E \cup S}(x)) > 0$ if and only if there is a line $L \subset P^r$ such that $\deg(L \cap (E \cup S)) \geq x + 2$ ([1], Lemma 34, and Remark 2). Since the scheme-theoretic intersection of two different lines has degree ≤ 1, this line L is unique. We need to prove that $h^1(P^r, \mathcal{I}_{E \cup S}(x)) > h^1(P^r, \mathcal{I}_{E \cup S'}(x))$ for all $S' \subset S$ if and only if $S \subset L$. Assume $h^1(P^r, \mathcal{I}_{E \cup S}(x)) > h^1(P^r, \mathcal{I}_{E \cup S'}(x))$ for all $S' \subset S$ if and only if $S \subset L$. Let H be any hyperplane containing L (hence $H = L$ if $r = 2$). We have $\deg(\text{Res}_H(E \cup S)) \leq 2x + 1 - x - 2 \leq x$. Hence [1], Lemma 34, gives $h^1(P^r, \mathcal{I}_{\text{Res}_H(E \cup S)}(x - 1)) = 0$. The case $k = 1$ of (1) gives $h^1(P^r, \mathcal{I}_{E \cup S}(x)) \leq h^1(H, \mathcal{I}_{(E \cup S) \cap H}(x))$. Since $h^1(H, \mathcal{I}_{(E \cup S) \cap H}(x)) = h^1(P^r, \mathcal{I}_{E \cup S}(x)) \leq h^1(P^r, \mathcal{I}_{E \cup S}(x))$ (Remark 2), we get $S = S \cap H$. Since this is true for all hyperplanes containing L, we get $S \subset L$.

Now we prove the converse. Take any finite set $A \subset L \setminus (E \cap L)_{\text{red}}$ such that $\sharp(A) + \deg(E) \leq 2x + 1$. First assume that either $\deg(E) \leq x + 1$ or $E \cap L \neq \emptyset$. In this case we have $\deg(\text{Res}_H(E \cup A)) = \deg(\text{Res}_H(E)) \leq x$. Hence the proof just given gives $h^1(P^r, \mathcal{I}_{A \cup E}(x)) = \max\{0, \deg(E \cap L) + \sharp(A) - x - 1\}$. Now assume $\deg(E) = x + 1$ and $E \cap L = \emptyset$. Either $h^1(P^r, \mathcal{I}_{A \cup E}(x)) = 0$ or there is a line $R \subset P^r$ such that $\deg(R \cap (E \cup A)) \geq x + 2$. Since $A \subset L$, $E \cap L = \emptyset$ and $\sharp(A) \leq x + 1$, we have $R \neq L$. Since $A \subset L$, we get $L \cap R \neq \emptyset$ and that the point $R \cap L$ is one of the point of A. Taking a hyperplane M containing R we
get as above \(h^1(\mathbb{P}^r, I_{E\cup A}(x)) = h^1(\mathbb{P}^r, I_{E\cup L\cap R}(x)) \). We are in the set-up of the lemma with \(S = R \cap L \) and \(\sharp(S) = 1 \).

3. Proofs of Theorems 1 and 2

Proofs of Theorem 1 and 2. Let \(S \subset B \) be the support of a codeword of \(\mathcal{C}(\mathbb{P}^3, \mathcal{O}_C(x)(-E))^\perp \) (with \(E = \emptyset \) for Theorem 1) and either \(\sharp(S) \leq 2x + 1 - \deg(E) \) (case \(E \neq \emptyset \)) or \(\sharp(S) < 3x \) (case \(E = \emptyset \)). If \(E \neq \emptyset \), Lemma 8 gives the existence of a line \(L \) such that \(S \subset L \) and \(\deg(L \cap (E \cup S)) \geq x + 2 \). Since \(E \cup S \subset C \subset R \) and \(x + 2 > q + 1 \deg(H) \), Bezout theorem gives \(L \subset H \). If \(\sharp(S) \geq 2 \), then \(L \) is defined over \(\mathbb{F}_{q^2} \), i.e. \(L \in \Phi \). Hence \(L \in \Phi_0 \). Now assume \(\sharp(S) \leq 1 \). Since \(\deg(E) \leq x + 1 \) and \(\deg(L \cap (E \cup S)) \geq x + 2 \), we get \(\deg(E) = x + 1 \) and \(E \subset L \). Since \(\deg(E) \geq 2 \), the line \(L \) is uniquely determined by \(E \). Since \(E \) is defined over \(\mathbb{F}_{q^2} \), then \(L \) is defined over \(\mathbb{F}_{q^2} \). Hence \(L \in \Phi_0 \) even in this case. From now on we assume \(E = \emptyset \). By Lemma 7 we are in one of the cases (a), (b), (c) of Lemma 7. In all cases we have a reduced curve \(T'' \) such that \(S \subset T'' \) and for each irreducible component \(T' \) of \(T'' \) we have \(\sharp(S \cap T') \geq (x + 1) \deg(T') > \deg(H) \cdot \deg(T') \). Hence \(T'' \subset H \). We also see that each irreducible component of \(T'' \) is defined over \(\mathbb{F}_{q^2} \). Hence case (a) (resp. (b), resp. (c)) of Lemma 7 corresponds to case (i) (resp. (ii), resp. (iii)) of the statement of Theorem 2.

Now we exclude case (d) of Lemma 7, i.e. we exclude that \(T'' \) is a smooth conic. Let \(D \subset \mathbb{P}^3 \) be smooth conic such that \(\sharp(D \cap B) \geq 5 \). Any smooth conic is uniquely determined by 5 of its points. Since each point of \(B \) is defined over \(\mathbb{F}_{q^2} \), \(D \) is defined over \(\mathbb{F}_{q^2} \). In order to obtain a contradiction we assume \(\sharp(D \cap B) \geq 2q + 3 \). Bezout theorem gives \(D \subset H \) (not only \(D(\mathbb{F}_{q^2}) \subset H(\mathbb{F}_{q^2}) \)). Since \(D \) is defined over \(\mathbb{F}_{q^2} \), the plane \(H \) spanned by \(D \) is defined over \(\mathbb{F}_{q^2} \). Hence \(H \cap \mathcal{O} \) is either a smooth degree \(q + 1 \) curve (a Hermitian curve) or a union of \(q + 1 \) lines. Since \(D \subset \mathcal{O} \cap H \), in both cases we get a contradiction. \(\square \)

4. Geometry of \(\mathcal{O} \) and Arithmetically Cohen-Macaulay Curves

For each \(P \in \mathcal{O} \), let \(T_P \mathcal{O} \) denote the tangent plane to \(\mathcal{O} \). We have \(\sharp(\mathcal{O}(\mathbb{F}_{q^2})) = (q^2 + 1)q^2(q^3 + 1) \) and for each \(P \in \mathcal{O}(\mathbb{F}_{q^2}) \) the scheme \(T_P \mathcal{O} \) is a cone formed by \(q + 1 \) distinct lines through \(P \), each of them defined over \(\mathbb{F}_{q^2} \) ([12], Ch. 19).
Hence \(\sharp(T_P \mathcal{O} \cap \mathcal{O}(\mathbb{F}_{q^2})) = 1 + (q + 1)q^2 \). Varying \(P \in \mathcal{O}(\mathbb{F}_{q^2}) \) we get that \(\mathcal{O}(\mathbb{F}_{q^2}) \) is covered by \((q + 1)(q^3 + 1) \) lines of \(PG(3, q^2) \). Each plane of \(PG(3, q^2) \)
not tangent to \(\mathcal{H} \) at a point of \(PG(3, q^2) \) intersects \(\mathcal{H} \) in a smooth Hermitian curve, because the intersection is a Hermitian curve with full rank ([12], Lemma 19.1.2).

Take a geometrically connected curve \(C \subset \mathcal{H} \) defined over a finite extension, \(K \), of \(\mathbb{F}_{q^2} \). Here we take as \(\mathcal{L} \) a hyperplane line bundle, say \(\mathcal{O}_C(t) \), and fix \(B \subseteq C(K) \). Look at the restriction maps \(\rho_{C,t} : H^0(\mathbb{P}^3, \mathcal{O}_{\mathbb{P}^3}(t)) \to H^0(C, \mathcal{O}_C(t)) \) and \(\rho'_{C,t} : H^0(\mathcal{H}, \mathcal{O}_\mathcal{H}(t)) \to H^0(C, \mathcal{O}_C(t)) \). Since the restriction map \(H^0(\mathbb{P}^3, \mathcal{O}_{\mathbb{P}^3}(t)) \to H^0(\mathcal{H}, \mathcal{O}_\mathcal{H}(t)) \) is surjective, we have \(\text{Im}(\rho'_{C,t}) = \text{Im}(\rho_{C,t}) \).

Over \(C \) we have the Goppa code obtained evaluating \(H^0(\mathcal{H}, \mathcal{O}_\mathcal{H}(t)) \) ([20], II.2.1, [21]) and the “ field code ” obtained from \(\text{Im}(\rho_{C,t}) \) ([19], [18], Lemma 6.5.1). The latter is easier from a computation point of view, because only involves homogeneous degree \(t \) polynomials. The former is conceptually easier and its dual code is again a Goppa code on \(C \) ([20], Theorem II.2.8). As shown in [2] the low weight codewords associated to the dual of \(\text{Im}(\rho) \) may be found only using elementary geometric properties of \(B \) (e.g. the maximal number of collinear points of \(B \)). A curve \(C \subset \mathbb{P}^3 \) is said to be arithmetically Cohen-Macaulay if \(\rho_{C,t} \) is surjective for all \(t \). Any complete intersection curve is arithmetically Cohen-Macaulay (see. e.g. [2] or [7]). In this section we construct several arithmetically Cohen-Macaulay curves \(C \subset \mathcal{H} \) which are not complete intersection (see Corollary 1 and Remark 4).

Lemma 9. Let \(W \subset \mathbb{P}^3 \) be any effective divisor and \(T \subset \mathbb{P}^3 \) any projective curve contained in \(W \). Set \(c := \deg(C) \).

(a) For each integer \(t \) the restriction map
\[
\rho_{W,t} : H^0(\mathbb{P}^3, \mathcal{O}_{\mathbb{P}^3}(t)) \to H^0(W, \mathcal{O}_W(t))
\]
is surjective.

(c) \(C \) is arithmetically Cohen-Macaulay if and only if for every \(t \in \mathbb{N} \) the restriction map \(\rho_{W,C,t} : H^0(W, \mathcal{O}_W(t)) \to H^0(C, \mathcal{O}_C(t)) \) is surjective.

(d) Fix \(t \in \mathbb{N} \). the map \(\rho_{W,C,t} \) is surjective if and only if \(H^1(W, \mathcal{I}_{T,W}(t)) = 0 \).

(e) If \(T \in |\mathcal{O}_W(z)| \) for some \(z > 0 \), then \(T \) is arithmetically Cohen-Macaulay.

(f) Assume that \(T \) is a complete intersection of two surfaces, say of degree \(d_1, d_2 \) with \(d_1 \leq d_2 \). Then \(d_1 \leq \deg(W) \). If \(W \) is geometrically integral, then either \(d_1 = \deg(W) \) or \(\deg(W) \geq d_2 \). If \(d_1 \leq \deg(W) \leq d_2 \), then \(\deg(W) \in \{d_1, d_2\} \) and \(T \) is the complete intersection of \(W \) and a surface of degree \(\deg(T)/\deg(W) \).
Proof. For each integer \(t \) we have an exact sequence

\[
0 \to \mathcal{O}_{\mathbb{P}^3}(t-c) \to \mathcal{O}_{\mathbb{P}^3}(t) \to \mathcal{O}_W(t) \to 0
\]

(10)

Since \(H^1(\mathbb{P}^3, \mathcal{O}_{\mathbb{P}^3}(t-c)) = 0 \) ([11], part (b) of Theorem III.5.1) we get (a). Part (a) implies the “if” part (b). The “only if” part of (b) is trivial, because the restriction map \(0(\mathbb{P}^3, \mathcal{O}_{\mathbb{P}^3}(t)) \to H^0(C, \mathcal{O}_C(t)) \). Consider the exact sequence

\[
0 \to \mathcal{I}_{T,W}(t) \otimes \mathcal{O}_W(t) \to \mathcal{O}_T(t) \to 0
\]

(11)

Since \(h^i(\mathbb{P}^3, \mathcal{O}_{\mathbb{P}^3}(x)) = 0, i = 1, 2 \) for all \(x \in \mathbb{Z} \), we have \(h^1(S, \mathcal{O}_W(t)) = 0 \). Hence (11) shows that \(H^1(S, \mathcal{O}_W(t)(-T)) \) is the cokernel of \(\rho_{W,C,t} \), proving part (d). Part (e) follows from part (d), because we proved that \(H^1(W, \mathcal{O}_W(t-z)) = 0 \) for all \(t \). Now assume that \(T \) is the complete intersection of a surface \(W_1 \) of degree \(d_1 \) and a surface of degree \(d_2 \geq d_1 \). Using (12) with \(W_1 \) instead of \(W \) and \(d_1 \) instead of \(c \) we get that \(T \) is contained in no surface of degree \(< d_1 \). Using also (11) for \((W_1, d_1) \) instead of \((W, c) \) we get that every surface of degree \(x \) with \(d_1 \leq x < d_2 \) contains \(W_1 \) as a component. Hence we get (f).

Part (e) is useful to check that most of the arithmetically Cohen-Macaulay curves obtained in this paper are not complete intersections.

For any \(P \in \mathcal{H}(\mathbb{F}_{q^2}) \) let \(A(P) \) denote the set of \(q + 1 \) lines of \(\mathcal{H} \cap T_P \mathcal{H} \). For any non-empty subset \(S \) of of the lines of \(T_P \mathcal{H} \cap \mathcal{H} \) we call \(L(P, S) \) the scheme \(\bigcup_{L \in S} L \). Each scheme \(L(P, S) \) is defined over \(\mathbb{F}_{q^2} \) and it is isomorphic to over \(\mathbb{F}_{q^2} \) to a degree \(t \) plane curve \((where \ t := \sharp(S))\), union of \(t \) distinct lines through \(P \), each of them defined over \(\mathbb{F}_{q^2} \). Since \(L(P, S) \) is a plane curve, it is arithmetically Cohen-Macaulay. Hence for each integer \(z > 0 \) each divisor \(A \in |\mathcal{O}_H(z)(-L(P, S))| \) is arithmetically Cohen-Macaulay ([7], part (b) of Theorem 21.23).

Fix a plane \(H \subset \mathbb{P}^3 \) defined over \(\mathbb{F}_{q^2} \) and transversal to \(\mathcal{H} \). The smooth curve \(D := H \cap \mathcal{H} \) is a smooth Hermitian curve ([12], Table 1) and hence \(\sharp(D(\mathbb{F}_{q^2})) = q^3 + 1 \). For all \(P, Q \in D(\mathbb{F}_{q^2}) \), with \(P \neq Q \) the tangent planes \(T_P \mathcal{H} \) and \(T_Q \mathcal{H} \) are distinct ([12], Lemma 19.1.4 (i)). The line \(\langle \{P, Q\} \rangle \) is contained in \(H \) (because \(\{P, Q\} \subset H \)), but not in \(\mathcal{H} \), because \(H \cap \mathcal{H} \) is the smooth curve \(D \). Hence the line \(T_P \mathcal{H} \cap T_Q \mathcal{H} \) is not contained in \(\mathcal{H} \). Hence \(T_P \mathcal{H} \cap \mathcal{H} \) and \(T_Q \mathcal{H} \cap \mathcal{H} \) have no common line. Conversely, if \(P, Q \in \mathcal{H}(\mathbb{F}_{q^2}) \), \(P \neq Q \) and the line \(\langle \{P, Q\} \rangle \) is contained in \(\mathcal{H} \), then \(\langle \{P, Q\} \rangle = (T_P \mathcal{H} \cap \mathcal{H}) \cap (T_P \mathcal{H} \cap \mathcal{H}) \).

Lemma 10. Set \(\Psi := \bigcup_{L \in \Phi} L \). Then \(\Psi = \bigcup_{P \in D(\mathbb{F}_{q^2})} (T_P \mathcal{H} \cap \mathcal{H}) \) and \(\Psi \) is the complete intersection of \(\mathcal{H} \) with a degree \((q^3 + 1)\) surface, union of \(q^3 + 1 \) planes, each of them defined over \(\mathbb{F}_{q^2} \).
Proof. Set Σ := \(\bigcup_{P \in D(\mathbb{F}_q^2)}(T_P \mathcal{H} \cap \mathcal{H}) \). We claim that Ψ = Σ. Indeed, obviously Σ ⊆ Ψ. Fix any \(L \in \Phi \). Since \(H \) meets any line of \(\mathbb{P}^3 \), \(H \cap L \neq \emptyset \). Since \(L \subset \mathcal{H} \), we have \(L \not\subseteq H \) and hence \(H \cap L \) is a point (call it \(P \)). Since \(L \subset \mathcal{H} \), we have \(P \in D \). Since \(L \) and \(D \) are defined over \(\mathbb{F}_q^2 \), we have \(P \in D(\mathbb{F}_q^2) \). Hence \(L \in T_P \mathcal{H} \). Hence \(L \in \Phi \). Hence \(L \subset \Sigma \). Thus Ψ is the complete intersection of \(\mathcal{H} \) with a degree \((q^3 + 1)\) surface, union of \(q^3 + 1 \) planes, each of them defined over \(\mathbb{F}_q^2 \). □

Lemma 11. Fix integer \(t, a \in \{1, \ldots, q + 1\} \), a line \(L \subset \mathbb{P}^3 \) defined over \(\mathbb{F}_q^2 \) and transversal to \(\mathcal{H} \) (and hence with \(\sharp(\mathcal{H}(\mathbb{F}_q^2) \cap D) = q + 1 \)) and a set \(S \subset \mathcal{H}(\mathbb{F}_q^2) \cap D \) such that \(\sharp(S) = t \). Fix a points \(P_1, \ldots, P_a \in \mathcal{H}(\mathbb{F}_q^2) \setminus D \) such that \(T_P \mathcal{H} \supset D \) for all \(i \) (there are \(q + 1 \) such points). Then \(W := \bigcup_{i=1}^a L(P_i, S) \) is the complete intersection of the degree \(a \) surface \(\bigcup_{i=1}^a T_P \mathcal{H} \) and a surface union of \(t \) distinct planes defined over \(\mathbb{F}_q^2 \).

Proof. Fix \(A \in \mathcal{H}(\mathbb{F}_q^2) \). We have \(P \in T_A \mathcal{H} \) if and only if \(\langle \{P, A\} \rangle \subset \mathcal{H} \), i.e. if and only if \(A \in T_P \mathcal{H} \). Since \(T_P \mathcal{H} \cap T_Q \mathcal{H} \cap \mathbb{H} \) is formed by \(q + 1 \) collinear points, we may take as \(a \) any integer \(\leq q + 1 \).

If \(a = 1 \), then \(W \) is a plane curve union of \(t \) lines and hence the lemma is obvious. Now assume \(a \geq 2 \). For each \(Q \in S \) set \(H_Q := \langle \{Q, P_1, P_2\} \rangle \). \(H_Q \) is a plane, because the line \(T_{P_1} \mathcal{H} \cap T_{P_2} \mathcal{H} = L \) implies \(P_2 \not\in T_{P_1} \mathcal{H} \), while the line \(\langle \{Q, P_1\} \rangle \) is contained in \(T_{P_1} \mathcal{H} \). Since \(H_Q \subset \mathcal{H} \) contains two lines through \(Q \), it is the union of \(q + 1 \) lines defined over \(\mathbb{F}_q^2 \) and forming a singular Hermitian curve of \(H_Q \). Among these lines there are the lines \(L(P_i, Q), 1 \leq i \leq a \). Hence \(W = \bigcup_{i=1}^a T_P \mathcal{H} \cap (\bigcup_{Q \in S} H_Q) \). □

Lemma 12. Let \(W \subset \mathbb{P}^3 \) be any smooth surface and \(\mathcal{L} \) any line bundle on \(W \). Fix an integer \(z \) and curves \(D \in |\mathcal{L}| \) and \(T \in |\mathcal{L}(z)| \). If \(D \) is arithmetically Cohen-Macaulay, then \(T \) is arithmetically Cohen-Macaulay.

Proof. Fix \(t \in \mathbb{Z} \). We need to prove the surjectivity of the restriction map \(H^0(\mathbb{P}^3, \mathcal{O}_{\mathbb{P}^3}(t)) \to H^0(T, \mathcal{O}_T(t)) \). Since the restriction map \(H^0(\mathbb{P}^3, \mathcal{O}_{\mathbb{P}^3}(t)) \to H^0(\mathcal{H}, \mathcal{O}_\mathcal{H}(t)) \) is surjective, it is sufficient to prove the surjectivity of the restriction map \(\rho_{T,t} : H^0(\mathcal{H}, \mathcal{O}_\mathcal{H}(t)) \to H^0(T, \mathcal{O}_T(t)) \). Since \(\mathcal{H} \) is a surface of \(\mathbb{P}^3 \), we have \(h^1(\mathcal{H}, \mathcal{O}_\mathcal{H}(t)) = 0 \). Hence the exact sequence
\[
0 \to \mathcal{O}_\mathcal{H}(t)(-T) \to \mathcal{O}_\mathcal{H}(t) \to \mathcal{O}_T(t) \to 0
\] (12)

shows that \(\rho_{T,t} \) is surjective if and only if \(h^1(\mathcal{H}, \mathcal{O}_\mathcal{H}(t))(-T)) = 0 \). Using \(D \) instead of \(T \) and \(t - z \) instead of \(t \) in (12) and that \(D \) is arithmetically Cohen-Macaulay we get \(h^1(\mathcal{H}, \mathcal{O}_\mathcal{H}(t - z))(-D) = 0 \). Since \(\mathcal{O}_\mathcal{H}(t - z))(-D) \cong \mathcal{L} \cong \mathcal{O}_\mathcal{H}(t))(-T), T \) is arithmetically Cohen-Macaulay. □
Corollary 1. Fix sets $F \subset A \subseteq \Phi$ such that $\bigcup_{L \in A} L$ is a complete intersection and $\bigcup_{L \in F} L$ is arithmetically Cohen-Macaulay. Fix any $t \in \mathbb{Z}$ and any $Y \in |\mathcal{O}_H(\bigcup_{L \in A \setminus F} L)(t)|$. Then Y is arithmetically Cohen-Macaulay.

Proof. Apply Lemma 12 and [7], part (b) of Theorem 21.23. □

Remark 4. See Lemmas 10 and 11 for the constructions of sets $G \subseteq \Phi$ such that $\bigcup_{L \in G} L$ is a complete intersection. Since a complete intersection is arithmetically Cohen-Macaulay, we may apply these constructions also to the set F appearing in Corollary 1. Notice that in general $\bigcup_{L \in A \setminus F} L$ is not a complete intersection, even if both $\bigcup_{L \in A} L$ and $\bigcup_{L \in F} L$ are complete intersections.

Acknowledgements

The author was partially supported by MIUR and GNSAGA of INdAM (Italy).

References

