REGULAR ELEMENTS OF THE COMPLETE SEMIGROUPS
OF BINARY RELATIONS OF THE CLASS $\Sigma_7(X, 8)$

Barış Albayrak1, I. Yasha Diasamidze2, Neşet Aydin3

1,3Department of Mathematics
Faculty of Science and Art
Canakkale Onsekiz Mart University
Canakkale, TURKEY

2Shota Rustaveli State University
35, Ninoshvili St., Batumi 6010, GEORGIA

Abstract: In this paper let $Q = \{T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8\}$ be a subsemilattice of X—semilattice of unions D where $T_1 \subset T_2 \subset T_3 \subset T_5 \subset T_6 \subset T_8$, $T_1 \subset T_2 \subset T_3 \subset T_5 \subset T_7 \subset T_8$, $T_1 \subset T_2 \subset T_4 \subset T_5 \subset T_6 \subset T_8$, $T_1 \subset T_2 \subset T_4 \subset T_5 \subset T_7 \subset T_8$, $T_1 \subset T_2 \subset T_4 \subset T_5 \subset T_7 \subset T_8$, $T_1 \neq \emptyset$, $T_4 \setminus T_3 \neq \emptyset$, $T_3 \setminus T_4 \neq \emptyset$, $T_6 \setminus T_7 \neq \emptyset$, $T_7 \setminus T_6 \neq \emptyset$, $T_3 \cup T_4 = T_5$, $T_6 \cup T_7 = T_8$, then we characterize the class each element of which is isomorphic to Q by means of the characteristic family of sets, the characteristic mapping and the generate set of Q. Moreover, we calculate the number of regular elements of $B_X(D)$ for a finite set X.

AMS Subject Classification: 20M30, 20M10, 20M15
Key Words: semigroups, binary relation, regular elements

1. Introduction

Let X be an arbitrary nonempty set. Recall that a binary relation on X is a subset of the cartesian product $X \times X$. The binary operation \circ on B_X (the set
of all binary relations on X) defined by for $\alpha, \beta \in B_X$

$$(x, z) \in \alpha \circ \beta \iff (x, y) \in \alpha \text{ and } (y, z) \in \beta,$$

for some $y \in X$ is associative. Therefore B_X is a semigroup with respect to the operation \circ. This semigroup is called the \textit{semigroup of all binary relations} on the set X.

Let D be a nonempty set of subsets of X which is closed under the union i.e., $\cup D' \in D$ for any nonempty subset D' of D. In that case, D is called a \textit{complete X–semilattice of unions}. The union of all elements of D is denoted by the symbol \tilde{D}. Clearly, \tilde{D} is the largest element of D.

Let X be an arbitrary nonempty set and m be an arbitrary cardinal number. $\Sigma (X, m)$ is the class of all complete X–semilattices of unions of power m.

Let \bar{D} and D' be some nonempty subsets of the complete X–semilattices of unions. We say that a subset \bar{D} generates a set D' if any element from D' is a set-theoretic union of the elements from \bar{D}.

Note that the semilattice D is partially ordered with respect to the set-theoretic inclusion. Let $\emptyset \neq D' \subseteq D$ and

$$N(D, D') = \{Z \in D \mid Z \subseteq Z' \text{ for any } Z' \in D'\}.$$

It is clear that $N(D, D')$ is the set of all lower bounds of D'. If $N(D, D') \neq \emptyset$ then $\Lambda(D, D') = \cup N(D, D')$ belongs to D and it is the \textit{greatest lower bound} of D'.

Further, let $x, y \in X$, $Y \subseteq X$, $\alpha \in B_X$, $T \in D$, $\emptyset \neq D' \subseteq D$ and $t \in \bar{D}$. Then we have the following notations,

$$y\alpha = \{x \in X \mid (y, x) \in \alpha\}, Y\alpha = \bigcup_{y \in Y} y\alpha,$$

$$V(D, \alpha) = \{Y\alpha \mid Y \in D\}, D_t = \{Z' \in D \mid t \in Z'\},$$

$$D'_T = \{Z' \in D' \mid T \subseteq Z'\}, \bar{D}_T = \{Z' \in D' \mid Z' \subseteq T\}.$$

Let f be an arbitrary mapping from X into D. Then one can construct a binary relation α_f on X by $\alpha_f = \bigcup_{x \in X} (\{x\} \times f(x))$. The set of all such binary relations is denoted by $B_X(D)$. It is easy to prove that $B_X(D)$ is a semigroup with respect to the operation \circ. In this case $B_X(D)$, is called a \textit{complete semigroup of binary relations} defined by an X–semilattice of unions D. This structure was comprehensively investigated in Diasemidze [6].

If $\alpha \circ \beta \circ \alpha = \alpha$ for some $\beta \in B_X(D)$ then a binary relation α is called a \textit{regular element} of $B_X(D)$.

Let $\alpha \in B_X$, $Y^\alpha_T = \{y \in X \mid y\alpha = T\}$ and

$$V[\alpha] = \begin{cases} V(X^*, \alpha), & \text{if } \emptyset \notin D, \\ V(X^*, \alpha), & \text{if } \emptyset \in V(X^*, \alpha), \\ V(X^*, \alpha) \cup \{\emptyset\}, & \text{if } \emptyset \notin V(X^*, \alpha) \text{ and } \emptyset \in D. \end{cases}$$

Then a representation of a binary relation α of the form $\alpha = \bigcup_{T \in V[\alpha]} (Y^\alpha_T \times T)$ is called quasinormal. Note that, if $\alpha = \bigcup_{T \in V[\alpha]} (Y^\alpha_T \times T)$ is a quasinormal representation of the binary relation α, then $X = \bigcup_{T \in V(X^*, \alpha)} Y^\alpha_T$ and $Y^\alpha_T \cap Y^\alpha_{T'} \neq \emptyset$ for $T, T' \in V(X^*, \alpha)$ which $T \neq T'$. In [7] they show that, if β is regular element of $B_X(D)$, then $V[\beta] = V(D, \beta)$ and a complete $X-$semilattice of unions D is an $XI-$semilattice of unions if $\Lambda(D, D_t) \in D$ for any $t \in \bar{D}$ and $\bar{Z} = \bigcup_{T \in V(X^*, \alpha)} \Lambda(D, D_t)$ for any nonempty element Z of D.

Let D' be an arbitrary nonempty subset of the complete $X-$semilattice of unions D. A nonempty element $T \in D'$ is a nonlimiting element of D' if $T \setminus l(D', T) = T \setminus \cup (D' \setminus D'_T) \neq \emptyset$. A nonempty element $T \in D'$ is limiting element of D' if $T \setminus l(D', T) = \emptyset$.

The family $C(D)$ of pairwise disjoint subsets of the set $\bar{D} = \cup D$ is the characteristic family of sets of D if the following hold

a) $\cap D \in C(D)$

b) $\cup C(D) = \bar{D}$

c) There exists a subset $C_Z(D)$ of the set $C(D)$ such that $Z = \cup C_Z(D)$ for all $Z \in D$.

A mapping $\theta : D \to C(D)$ is called characteristic mapping if $Z = (\cap D) \cup \bigcup_{Z' \in \bar{D}} \theta (Z')$ for all $Z \in D$.

The existence and the uniqueness of characteristic family and characteristic mapping is given in Diasemidze [8]. Moreover, it is shown that every $Z \in D$ can be written as $Z = \theta(\bar{Q}) \cup \bigcup_{T \in \bar{Q}(Z)} \theta (T)$, where $\bar{Q}(Z) = Q \setminus \{T \in Q \mid Z \subseteq T\}$.

A one-to-one mapping φ between two complete $X-$semilattices of unions D' and D'' is called a complete isomorphism if $\varphi(\cup D_1) = \bigcup_{T' \in D_1} \varphi(T')$ for each
nonempty subset D_1 of the semilattice D'. Also, let $\alpha \in B_X(D)$. A complete isomorphism φ between XI—semilattice of unions Q and D is called a complete α— isomorphism if $Q = V(D, \alpha)$ and $\varphi(\emptyset) = \emptyset$ for $\emptyset \in V(D, \alpha)$ and $\varphi(T)\alpha = T$ for any $T \in V(D, \alpha)$.

Let Q and D' are respectively some XI and X—subsemilattices of the complete X—semilattice of unions D. Then

$$R_\varphi(Q, D') = \{\alpha \in B_X(D) \mid \alpha \text{ regular element, } \varphi \text{ complete } \alpha \text{—isomorphism}\}$$

where $\varphi : Q \to D'$ complete isomorphism and $V(D, \alpha) = Q$. Besides, let us denote

$$R(Q, D') = \bigcup_{\varphi \in \Phi(Q, D')} R_\varphi(Q, D') \text{ and } R(D') = \bigcup_{Q' \in \Omega(Q)} R(Q', D').$$

where

$$\Phi (Q, D') = \{\varphi \mid \varphi : Q \to D' \text{ is a complete } \alpha \text{—isomorphism } \exists \alpha \in B_X(D)\},$$

$$\Omega(Q) = \{Q' \mid Q' \text{ is } XI \text{—subsemilattices of } D \text{ which is complete isomorphic to } Q\}.$$ E. Schröder described the theory of binary relations in detail in the 1890s ([1]). The basic concepts and the properties of the theory were introduced in ”Principia mathematica” Whitehead and Russell([2]). The theory of binary relations has been improved by Riguet ([3] — [4]). Many researcher studied this theory using partial transformations as Vagner did ([5]). Regular elements of semigroup play an important role in semigroup theory. Therefore Diasamidze generate systematic rules for understanding structure of a semigroup of binary relations and characterization of regular elements of these semigroup in ([6] — [9]). In general he studied semigroups but, in particular, he investigates complete semigroups of the binary relations.

In this paper, we take in particular, $Q = \{T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8\}$ subsemilattice of X—semilattice of unions D where the elements T_i, $i = 1, 2, \ldots, 8$ are satisfying the following properties, $T_1 \subset T_2 \subset T_3 \subset T_5 \subset T_6 \subset T_8$, $T_1 \subset T_2 \subset T_3 \subset T_5 \subset T_7 \subset T_8$, $T_1 \subset T_2 \subset T_4 \subset T_5 \subset T_6 \subset T_8$, $T_1 \subset T_2 \subset T_4 \subset T_5 \subset T_7 \subset T_8$, $T_1 \not\subset \emptyset$, $T_1 \backslash T_2 \not\subset \emptyset$, $T_1 \backslash T_3 \not\subset \emptyset$, $T_1 \backslash T_4 \not\subset \emptyset$, $T_1 \backslash T_5 \not\subset \emptyset$, $T_1 \backslash T_6 \not\subset \emptyset$, $T_1 \backslash T_7 \not\subset \emptyset$, $T_1 \backslash T_8 \not\subset \emptyset$, $T_1 \backslash T_1 = T_5$, $T_1 \backslash T_2 = T_7$, $T_1 \backslash T_3 = T_8$. We will investigate the properties of regular element $\alpha \in B_X(D)$ satisfying $V(D, \alpha) = Q$. Moreover, we will calculate the number of regular elements of $B_X(D)$ for a finite set X.

B. Albayrak, I.Y. Diasamidze, N. Aydin
As general, we study the properties and calculate the number of regular elements of $B_X(D)$ satisfying $V(D, \alpha) = Q'$ where Q' is a semilattice isomorphic to Q. So, we characterize the class for each element of which is isomorphic to Q by means of the characteristic family of sets, the characteristic mapping and the generate set of D.

2. Preliminaries

Theorem 2.1. [9, Theorem 10] Let α and σ be binary relations of the semigroup $B_X(D)$ such that $\alpha \circ \sigma \circ \alpha = \alpha$. If $D(\alpha)$ is some generating set of the semilattice $V(D, \alpha) \setminus \{\emptyset\}$ and $\alpha = \bigcup_{T \in V(D, \alpha)} (Y_\alpha^T \times T)$ is a quasinormal representation of the relation α, then $V(D, \alpha)$ is a complete $XI-$ semilattice of unions. Moreover, there exists a complete $\alpha-$isomorphism φ between the semilattice $V(D, \alpha)$ and $D' = \{T \sigma \mid T \in V(D, \alpha)\}$, that satisfies the following conditions:

a) $\varphi(T) = T\sigma$ and $\varphi(T)\alpha = T$ for all $T \in V(D, \alpha)$

b) $\bigcup_{T' \in \tilde{D}(\alpha)_T} Y_{T'}^\alpha \supseteq \varphi(T)$ for any $T \in D(\alpha)$,

c) $Y_T^\alpha \cap \varphi(T) \neq \emptyset$ for all nonlimiting element T of the set $\tilde{D}(\alpha)_T$,

d) If T is a limiting element of the set $\tilde{D}(\alpha)_T$, then the equality $\cup B(T) = T$

is always holds for the set $B(T) = \{Z \in \tilde{D}(\alpha)_T \mid Y_Z^\alpha \cap \varphi(T) \neq \emptyset\}$.

On the other hand, if $\alpha \in B_X(D)$ such that $V(D, \alpha)$ is a complete $XI-$semilattice of unions. If for a complete $\alpha-$isomorphism φ from $V(D, \alpha)$ to a subsemilattice D' of D satisfies the conditions b) – d) of the theorem, then α is a regular element of $B_X(D)$.

Theorem 2.2. [7, Theorem 1.18.2] Let $D_j = \{T_1, \ldots, T_j\}$, X be finite set and $\emptyset \neq Y \subseteq X$. If f is a mapping of the set X, on the D_j, for which $f(y) = T_j$ for some $y \in Y$, then the numbers of those mappings f of the sets X on the set D_j can be calculated by the formula $s = j^{\left|X \setminus Y\right|} \cdot \left(j^{|Y|} - (j - 1)^{|Y|}\right)$.

Theorem 2.3. [7, Theorem 6.3.5] Let X is a finite set. If φ is a fixed element of the set $\Phi(D, D')$ and $\left|\Omega(D)\right| = m_0$ and q is a number of all automorphisms of the semilattice D then $|R(D')| = m_0 \cdot q \cdot |R_{\varphi}(D, D')|$.
3. Results

Let X be a finite set, D be a complete X–semilattice of unions and $Q = \{T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8\}$ be X–subsemilattice of unions of D satisfies the following conditions

\[
T_1 \subset T_2 \subset T_3 \subset T_5 \subset T_6 \subset T_8, \quad T_1 \subset T_2 \subset T_3 \subset T_5 \subset T_7 \subset T_8,
\]

\[
T_1 \subset T_2 \subset T_4 \subset T_5 \subset T_6 \subset T_8, \quad T_1 \subset T_2 \subset T_4 \subset T_5 \subset T_7 \subset T_8,
\]

\[
T_1 \setminus T_3 \neq \emptyset, \quad T_3 \setminus T_4 \neq \emptyset, \quad T_6 \setminus T_7 \neq \emptyset, \quad T_7 \setminus T_6 \neq \emptyset,
\]

\[
T_3 \cup T_4 = T_5, T_6 \cup T_7 = T_8, \quad T_1 \neq \emptyset.
\]

The diagram of the Q is shown in Figure 3.1. Let $C(Q) = \{P_1, P_2, P_3, P_4, P_5, P_6, P_7, P_8\}$ is characteristic family of sets of Q and $\theta : Q \rightarrow C(Q)$, $\theta(T_i) = P_i$ ($i = 1, 2, \ldots, 8$) is characteristic mapping.

Then, by using properties of characteristic family and characteristic mapping for each element $T_i \in Q$ we can write

\[
T_i = \theta(\tilde{Q}) \cup \bigcup_{T \in \tilde{Q}(T_i)} \theta(T), (i = 1, 2, \ldots, 8)
\]

where $\tilde{Q}(T_i) = Q \setminus \{Z \in Q \mid T_i \subseteq Z\}$, $\tilde{Q} = \cup Q = T_8$ and $\theta(\tilde{Q}) = \theta(T_8) = P_8$.

Hence,

\[
T_8 = P_8 \cup \bigcup_{T \in \tilde{Q}(T_8)} \theta(T) = P_8 \cup P_7 \cup P_6 \cup P_5 \cup P_4 \cup P_3 \cup P_2 \cup P_1,
\]

\[
T_7 = P_8 \cup \bigcup_{T \in \tilde{Q}(T_7)} \theta(T) = P_8 \cup P_6 \cup P_5 \cup P_4 \cup P_3 \cup P_2 \cup P_1,
\]

\[
T_6 = P_8 \cup \bigcup_{T \in \tilde{Q}(T_6)} \theta(T) = P_8 \cup P_7 \cup P_5 \cup P_4 \cup P_3 \cup P_2 \cup P_1,
\]

\[
T_5 = P_8 \cup \bigcup_{T \in \tilde{Q}(T_5)} \theta(T) = P_8 \cup P_4 \cup P_3 \cup P_2 \cup P_1,
\]

\[
T_4 = P_8 \cup \bigcup_{T \in \tilde{Q}(T_4)} \theta(T) = P_8 \cup P_3 \cup P_2 \cup P_1,
\]

\[
T_3 = P_8 \cup \bigcup_{T \in \tilde{Q}(T_3)} \theta(T) = P_8 \cup P_4 \cup P_2 \cup P_1,
\]

\[
T_2 = P_8 \cup \bigcup_{T \in \tilde{Q}(T_2)} \theta(T) = P_8 \cup P_1,
\]

\[
T_1 = P_8 \cup \bigcup_{T \in \tilde{Q}(T_1)} \theta(T) = P_8 \cup \emptyset = P_8
\]
are obtained.

Lemma 3.1. Q is $XI-$ semilattice of unions.

Proof. Let us show that the conditions of definition of $XI-$ semilattice of unions hold. First, let determine the greatest lower bounds of the each semilattice Q_t in Q for $t \in T_8$. Since $T_8 = P_8 \cup P_7 \cup P_6 \cup P_5 \cup P_4 \cup P_3 \cup P_2 \cup P_1$ and P_i ($i = 1, 2, \ldots, 8$) are pairwise disjoint sets, by Equation (3.1) and the definition of Q_t, we get

$$Q_t = \begin{cases} Q, & t \in P_8 \\ \{T_8, T_6\}, & t \in P_7 \\ \{T_8, T_7\}, & t \in P_6 \\ \{T_8, T_7, T_6\}, & t \in P_5 \\ \{T_8, T_7, T_6, T_5, T_3\}, & t \in P_4 \\ \{T_8, T_7, T_6, T_5, T_4\}, & t \in P_3 \\ \{T_8, T_7, T_6, T_5, T_4, T_3\}, & t \in P_2 \\ \{T_8, T_7, T_6, T_5, T_4, T_3, T_2\}, & t \in P_1 \end{cases} \quad (3.2)$$

By using Equation (3.2) and the definition of $N(Q, Q_t)$, we get

$$N(Q, Q_t) = \begin{cases} \{T_1\}, & t \in P_8 \\ \{T_1, T_2, T_3, T_4, T_5, T_6\}, & t \in P_7 \\ \{T_1, T_2, T_3, T_4, T_5, T_7\}, & t \in P_6 \\ \{T_1, T_2, T_3, T_4, T_5\}, & t \in P_5 \\ \{T_1, T_2, T_3\}, & t \in P_4 \\ \{T_1, T_2, T_4\}, & t \in P_3 \\ \{T_1, T_2\}, & t \in P_2 \\ \{T_1, T_2\}, & t \in P_1 \end{cases} \quad (3.3)$$

From the Equation (3.3) the greatest lower bounds for each semilattice Q_t

$$\cup N(Q, Q_t) = \Lambda(Q, Q_t) = \begin{cases} T_1, & t \in P_8 \\ T_6, & t \in P_7 \\ T_7, & t \in P_6 \\ T_5, & t \in P_5 \\ T_3, & t \in P_4 \\ T_4, & t \in P_3 \\ T_2, & t \in P_2 \\ T_2, & t \in P_1 \end{cases} \quad (3.4)$$
are obtained. So, we get \(\Lambda(D, D_t) \in D \) for any \(t \in T_8 \). Now using the Equation (3.4), we have

\[
\begin{align*}
t \in T_1 &= P_8 \Rightarrow T_1 = \Lambda(Q, Q_t), \\
t \in T_2 &= P_8 \cup P_1 \Rightarrow t \in P_8 \text{ or } t \in P_1 \Rightarrow \Lambda(Q, Q_t) \in \{T_1, T_2\} \\
 &\Rightarrow T_2 = T_1 \cup T_2 = \bigcup_{t \in T_2} \Lambda(Q, Q_t), \\
t \in T_3 &= P_8 \cup P_4 \cup P_2 \cup P_1 \Rightarrow \Lambda(Q, Q_t) \in \{T_1, T_2, T_3\} \\
 &\Rightarrow T_3 = T_1 \cup T_2 \cup T_3 = \bigcup_{t \in T_3} \Lambda(Q, Q_t), \\
t \in T_4 &= P_8 \cup P_3 \cup P_2 \cup P_1 \Rightarrow \Lambda(Q, Q_t) \in \{T_1, T_2, T_4\} \\
 &\Rightarrow T_4 = T_1 \cup T_2 \cup T_4 = \bigcup_{t \in T_4} \Lambda(Q, Q_t), \\
t \in T_5 &= P_8 \cup P_4 \cup P_3 \cup P_2 \cup P_1 \Rightarrow \Lambda(Q, Q_t) = \{T_1, T_2, T_3, T_4\} \\
 &\Rightarrow T_5 = T_1 \cup T_2 \cup T_3 \cup T_4 = \bigcup_{t \in T_5} \Lambda(Q, Q_t), \\
t \in T_6 &= P_8 \cup P_7 \cup P_5 \cup \ldots \cup P_1 \Rightarrow \Lambda(Q, Q_t) = \{T_1, T_2, T_3, T_4, T_5, T_6\} \\
 &\Rightarrow T_6 = T_1 \cup \ldots \cup T_6 = \bigcup_{t \in T_6} \Lambda(Q, Q_t), \\
t \in T_7 &= P_8 \cup P_6 \cup P_5 \cup \ldots \cup P_1 \Rightarrow \Lambda(Q, Q_t) = \{T_1, T_2, T_3, T_4, T_5, T_6, T_7\} \\
 &\Rightarrow T_7 = T_1 \cup \ldots \cup T_5 \cup T_7 = \bigcup_{t \in T_7} \Lambda(Q, Q_t), \\
t \in T_8 &= T_7 \cup T_6 \Rightarrow \Lambda(Q, Q_t) = \{T_1, T_2, T_3, T_4, T_5, T_6, T_7\} \\
 &\Rightarrow T_8 = T_6 \cup T_7 = \bigcup_{t \in T_8} \Lambda(Q, Q_t).
\end{align*}
\]

Then \(Q \) is a \(XI \)-semilattice of unions. \(\square \)

Lemma 3.2. Following equalities are true for \(Q \) where \(P_i \)'s are pairwise disjoint sets and union of these sets equals \(Q \).

\[
\begin{align*}
P_1 &= T_2 \setminus T_1, \quad P_2 = (T_4 \cap T_3) \setminus T_2, \quad P_3 = T_4 \setminus T_3, \quad P_4 = T_3 \setminus T_4, \\
P_5 &= (T_7 \cap T_6) \setminus T_5, \quad P_6 = T_7 \setminus T_6, \quad P_7 = T_6 \setminus T_7, \quad P_8 = T_1.
\end{align*}
\]

Proof. Considering the (3.1), it is easy to see that equalities are true. \(\square \)

Lemma 3.3. Let \(G = \{T_1, T_2, T_3, T_4, T_5, T_6, T_7\} \) be a generating set of \(Q \). Then the elements \(T_1, T_2, T_3, T_4, T_6, T_7 \) are nonlimiting elements of the set \(\tilde{G}_{T_1}, \tilde{G}_{T_2}, \tilde{G}_{T_3}, \tilde{G}_{T_4}, \tilde{G}_{T_6}, \tilde{G}_{T_7} \) respectively and \(T_5 \) is limiting element of the set \(\tilde{G}_{T_5} \).
Proof. Definition of D'_T, following equations

$$\begin{align*}
\tilde{G}_{T_1} &= \{T_1\}, \\
\tilde{G}_{T_2} &= \{T_1, T_2\}, \\
\tilde{G}_{T_3} &= \{T_1, T_2, T_3\}, \\
\tilde{G}_{T_4} &= \{T_1, T_2, T_4\}, \\
\tilde{G}_{T_5} &= \{T_1, T_2, T_3, T_4, T_5\}, \\
\tilde{G}_{T_6} &= \{T_1, T_2, T_3, T_4, T_5, T_6\}, \\
\tilde{G}_{T_7} &= \{T_1, T_2, T_3, T_4, T_5, T_6, T_7\}.
\end{align*}$$

(3.5)

are obtained. Now we get the sets $l(\tilde{G}_{T_i}, T_i), i \in \{1, 2, \ldots, 7\}$,

$$\begin{align*}
l(\tilde{G}_{T_1}, T_1) &= \bigcup(\tilde{G}_{T_1} \setminus \{T_1\}) = \emptyset, \\
l(\tilde{G}_{T_2}, T_2) &= \bigcup(\tilde{G}_{T_2} \setminus \{T_2\}) = T_1, \\
l(\tilde{G}_{T_3}, T_3) &= \bigcup(\tilde{G}_{T_3} \setminus \{T_3\}) = T_2, \\
l(\tilde{G}_{T_4}, T_4) &= \bigcup(\tilde{G}_{T_4} \setminus \{T_4\}) = T_2, \\
l(\tilde{G}_{T_5}, T_5) &= \bigcup(\tilde{G}_{T_5} \setminus \{T_5\}) = T_5, \\
l(\tilde{G}_{T_6}, T_6) &= \bigcup(\tilde{G}_{T_6} \setminus \{T_6\}) = T_5, \\
l(\tilde{G}_{T_7}, T_7) &= \bigcup(\tilde{G}_{T_7} \setminus \{T_7\}) = T_5.
\end{align*}$$

Then we find nonlimiting and limiting elements of $\tilde{G}_{T_i}, i \in \{1, 2, \ldots, 7\}$.

$$\begin{align*}
T_1 \setminus l(\tilde{G}_{T_1}, T_1) &= T_1 \setminus \emptyset = T_1 \neq \emptyset, \quad T_1 \text{ nonlimiting element} \\
T_2 \setminus l(\tilde{G}_{T_2}, T_2) &= T_2 \setminus T_1 \neq \emptyset, \quad T_2 \text{ nonlimiting element} \\
T_3 \setminus l(\tilde{G}_{T_3}, T_3) &= T_3 \setminus T_2 \neq \emptyset, \quad T_3 \text{ nonlimiting element} \\
T_4 \setminus l(\tilde{G}_{T_4}, T_4) &= T_4 \setminus T_2 \neq \emptyset, \quad T_4 \text{ nonlimiting element} \\
T_5 \setminus l(\tilde{G}_{T_5}, T_5) &= T_5 \setminus T_5 = \emptyset, \quad T_5 \text{ limiting element} \\
T_6 \setminus l(\tilde{G}_{T_6}, T_6) &= T_6 \setminus T_5 \neq \emptyset, \quad T_6 \text{ nonlimiting element} \\
T_7 \setminus l(\tilde{G}_{T_7}, T_7) &= T_7 \setminus T_5 \neq \emptyset, \quad T_7 \text{ nonlimiting element}
\end{align*}$$

Therefore, the elements $T_1, T_2, T_3, T_4, T_6, T_7$ are nonlimiting elements of the sets $\tilde{G}_{T_1}, \tilde{G}_{T_2}, \tilde{G}_{T_3}, \tilde{G}_{T_4}, \tilde{G}_{T_6}, \tilde{G}_{T_7}$, respectively and T_5 is limiting element of the set \tilde{G}_{T_5}.

Now, we determine properties of a regular element α of $B_X(Q)$ where $V(D, \alpha) = Q$ and $\alpha = \bigcup_{i=1}^{8} (Y_i^\alpha \times T_i)$.

Theorem 3.4. Let $\alpha \in B_X(Q)$ be a quasinormal representation of the form $\alpha = \bigcup_{i=1}^{8} (Y_i^\alpha \times T_i)$ such that $V(D, \alpha) = Q$. $\alpha \in B_X(D)$ is a regular iff for
some complete α-isomorphism $\varphi : Q \to D' \subseteq D$, the following conditions are satisfied:

\begin{align*}
Y_1^\alpha &\supseteq \varphi(T_1), \\
Y_1^\alpha \cup Y_2^\alpha &\supseteq \varphi(T_2), \\
Y_1^\alpha \cup Y_2^\alpha \cup Y_3^\alpha &\supseteq \varphi(T_3), \\
Y_1^\alpha \cup Y_2^\alpha \cup Y_4^\alpha &\supseteq \varphi(T_4), \\
Y_1^\alpha \cup Y_2^\alpha \cup Y_3^\alpha \cup Y_4^\alpha &\supseteq \varphi(T_5), \\
Y_1^\alpha \cup Y_2^\alpha \cup Y_3^\alpha \cup Y_4^\alpha \cup Y_5^\alpha &\supseteq \varphi(T_6), \\
Y_1^\alpha \cup Y_2^\alpha \cup Y_3^\alpha \cup Y_4^\alpha \cup Y_5^\alpha \cup Y_6^\alpha &\supseteq \varphi(T_7), \\
Y_1^\alpha \cup Y_2^\alpha \cup Y_3^\alpha \cup Y_4^\alpha \cup Y_5^\alpha \cup Y_6^\alpha &\supseteq \varphi(T_7).
\end{align*}

(3.6)

Proof. Let $G = \{T_1, T_2, T_3, T_4, T_5, T_6, T_7\}$ be a generating set of Q.

\Rightarrow: Since $\alpha \in B_X(D)$ is regular and $V(D, \alpha) = Q X I$–semi-lattice of unions, by Theorem 2.1, there exists a complete isomorphism $\varphi : Q \to D'$. By Theorem 2.1 (a), satisfying $\varphi(T) \alpha = T$ for all $T \in V(D, \alpha)$. So, φ is complete α-isomorphism. Applying the Theorem 2.1 (b) we have

\begin{align*}
Y_1^\alpha &\supseteq \varphi(T_1), \\
Y_1^\alpha \cup Y_2^\alpha &\supseteq \varphi(T_2), \\
Y_1^\alpha \cup Y_2^\alpha \cup Y_3^\alpha &\supseteq \varphi(T_3), \\
Y_1^\alpha \cup Y_2^\alpha \cup Y_4^\alpha &\supseteq \varphi(T_4), \\
Y_1^\alpha \cup Y_2^\alpha \cup Y_3^\alpha \cup Y_4^\alpha &\supseteq \varphi(T_5), \\
Y_1^\alpha \cup Y_2^\alpha \cup Y_3^\alpha \cup Y_4^\alpha \cup Y_5^\alpha &\supseteq \varphi(T_6), \\
Y_1^\alpha \cup Y_2^\alpha \cup Y_3^\alpha \cup Y_4^\alpha \cup Y_5^\alpha \cup Y_6^\alpha &\supseteq \varphi(T_7).
\end{align*}

(3.7)

Moreover, considering that the elements $T_1, T_2, T_3, T_4, T_5, T_6, T_7$ are nonlimiting and using the Theorem 2.1 (c), following properties

\begin{align*}
Y_1^\alpha \cap \varphi(T_1) &\neq \emptyset, \\
Y_2^\alpha \cap \varphi(T_2) &\neq \emptyset, \\
Y_3^\alpha \cap \varphi(T_3) &\neq \emptyset, \\
Y_4^\alpha \cap \varphi(T_4) &\neq \emptyset, \\
Y_5^\alpha \cap \varphi(T_5) &\neq \emptyset, \\
Y_6^\alpha \cap \varphi(T_6) &\neq \emptyset, \\
Y_7^\alpha \cap \varphi(T_7) &\neq \emptyset.
\end{align*}

(3.8)

are obtained. From $Y_1^\alpha \supseteq \varphi(T_1)$, $Y_2^\alpha \cap \varphi(T_1) \neq \emptyset$ always ensured. Also by using $Y_1^\alpha \cup Y_2^\alpha \cup Y_3^\alpha \supseteq \varphi(T_3)$ and $Y_1^\alpha \cup Y_2^\alpha \cup Y_4^\alpha \supseteq \varphi(T_4)$, we get

\begin{align*}
Y_1^\alpha \cup Y_2^\alpha \cup Y_3^\alpha \cup Y_4^\alpha \cup Y_5^\alpha &\supseteq (Y_1^\alpha \cup Y_2^\alpha \cup Y_3^\alpha) \cup (Y_1^\alpha \cup Y_2^\alpha \cup Y_4^\alpha) \\
&\supseteq \varphi(T_3) \cup \varphi(T_4) \cup Y_5^\alpha \\
&= \varphi(T_5) \cup Y_5^\alpha \\
&\supseteq \varphi(T_5).
\end{align*}

Thus there is no need the condition $Y_1^\alpha \cup Y_2^\alpha \cup Y_3^\alpha \cup Y_4^\alpha \cup Y_5^\alpha \supseteq \varphi(T_5)$. Therefore there exist an α–isomorphism φ which holds given conditions.
\[\Leftrightarrow: \text{Since } V(D, \alpha) = Q, V(D, \alpha) \text{ is } XI-\text{semilattice of unions. Let } \varphi : Q \rightarrow D' \subseteq D \text{ be complete } \alpha-\text{isomorphism which holds given conditions. So, considering Equation (3.6), satisfying Theorem 2.1 (a) -- (c). Remembering that } T_5 \text{ is a limiting element of the set } \hat{G}_{T_5}, \text{ we constitute the set } B(T_5) = \left\{ Z \in \hat{G}_{T_5} \mid Y^\alpha_Z \cap \varphi(T_5) \neq \emptyset \right\}. \text{ If } Y^\alpha_4 \cap \varphi(T_5) = \emptyset \text{ we have}
\]
\[
Y^\alpha_1 \cup Y^\alpha_2 \cup Y^\alpha_3 \cup Y^\alpha_4 = (Y^\alpha_1 \cup Y^\alpha_2 \cup Y^\alpha_3) \cup (Y^\alpha_1 \cup Y^\alpha_2 \cup Y^\alpha_4) \\
\geq \varphi(T_3) \cup \varphi(T_4) = \varphi(T_5)
\]
So we get \[Y^\alpha_1 \cup Y^\alpha_2 \cup Y^\alpha_3 \supseteq \varphi(T_5) \supseteq \varphi(T_4)\] which is a contradiction with \[Y^\alpha_4 \cap \varphi(T_4) \neq \emptyset.\] Therefore \(T_4 \in B(T_5)\). If \(Y^\alpha_3 \cap \varphi(T_5) = \emptyset\) we have
\[
Y^\alpha_1 \cup Y^\alpha_2 \cup Y^\alpha_3 \cup Y^\alpha_4 = (Y^\alpha_1 \cup Y^\alpha_2 \cup Y^\alpha_3) \cup (Y^\alpha_1 \cup Y^\alpha_2 \cup Y^\alpha_4) \\
\geq \varphi(T_3) \cup \varphi(T_4) = \varphi(T_5)
\]
So we get \[Y^\alpha_1 \cup Y^\alpha_2 \cup Y^\alpha_3 \supseteq \varphi(T_5) \supseteq \varphi(T_4)\] which is a contradiction with \[Y^\alpha_3 \cap \varphi(T_3) \neq \emptyset.\] Therefore \(T_3 \in B(T_5)\). We have \(\cup B(T_5) = T_3 \cup T_4 = T_5\). By Theorem 2.1, we conclude that \(\alpha\) is the regular element of the \(B_X(D)\).

Now we calculate the number of regular elements \(\alpha\), satisfying the hypothesis of Theorem 3.4. Let \(\alpha \in B_X(D)\) be a regular element which is quasinormal representation of the form \(\alpha = \bigcup_{i=1}^{8} (Y^\alpha_i \times T_i)\) and \(V(D, \alpha) = Q\). Then there exist a complete \(\alpha-\text{isomorphism } \varphi : Q \rightarrow D' = \{\varphi(T_1), \varphi(T_2), \ldots, \varphi(T_8)\}\) satisfying the hypothesis of Theorem 3.4. So, \(\alpha \in R_{\varphi}(Q, D')\). We will denote \(\varphi(T_i) = \overline{T_i}, i = 1, 2, \ldots, 8\). Diagram of the \(D' = \{\overline{T_1}, \overline{T_2}, \overline{T_3}, \overline{T_4}, \overline{T_5}, \overline{T_6}, \overline{T_7}, \overline{T_8}\}\) is shown in Figure 3.2. Then the Equation (3.6) reduced to below equation.

\[
\begin{align*}
Y^\alpha_1 \supseteq & \overline{T_1} \\
Y^\alpha_1 \cup Y^\alpha_2 \supseteq & \overline{T_2} \\
Y^\alpha_1 \cup Y^\alpha_2 \cup Y^\alpha_3 \supseteq & \overline{T_3} \\
Y^\alpha_1 \cup Y^\alpha_2 \cup Y^\alpha_4 \supseteq & \overline{T_4} \\
Y^\alpha_1 \cup Y^\alpha_2 \cup Y^\alpha_3 \cup Y^\alpha_4 \cup Y^\alpha_5 \cup Y^\alpha_6 \supseteq & \overline{T_6}, \\
Y^\alpha_1 \cup Y^\alpha_2 \cup Y^\alpha_3 \cup Y^\alpha_4 \cup Y^\alpha_5 \cup Y^\alpha_7 \supseteq & \overline{T_7} \\
Y^\alpha_1 \cap \varphi(T_2) \neq & \emptyset, Y^\alpha_3 \cap \varphi(T_3) \neq \emptyset, \\
Y^\alpha_4 \cap \varphi(T_4) \neq & \emptyset, Y^\alpha_5 \cap \varphi(T_5) \neq \emptyset, \\
Y^\alpha_6 \cap \varphi(T_6) \neq & \emptyset, Y^\alpha_7 \cap \varphi(T_7) \neq \emptyset.
\end{align*}
\]

(3.9)

On the other hand, the image of the sets in Lemma 3.2 under the \(\alpha-\text{isomorphism } \varphi\)

\[
\overline{T_1}, (\overline{T_3} \cap \overline{T_4}) \setminus \overline{T_1}, \overline{T_4} \setminus \overline{T_3}, \overline{T_5} \setminus \overline{T_4}, (\overline{T_7} \cap \overline{T_6}) \setminus \overline{T_5}, \overline{T_7} \setminus \overline{T_6}, \overline{T_6} \setminus \overline{T_7}, X \setminus \overline{T_8}
\]
are also pairwise disjoint sets and union of these sets equals X.

Lemma 3.5. For every $\alpha \in R_\varphi(Q, D')$, there exists an ordered system of disjoint mappings which is defined \{$(T_1, (T_3 \cap T_4) \setminus T_1, T_4 \setminus T_3, T_3 \setminus T_4, (T_7 \cap T_6) \setminus T_5, T_7 \setminus T_6, T_6 \setminus T_7, X \setminus T_8)$\). Also, ordered systems are different which correspond to different binary relations.

Proof. Let $f_\alpha : X \to D$ be a mapping satisfying the condition $f_\alpha(t) = t\alpha$ for all $t \in X$. We consider the restrictions of the mapping f_α as $f_1\alpha$, $f_2\alpha$, $f_3\alpha$, $f_4\alpha$, $f_5\alpha$, $f_6\alpha$, $f_7\alpha$, $f_8\alpha$ on the sets $T_1, (T_3 \cap T_4) \setminus T_1, T_4 \setminus T_3, T_3 \setminus T_4, (T_7 \cap T_6) \setminus T_5, T_7 \setminus T_6, T_6 \setminus T_7, X \setminus T_8$ respectively.

Now, considering the definition of the sets Y_α^i, $i = 1, 2, \ldots, 8$, together with the Equation (3.9) we have

\[t \in T_1 \Rightarrow t \in Y_1^\alpha \Rightarrow t\alpha = T_1 \Rightarrow f_1\alpha(t) = T_1, \forall t \in T_1. \]
\[t \in (T_3 \cap T_4) \setminus T_1 \Rightarrow t \in (T_3 \cap T_4) \subseteq Y_1^\alpha \cup Y_2^\alpha \]
\[\Rightarrow t\alpha \in \{T_1, T_2\} \]
\[\Rightarrow f_2\alpha(t) \in \{T_1, T_2\}, \forall t \in (T_3 \cap T_4) \setminus T_1. \]

Since $Y_2^\alpha \cap \overline{T}_2 \neq \emptyset$, there is an element $t_2 \in Y_2^\alpha \cap \overline{T}_2$. Then $t_2\alpha = T_2$ and $t_2 \in \overline{T}_2$. If $t_2 \in T_1$ then $t_2 \in \overline{T}_1 \subseteq Y_1^\alpha$. Therefore, $t_2\alpha = T_2$ which is in contradiction with the equality $t_2\alpha = T_2$. So $f_2\alpha(t_2) = T_2$ for some $t_2 \in \overline{T}_2 \setminus T_1$.

\[t \in \overline{T}_4 \setminus T_3 \Rightarrow t \in \overline{T}_4 \setminus T_3 \subseteq \overline{T}_4 \subseteq Y_1^\alpha \cup Y_2^\alpha \cup Y_4^\alpha \]
\[\Rightarrow t\alpha \in \{T_1, T_2, T_4\} \]
\[\Rightarrow f_3\alpha(t) \in \{T_1, T_2, T_4\}, \forall t \in \overline{T}_4 \setminus T_3. \]

$Y_4^\alpha \cap \overline{T}_4 \neq \emptyset$ so there is an element $t_4 \in Y_4^\alpha \cap \overline{T}_4$. Then $t_4\alpha = T_4$ and $t_4 \in \overline{T}_4$. If $t_4 \in \overline{T}_3$ then $t_4 \in \overline{T}_3 \subseteq Y_1^\alpha \cup Y_2^\alpha \cup Y_3^\alpha$. Thus $t_4\alpha \in \{T_1, T_2, T_3\}$ which is in contradiction with the equality $t_4\alpha = T_4$. So there is an element $t_4 \in \overline{T}_4 \setminus T_3$ with $f_3\alpha(t_4) = T_4$.

\[t \in T_3 \setminus T_4 \Rightarrow t \in T_3 \setminus T_4 \subseteq T_3 \subseteq Y_1^\alpha \cup Y_2^\alpha \cup Y_3^\alpha \]
\[\Rightarrow t\alpha \in \{T_1, T_2, T_3\} \]
\[\Rightarrow f_4\alpha(t) \in \{T_1, T_2, T_3\}, \forall t \in T_3 \setminus T_4. \]

Since $Y_3^\alpha \cap \overline{T}_3 \neq \emptyset$, there is an element t_3 with $t_3\alpha = T_3$ and $t_3 \in \overline{T}_3$. If $t_3 \in \overline{T}_4$ then $t_3 \in \overline{T}_4 \subseteq Y_1^\alpha \cup Y_2^\alpha \cup Y_4^\alpha$. Therefore, $t_3\alpha \in \{T_1, T_2, T_4\}$ which contradicts to the equality $t_3\alpha = T_3$. So there is an element $t_3 \in \overline{T}_3 \setminus T_4$ with $f_4\alpha(t_3) = T_3$.

\[t \in (T_7 \cap T_6) \setminus T_5 \Rightarrow t \in (T_7 \cap T_6) \setminus T_5 \subseteq T_7 \cap T_6 \subseteq Y_1^\alpha \cup Y_2^\alpha \cup Y_3^\alpha \cup Y_4^\alpha \cup Y_5^\alpha \]
\[\Rightarrow t\alpha \in \{T_1, T_2, T_3, T_4, T_5\} \]
\[\Rightarrow f_5\alpha(t) \in \{T_1, T_2, T_3, T_4, T_5\}, \forall t \in (T_7 \cap T_6) \setminus T_5. \]
\[t \in \overline{T_7} \setminus \overline{T_6} \Rightarrow t \in \overline{T_7} \setminus \overline{T_6} \subseteq \overline{T_7} \subseteq Y_1^\alpha \cup Y_2^\alpha \cup Y_3^\alpha \cup Y_4^\alpha \cup Y_5^\alpha \cup Y_7^\alpha \]
\[\Rightarrow t\alpha \in \{T_1, T_2, T_3, T_4, T_5, T_7\} \]
\[\Rightarrow f_{6\alpha}(t) \in \{T_1, T_2, T_3, T_4, T_5, T_7\}, \forall t \in \overline{T_7} \setminus \overline{T_6}. \]

Also, there is an element \(t_7 \in Y_7^\alpha \cap \overline{T_7} \) since \(Y_7^\alpha \cap \overline{T_7} \neq \emptyset \). Then \(t_7\alpha = T_7 \) and \(t_7 \in \overline{T_7} \). If \(t_7 \in \overline{T_6} \) then \(t_7 \in \overline{T_6} \subseteq Y_1^\alpha \cup Y_2^\alpha \cup Y_3^\alpha \cup Y_4^\alpha \cup Y_5^\alpha \cup Y_6^\alpha \). So \(t_7\alpha \in \{T_1, T_2, T_3, T_4, T_5, T_6\} \). However this contradicts to \(t_7\alpha = T_7 \). So \(f_{6\alpha}(t_7) = T_7 \) for some \(t_7 \in \overline{T_7} \setminus \overline{T_6} \).

\[t \in \overline{T_6} \setminus \overline{T_7} \Rightarrow t \in \overline{T_6} \setminus \overline{T_7} \subseteq \overline{T_6} \subseteq Y_1^\alpha \cup Y_2^\alpha \cup Y_3^\alpha \cup Y_4^\alpha \cup Y_5^\alpha \cup Y_6^\alpha \]
\[\Rightarrow t\alpha \in \{T_1, T_2, T_3, T_4, T_5, T_6\} \]
\[\Rightarrow f_{7\alpha}(t) \in \{T_1, T_2, T_3, T_4, T_5, T_6\}, \forall t \in \overline{T_6} \setminus \overline{T_7}. \]

Similarly there is an element \(t_6 \) with \(t_6\alpha = T_6 \) and \(t_6 \in \overline{T_6} \) since \(Y_6^\alpha \cap \overline{T_6} \neq \emptyset \). If \(t_6 \in \overline{T_7} \) then \(t_6 \in \overline{T_7} \subseteq Y_1^\alpha \cup Y_2^\alpha \cup Y_3^\alpha \cup Y_4^\alpha \cup Y_5^\alpha \cup Y_6^\alpha \). Therefore, \(t_6\alpha \in \{T_1, T_2, T_3, T_4, T_5, T_7\} \) which is in contradiction with the equality \(t_6\alpha = T_6 \). So \(f_{7\alpha}(t_6) = T_6 \) for some \(t_6 \in \overline{T_6} \setminus \overline{T_7} \).

\[t \in X \setminus \overline{T_8} \Rightarrow t \in X \setminus \overline{T_8} \subseteq X = \bigcup_{i=1}^8 Y_i^\alpha \Rightarrow t\alpha \in Q \Rightarrow f_{8\alpha}(t) \in Q, \forall t \in X \setminus \overline{T_8}. \]

Therefore, for every binary relation \(\alpha \in R_\varphi(Q, D') \) there exists an ordered system \((f_{1\alpha}, f_{2\alpha}, f_{3\alpha}, f_{4\alpha}, f_{5\alpha}, f_{6\alpha}, f_{7\alpha}, f_{8\alpha})\).

On the other hand, suppose that for \(\alpha, \beta \in R_\varphi(Q, D') \) which \(\alpha \neq \beta \), be obtained \(f_\alpha = (f_{1\alpha}, f_{2\alpha}, f_{3\alpha}, f_{4\alpha}, f_{5\alpha}, f_{6\alpha}, f_{7\alpha}, f_{8\alpha}) \) and \(f_\beta = (f_{1\beta}, f_{2\beta}, f_{3\beta}, f_{4\beta}, f_{5\beta}, f_{6\beta}, f_{7\beta}, f_{8\beta}) \). If \(f_\alpha = f_\beta \), we get

\[f_\alpha = f_\beta \Rightarrow f_\alpha(t) = f_\beta(t), \forall t \in X \Rightarrow t\alpha = t\beta, \forall t \in X \Rightarrow \alpha = \beta \]

which contradicts to \(\alpha \neq \beta \). Therefore different binary relations’ ordered systems are different. \(\square \)

Lemma 3.6. Let \(f = (f_1, f_2, f_3, f_4, f_5, f_6, f_7, f_8) \) be ordered system from
Then $\beta = \bigcup_{x \in X} (\{x\} \times f(x)) \in B_X(D)$ is regular and φ is complete β–isomorphism θ. So $\beta \in R_\varphi(Q, D')$.

Proof. First we see that $V(D, \beta) = Q$. Considering $V(D, \beta) = \{Y \beta \mid Y \in D\}$, the properties of f mapping, $T_i \beta = \bigcup_{x \in T_i} x \beta$ and $D' \subseteq D$, we get

\begin{align*}
T_1 \in Q & \Rightarrow T_1 \beta = T_1 \Rightarrow T_1 \in V(D, \beta), \\
T_2 \in Q & \Rightarrow T_2 \beta = T_1 \cup T_2 \Rightarrow T_2 \in V(D, \beta), \\
T_3 \in Q & \Rightarrow T_3 \beta = T_1 \cup T_2 \cup T_3 = T_3 \Rightarrow T_3 \in V(D, \beta), \\
T_4 \in Q & \Rightarrow T_4 \beta = T_1 \cup T_2 \cup T_3 \cup T_4 = T_4 \Rightarrow T_4 \in V(D, \beta), \\
T_5 \in Q & \Rightarrow T_5 \beta = (T_3 \cup T_4) \beta = T_3 \cup T_4 = T_5 \Rightarrow T_5 \in V(D, \beta), \\
T_6 \in Q & \Rightarrow T_6 \beta = T_1 \cup T_2 \cup T_3 \cup T_4 \cup T_5 \cup T_6 = T_6 \Rightarrow T_6 \in V(D, \beta), \\
T_7 \in Q & \Rightarrow T_7 \beta = T_1 \cup T_2 \cup T_3 \cup T_4 \cup T_5 \cup T_7 = T_7 \Rightarrow T_7 \in V(D, \beta), \\
T_8 \in Q & \Rightarrow T_8 \beta = (T_6 \cup T_7) \beta = T_6 \cup T_7 = T_8 \Rightarrow T_8 \in V(D, \beta).
\end{align*}

Then $Q \subseteq V(D, \beta)$. Also,

\begin{align*}
Z \in V(D, \beta) & \Rightarrow Z = Y \beta, \exists Y \in D \\
& \Rightarrow Z = Y \beta = \bigcup_{y \in Y} y \beta = \bigcup_{y \in Y} f(y) \in Q
\end{align*}

since $f(y) \in Q$ and Q is closed set-theoretic union. Therefore, $V(D, \beta) \subseteq Q$. Hence $V(D, \beta) = Q$.

Also, $\beta = \bigcup_{T \in V(X^*, \beta)} \left(Y_T^\beta \times T \right)$ is quasinormal representation of β since $\emptyset \notin Q$. From the definition of β, $f(x) = x \beta$ for all $x \in X$. It is easily seen that
\[V(X^*, \beta) = V(D, \beta) = Q. \] We get \(\beta = \bigcup_{i=1}^{8} (Y_i^{\beta} \times T_i) \).

On the other hand
\[
t \in \overline{T}_1 \Rightarrow t\beta = f(t) = T_1 \Rightarrow t \in Y_1^{\beta} \Rightarrow \overline{T}_1 \subseteq Y_1^{\beta},
\]
\[
t \in \overline{T}_2 = \overline{T}_1 \cup ((\overline{T}_3 \cap \overline{T}_4) \setminus \overline{T}_1) \Rightarrow t\beta = f(t) \in \{T_1, T_2\} \Rightarrow t \in Y_1^{\beta} \cup Y_2^{\beta} \Rightarrow \overline{T}_2 \subseteq Y_1^{\beta} \cup Y_2^{\beta}
\]
\[
t \in \overline{T}_3 = \overline{T}_1 \cup ((\overline{T}_3 \cap \overline{T}_4) \setminus \overline{T}_1) \cup (\overline{T}_3 \setminus \overline{T}_4) \Rightarrow t\beta = f(t) \in \{T_1, T_2, T_3\} \Rightarrow t \in Y_1^{\beta} \cup Y_2^{\beta} \cup Y_3^{\beta} \Rightarrow \overline{T}_4 \subseteq Y_1^{\beta} \cup Y_2^{\beta} \cup Y_3^{\beta},
\]
\[
t \in \overline{T}_4 = \overline{T}_1 \cup ((\overline{T}_3 \cap \overline{T}_4) \setminus \overline{T}_1) \cup (\overline{T}_4 \setminus \overline{T}_3) \Rightarrow t\beta = f(t) \in \{T_1, T_2, T_4\} \Rightarrow t \in Y_1^{\beta} \cup Y_2^{\beta} \cup Y_4^{\beta} \Rightarrow \overline{T}_4 \subseteq Y_1^{\beta} \cup Y_2^{\beta} \cup Y_4^{\beta},
\]
\[
t \in \overline{T}_6 = (\overline{T}_6 \setminus \overline{T}_7) \cup ((\overline{T}_7 \setminus \overline{T}_6) \setminus \overline{T}_5) \cup \overline{T}_3 \cup \overline{T}_4 \Rightarrow t\beta = f(t) \in \{T_1, T_2, T_3, T_4, T_5, T_6\} \Rightarrow t \in Y_1^{\beta} \cup Y_2^{\beta} \cup Y_3^{\beta} \cup Y_4^{\beta} \cup Y_5^{\beta} \cup Y_6^{\beta} \Rightarrow \overline{T}_6 \subseteq Y_1^{\beta} \cup Y_2^{\beta} \cup Y_3^{\beta} \cup Y_4^{\beta} \cup Y_5^{\beta} \cup Y_6^{\beta},
\]
\[
t \in \overline{T}_7 = (\overline{T}_7 \setminus \overline{T}_6) \cup ((\overline{T}_7 \setminus \overline{T}_6) \setminus \overline{T}_5) \cup \overline{T}_3 \cup \overline{T}_4 \Rightarrow t\beta = f(t) \in \{T_1, T_2, T_3, T_4, T_5, T_7\} \Rightarrow t \in Y_1^{\beta} \cup Y_2^{\beta} \cup Y_3^{\beta} \cup Y_4^{\beta} \cup Y_5^{\beta} \cup Y_7^{\beta} \Rightarrow \overline{T}_6 \subseteq Y_1^{\beta} \cup Y_2^{\beta} \cup Y_3^{\beta} \cup Y_4^{\beta} \cup Y_5^{\beta} \cup Y_7^{\beta},
\]

Also, by using \(f_2(t_2) = T_2, \ \exists t_2 \in \overline{T}_2 \setminus \overline{T}_1, \) we obtain \(Y_2^{\beta} \cap \overline{T}_2 \neq \emptyset. \) Similarly, from properties of \(f_3, f_4, f_6, f_7, \) be seen \(Y_3^{\beta} \cap \overline{T}_3 \neq \emptyset, Y_4^{\beta} \cap \overline{T}_4 \neq \emptyset, Y_6^{\beta} \cap \overline{T}_6 \neq \emptyset \) and \(Y_7^{\beta} \cap \overline{T}_7 \neq \emptyset. \) Therefore the mapping \(\varphi : Q \rightarrow D' = \{\overline{T}_1, \overline{T}_2, \ldots, \overline{T}_8\} \) to be defined \(\varphi(T_i) = \overline{T}_i \) satisfy the conditions in (3.9) for \(\beta. \) Hence \(\varphi \) is complete \(\beta- \)isomorphism because of \(\varphi(T) \beta = \overline{T}_\beta = T, \) for all \(T \in V(D, \beta). \) By Theorem 3.4, \(\beta \in R_\varphi(Q, D'). \)

Therefore, there is one to one correspondence between the elements of \(R_\varphi(Q, D') \) and the set of ordered systems of disjoint mappings.

Theorem 3.7. Let \(X \) be a finite set and \(Q \) be XI- semilattice. If
\[
D' = \{\overline{T}_1, \overline{T}_2, \overline{T}_3, \overline{T}_4, \overline{T}_5, \overline{T}_6, \overline{T}_7, \overline{T}_8\}
\]
is \(\alpha- \) isomorphic to \(Q \) and \(\Omega(Q) = m_0, \) then
\[
|R(D')| = m_0 \cdot 4 \cdot (2|\overline{T}_3 \setminus \overline{T}_4| - |\overline{T}_2 \setminus \overline{T}_1| - 1) \cdot (3|\overline{T}_4 \setminus \overline{T}_3| - 2|\overline{T}_4 \setminus \overline{T}_3|)
\]
\[\cdot \left(3 | T_3 \setminus T_4 | - 2 | T_3 \setminus T_4 | \right) \cdot 5 | T_7 \cap T_6 \setminus T_5 | \cdot \left(6 | T_7 \setminus T_6 | - 5 | T_7 \setminus T_6 | \right) \]
\[\cdot \left(6 | T_6 \setminus T_7 | - 5 | T_6 \setminus T_7 | \right) \cdot 8 | T_8 | \]

Proof. Lemma 3.5 and Lemma 3.6 show us that the number of the ordered system of disjoint mappings \((f_{1\alpha}, f_{2\alpha}, f_{3\alpha}, f_{4\alpha}, f_{5\alpha}, f_{6\alpha}, f_{7\alpha}, f_{8\alpha})\) is equal to \(|R_\phi(Q, D')|\), which \(\alpha \in BX(D)\) regular element, \(V(D, \alpha) = Q\) and \(\phi : Q \rightarrow D'\) is a complete \(\alpha\)-isomorphism.

From the Theorem 2.2, the number of the mappings \(f_{1\alpha}, f_{2\alpha}, f_{3\alpha}, f_{4\alpha}, f_{5\alpha}, f_{6\alpha}, f_{7\alpha}\) and \(f_{8\alpha}\) are respectively as
\[
1, \left(2 | T_3 \cap T_4 \setminus T_2 | \right) \cdot \left(2 | T_2 \setminus T_1 | - 1 \right), \left(3 | T_4 \setminus T_3 | - 2 | T_4 \setminus T_3 | \right), \left(2 | T_3 \setminus T_4 | - 2 | T_3 \setminus T_4 | \right), \\
5 | T_7 \cap T_6 \setminus T_5 | , \left(6 | T_7 \setminus T_6 | - 5 | T_7 \setminus T_6 | \right) , \left(6 | T_6 \setminus T_7 | - 5 | T_6 \setminus T_7 | \right) , 8 | T_8 | .
\]

Now, we determine the number of regular elements
\[
|R_\phi(Q, D')| = \left(2 | T_3 \cap T_4 \setminus T_2 | \right) \cdot \left(2 | T_2 \setminus T_1 | - 1 \right) \cdot \left(3 | T_4 \setminus T_3 | - 2 | T_4 \setminus T_3 | \right) \\
\cdot \left(3 | T_3 \setminus T_4 | - 2 | T_3 \setminus T_4 | \right) \cdot 5 | T_7 \cap T_6 \setminus T_5 | \cdot \left(6 | T_7 \setminus T_6 | - 5 | T_7 \setminus T_6 | \right) \\
\cdot \left(6 | T_6 \setminus T_7 | - 5 | T_6 \setminus T_7 | \right) \cdot 8 | T_8 | .
\]

The number of all automorphisms of the semilattice \(Q\) is \(q = 4\). These are
\[
I_Q = \left(\begin{array}{cccccccc} T_1 & T_2 & T_3 & T_4 & T_5 & T_6 & T_7 & T_8 \\ T_1 & T_2 & T_3 & T_4 & T_5 & T_6 & T_7 & T_8 \\ T_1 & T_2 & T_3 & T_4 & T_5 & T_6 & T_7 & T_8 \\ T_1 & T_2 & T_3 & T_4 & T_5 & T_6 & T_7 & T_8 \end{array} \right) \quad \varphi = \left(\begin{array}{cccccccc} T_1 & T_2 & T_3 & T_4 & T_5 & T_6 & T_7 & T_8 \\ T_1 & T_2 & T_3 & T_4 & T_5 & T_6 & T_7 & T_8 \\ T_1 & T_2 & T_3 & T_4 & T_5 & T_6 & T_7 & T_8 \\ T_1 & T_2 & T_3 & T_4 & T_5 & T_6 & T_7 & T_8 \end{array} \right),
\]
\[
\theta = \left(\begin{array}{cccccccc} T_1 & T_2 & T_3 & T_4 & T_5 & T_6 & T_7 & T_8 \\ T_1 & T_2 & T_3 & T_4 & T_5 & T_6 & T_7 & T_8 \\ T_1 & T_2 & T_3 & T_4 & T_5 & T_6 & T_7 & T_8 \\ T_1 & T_2 & T_3 & T_4 & T_5 & T_6 & T_7 & T_8 \end{array} \right) \quad \tau = \left(\begin{array}{cccccccc} T_1 & T_2 & T_3 & T_4 & T_5 & T_6 & T_7 & T_8 \\ T_1 & T_2 & T_3 & T_4 & T_5 & T_6 & T_7 & T_8 \\ T_1 & T_2 & T_3 & T_4 & T_5 & T_6 & T_7 & T_8 \\ T_1 & T_2 & T_3 & T_4 & T_5 & T_6 & T_7 & T_8 \end{array} \right).
\]

Therefore by using Theorem 2.3,
\[
|R(D')| = m_0 \cdot 4 \cdot \left(2 | T_3 \cap T_4 \setminus T_2 | \right) \cdot \left(2 | T_2 \setminus T_1 | - 1 \right) \cdot \left(3 | T_4 \setminus T_3 | - 2 | T_4 \setminus T_3 | \right) \\
\cdot \left(3 | T_3 \setminus T_4 | - 2 | T_3 \setminus T_4 | \right) \cdot 5 | T_7 \cap T_6 \setminus T_5 | \cdot \left(6 | T_7 \setminus T_6 | - 5 | T_7 \setminus T_6 | \right) \\
\cdot \left(6 | T_6 \setminus T_7 | - 5 | T_6 \setminus T_7 | \right) \cdot 8 | T_8 | .
\]

is obtained.

Example 1. Let \(X = \{1, 2, 3, 4, 5, 6\}\) and
\[
D = \{ T_1 = \{1\}, T_2 = \{1, 2\}, T_3 = \{1, 2, 3\}, T_4 = \{1, 2, 4\}, T_5 = \{1, 2, 3, 4\}, \ T_6 = \{1, 2, 3, 4, 5\}, T_7 = \{1, 2, 3, 4, 6\}, T_8 = \{1, 2, 3, 4, 5, 6\} \}. \]
D is an X–semilattice of unions since D is closed the union of sets. Moreover D satisfies the conditions in (3.1). Then, D is an XI–semilattice. Let $D = Q$. Therefore $|\Omega(Q)| = 1$. Besides, the number of all automorphisms of Q is $q = 4$. By using Theorem 3.7

$$|R(Q)| = 1 \cdot 4 \cdot 2^{2\left(\overline{T_3 \cap T_4} \setminus T_2\right)} \cdot 2^{2\left|T_2 \setminus T_1\right|} \cdot \left(3^{\left|T_4 \setminus T_5\right|} - 2^{\left|T_4 \setminus T_3\right|}\right)$$

$$\cdot \left(3^{\left|T_3 \setminus T_4\right|} - 2^{\left|T_3 \setminus T_4\right|}\right) \cdot 5^{\left|T_7 \cap T_6\right| \setminus T_5} \cdot 6^{\left|T_7 \setminus T_6\right| - 5^{\left|T_7 \setminus T_6\right|}}$$

$$= 4$$

is obtained.

References

