VECTOR BUNDLES ON A QUADRIC SURFACE
WHICH ARE POSITIVE ON EACH LINE

E. Ballico
Department of Mathematics
University of Trento
38 123 Povo (Trento) - Via Sommarive, 14, ITALY

Abstract: Let Q be a smooth quadric surface and E a vector bundle on Q. We say that E is weakly line positive if for each line $T \subset Q$ the bundle $E|T$ is a direct sum of line bundles of degree ≥ 0. Here we classify the quadruples $(a, b, u, v) \in \mathbb{Z}^4$ such that there is a weakly line positive extension of $\mathcal{O}_Q(a, b)$ by $\mathcal{O}_Q(u, v)$.

AMS Subject Classification: 14J60
Key Words: quadric surface, vector bundle

1. Introduction

Let $Q \subset \mathbb{P}^3$ be a smooth quadric surface. We have $\text{Pic}(Q) \cong \mathbb{Z}^2$ and we will write $\mathcal{O}_Q(a, b)$ for the line bundle of bidegree (a, b) on Q. Let $\pi_i : Q \to \mathbb{P}^1$, $i = 1, 2$, be the two projections with $\pi_1^*(\mathcal{O}_{\mathbb{P}^1}(1)) = \mathcal{O}_Q(1, 0)$ and $\pi_2^*(\mathcal{O}_{\mathbb{P}^1}(1)) = \mathcal{O}_Q(0, 1)$. Let E be a rank two vector bundle on Q. We say that E is π_1-uniform (resp. π_2-uniform) if there are integers $c \geq d$ such that for all $T \in |\mathcal{O}_Q(1, 0)|$ (resp all $T \in |\mathcal{O}_Q(0, 1)|$) the vector bundle $E|T$ is a direct sum of a line bundle of degree c and a line bundle of degree d. A vector bundle F is said to be weakly line positive if for each $T \in (|\mathcal{O}_Q(1, 0)| \cup |\mathcal{O}_T(0, 1)|)$ (i.e. for each line $T \subset Q$) the vector bundle bundle $F|T$ is a direct sum of line bundles of degree ≥ 0. Notice
that every vector bundle spanned outside finitely many points is weakly line positive. In this note we prove the following result.

Theorem 1. There is a weakly line positive extension of \(O_Q(a, b) \) by \(O_Q(u, v) \) if and only if \(a \geq 0, \ b \geq 0 \) and one of the following conditions is satisfied:

1. \(u \geq 0 \) and \(v \geq 0 \).
2. \(v = b \) and \(-a \leq u < 0 \).
3. \(v > b \) and \(-a + 1 \leq u < 0 \).
4. \(u = a \) and \(-b \leq v < 0 \).
5. \(u > a \) and \(-b + 1 \leq v < 0 \).

2. The Proof

We need the following remarks ([1]).

Remark 1. Let \(E \) be a \(\pi_2 \)-uniform vector bundle of type \((t, t)\). Then \(\pi_2^*(E(-t, -0)) \) is a rank two vector bundle and \(E \cong \pi_2^*(\pi_2^*(E(-t, -0)))(t, 0) \). Hence \(E \cong O_Q(t, e) \oplus O_Q(t, f) \) for some integers \(e, f \).

Remark 2. Let \(E \) be a \(\pi_2 \)-uniform vector bundle of type \((t, c)\) for some \(t > c \). Then \(\pi_2^*(E(-t, -0)) \) is a rank one bundle and \(\pi_2^*(\pi_2^*(E(-t, -0)))(t, 0) \) is a rank one saturated subbundle of \(E \). Hence there are integers \(e, f \) such that \(E \) is an extension of \(O_Q(c, e) \) by \(O_Q(t, f) \).

Remark 3. Assume \(v > b \) and take any extension \(E \) of \(O_Q(a, b) \) by \(O_Q(-a, v) \). Then \(E|T \) has splitting type \((v, b)\) for each \(T \in |O_Q(0, 1)| \). Hence \(E \) is \(\pi_1 \)-uniform.

Proposition 1. Fix integers \(a > 0, \) and \(v > b \). Then there is no vector bundle \(E \) on \(Q \) spanned outside finitely many points and which is an extension of \(O_Q(a, b) \) by \(O_Q(-a, v) \).

Proof. Notice that \(c_2(E) = a(v - b) \). Assume the existence of such a vector bundle \(E \). Since \(O_Q(a, b) \) is a quotient of \(E \), it is spanned outside a finite set. Hence \(b \geq 0 \). Since \(E \) is spanned outside finitely many points, for each \(D \in |O_Q(0, 1)| \) the bundle \(E|D \) is spanned outside finitely many points. Hence it has splitting type \(a_1 \geq a_2 \geq 0 \). Since \(a_1 + a_2 = 0 \), we get \(a_1 = a_2 = 0 \). Remark
1 gives \(E \cong \mathcal{O}_Q(0,e) \oplus \mathcal{O}_Q(0,f) \) for some \(e,f \). Hence \(c_2(E) = 0 \neq a(v-b) \), a contradiction. \(\square \)

Lemma 1. Take integers \(a \geq 0 \), \(b \geq 0 \) and \(u \geq -a \). Then there is a spanned vector bundle \(E \) which is an extension of \(\mathcal{O}_Q(a,b) \) by \(\mathcal{O}_Q(u,b) \).

Proof. If \(u \geq 0 \), then every extension of \(\mathcal{O}_Q(a,b) \) by \(\mathcal{O}_Q(u,b) \), because \(\mathcal{O}_Q(a,b) \) is spanned and \(h^1(\mathcal{O}_Q(u,b)) = 0 \). Now assume \(0 > u \geq -a \). There is an extension \(F \) of \(\mathcal{O}_{\mathbb{P}^1}(a) \) by \(\mathcal{O}_{\mathbb{P}^1}(u) \) which is spanned. Hence \(G := \pi_1^*(F) \) is spanned. Since \(\mathcal{O}_Q(0,b) \) is spanned, \(E := G(0,b) \) is spanned. \(\square \)

Lemma 2. Fix integers \(a, u \) such that \(-a < u < 0 \). Let \(\mathcal{B} \) be the set of all \(\epsilon \in H^1(\mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1}(u-a)) \) such that the extension \(E \) of \(\mathcal{O}_{\mathbb{P}^1}(a) \) by \(\mathcal{O}_{\mathbb{P}^1}(u) \) induced by \(\epsilon \) is not spanned. Then \(\mathcal{B} \) has codimension \(\geq 2 \) in \(H^1(\mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1}(u-a)) \).

Proof. Fix an integer \(t > 0 \) and set \(F := \mathcal{O}_{\mathbb{P}^1}(a+u-t) \oplus \mathcal{O}_{\mathbb{P}^1}(-t) \). We have \(h^1(F \otimes F^\vee) \geq 2t - a - u - 1 \geq 2 \). Use the deformation theory of vector bundles on \(\mathbb{P}^1 \). \(\square \)

Proof of Theorem 1. Every extension \(E \) of \(\mathcal{O}_Q(a,b) \) by \(\mathcal{O}_Q(u,v) \) has \(\mathcal{O}_Q(a+u,b+v) \) as its determinant. Hence if there is a weakly line positive extension \(E \) of \(\mathcal{O}_Q(a,b) \) by \(\mathcal{O}_Q(u,v) \), then \(a + u \geq 0 \) and \(b + v \geq 0 \). Hence from now on we assume \(u \geq -a \) and \(v \geq b \). Assume \(a < 0 \). Since \(u \geq -a > 0 > a \), for each \(T \in |\mathcal{O}_Q(0,1)| \) the vector bundle \(E|T \) is the direct sum of a line bundle of degree \(u \) and a line bundle of degree \(a < 0 \), a contradiction. In the same way we check that \(b \geq 0 \) is a necessary condition. From now on we assume \(a \geq 0 \) and \(b \geq 0 \). If \(u \geq 0 \) and \(v \geq 0 \), then every extension of \(\mathcal{O}_Q(a,b) \) by \(\mathcal{O}_Q(u,v) \) is spanned and in particular it is weakly line positive. Now assume \(u < 0 \) and \(v < 0 \). Since \(a \geq 0 \) and \(b \geq 0 \), we have \(h^1(\mathcal{O}_Q(u-a,u-b)) = 0 \) (K"unneth formula). Hence any extension of \(\mathcal{O}_Q(a,b) \) by \(\mathcal{O}_Q(u,v) \) splits. Hence no such an extension is weakly line positive. Hence it is sufficient to look at all cases with \(uv < 0 \). Interchanging the role of the two rulings of \(Q \) we see that it is sufficient to analyze all cases with \(-a \leq u < 0 \) and \(v \geq 0 \). If \(v < b \), then \(h^1(\mathcal{O}_Q(u-a,u-b)) = 0 \) (K"unneth formula). Hence to get a weakly line positive extension of \(\mathcal{O}_Q(a,b) \) by \(\mathcal{O}_Q(u,v) \) we need to assume \(v \geq b \). If \(v = b \), then there is a spanned extension (Lemma 1). From now on we assume \(v > b \). First assume \(u = -a \). Since \(a \geq 0 \) and \(b \geq 0 \), we may repeat the proof of Lemma 1 and get a contradiction. Now assume \(u \geq -a + 1 \) (and hence \(a \geq 2 \)). Lemma 2 gives the existence of \(\epsilon_i \in H^1(\mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1}(u-a)) \), \(i = 1,2 \), such that for all \((\lambda,\mu) \in \mathbb{K}^2 \setminus \{(0,0)\} \) the extension \(F_{\lambda\epsilon_1+\mu\epsilon_2} \) of \(\mathcal{O}_{\mathbb{P}^1}(a) \) by \(\mathcal{O}_{\mathbb{P}^1}(u) \) is spanned. K"unneth formula gives \(H^1(\mathcal{O}_Q(u-a,b-v)) \cong H^1(\mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1}(u-a)) \otimes H^0(\mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1}(v-b)) \). Since \(v-b > 0 \),
there are two linearly independent $\alpha_i \in H^0(\mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1}(v-b))$ with no common zero. Set $\epsilon := \alpha_1 \epsilon_1 + \alpha_2 \epsilon_2 \in H^1(\mathcal{O}_Q(u-a,b-v))$ and let E be the extension of $\mathcal{O}_Q(a,b)$ by $\mathcal{O}_Q(u,v)$ induced by ϵ. Since $v > b$, for all $T \in |\mathcal{O}_Q(0,1)|$ the vector bundle $E|T$ has splitting type (v,b). Fix $D \in |\mathcal{O}_Q(0,1)|$, say $D = \pi^1(o)$ with $o \in \mathbb{P}^1$. We have $E|D \cong F_{\alpha_1(o)\epsilon_1+\alpha_2(o)\epsilon_2}$. Hence $E|D$ is spanned. Hence E is weakly line positive.\qed

Acknowledgements

The author was partially supported by MIUR and GNSAGA of INdAM (Italy).

References