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1. Introduction

Let (S, ∗) be a semigroup. An element a of S is called an idempotent element if
a2 = a. An element e of S is called an identity element if s∗e = s = e∗s for all s
in S. A monoid is a semigroup which has an identity element. It is well known
that there are 5 nonisomorphic semigroups of order 2. In this paper we show
that there are 9 nonisomorphic semigroups of order 3 with two idempotents.

2. Main Results

The following proposition gives some property of semigroups of order 3 with
two idempotents.
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Theorem 1. Every semigroup of order 3 with two idempotents has an

identity element or has a left zero element or has a right zero element.

Proof. Assume that S = ({a, b, c}, ∗) is a semigroup with idempotents a, b

and that c is not an idempotent element. Thus c ∗ c 6= c.

We consider two cases of the product c ∗ c. That is, case A: c ∗ c = a and
case B: c ∗ c = b.

Case A. Assume that c∗ c = a. We have a∗ c = (c∗ c)∗ c = c∗ (c∗ c) = c∗a.
Consider the product a ∗ c = c ∗ a. If a ∗ c = c ∗ a = b, then b = b ∗ b =
(a ∗ c) ∗ (c ∗ a) = a ∗ (c ∗ c) ∗ a = a ∗ a ∗ a = a. This contradicts b 6= a. Therefore
a∗c = c∗a 6= b. If a∗c = c∗a = c, then a = a∗c = a∗(a∗c) = (a∗a)∗c = a∗c = c.
Therefore a∗c = c∗a 6= c. Thus a∗c = c∗a = a. Next we consider the product
a ∗ b. Since a ∗ (a ∗ b) = (a ∗ a) ∗ b = a ∗ b and a ∗ c = a, a ∗ b 6= c. Therefore
a ∗ b = a or a ∗ b = c. In case a ∗ b = a, we have a is a left zero element. In case
a ∗ b = b, we have c ∗ b = c ∗ (a ∗ b) = (c ∗ a) ∗ b = a ∗ b = b, i.e., b is a right zero
element. So case A is complete.

Case B. Assume that c ∗ c = b. We have b ∗ c = (c ∗ c) ∗ c = c ∗ (c ∗ c) = c ∗ b.
So we consider the product b ∗ c = c ∗ b. If b ∗ c = c ∗ b = a, then a = c ∗ b =
c ∗ (b ∗ b) = (c ∗ b) ∗ b = a ∗ b = a ∗ (b ∗ b) = a ∗ (b ∗ (c ∗ c)) = a ∗ (b ∗ c) ∗ c =
a ∗ a ∗ c = a ∗ c = (b ∗ c) ∗ c = b ∗ (c ∗ c) = b ∗ c = b. Therefore b ∗ c = c ∗ b 6= a.
We consider two subcases of case B according to the product b ∗ c = c ∗ b.

Subcase B-1. Assume that b ∗ c = c ∗ b = b. We consider the product a ∗ b.
If a ∗ b = c, then c = a ∗ b = a ∗ (b ∗ b) = (a ∗ b) ∗ b = c ∗ b = b. Therefore
a ∗ b 6= c. In case a ∗ b = b, b is a right zero element. In case a ∗ b = a, we have
a ∗ c = (a ∗ b) ∗ c = a ∗ (b ∗ c) = a ∗ b = a, i.e., a is a left zero element.

Subcase B-2. Assume that b ∗ c = c ∗ b = c. If a ∗ b = c, then c = a ∗ b =
(a ∗ a) ∗ b = a ∗ (a ∗ b) = a ∗ c = a ∗ (b ∗ c) = (a ∗ b) ∗ c = c ∗ c = b. So a ∗ b 6= c.
We consider two subcases of subcase B-2 according to the product a ∗ b.

Subcase B-2.1. Assume that a ∗ b = a. We have (a ∗ c) ∗ c = a ∗ (c ∗ c) =
a∗b = a. If follows that a∗c can not be equal to b or c, i.e., a∗c = a. Therefore
a is a left zero element.

Subcase B-2.2. Assume that a∗b = b. So a∗c = a∗ (b∗c) = (a∗b)∗c =
b ∗ c = c. This shows that a is a left identity element. Next we show that a is a
right identity element. Since (c∗a)∗c = c∗(a∗c) = c∗c = b, c∗a can not be equal
to a or b, i.e., c∗a = c. Consequently b∗a = (c∗c)∗a = c∗(c∗a) = c∗c = b. Thus
a is a right identity element, i.e., S has an identity element. This completes the
proof.

From [1] we have all nonisomorphic monoids of order 3. So it is easy to
check that there are 3 nonisomorphic monoids of order 3 with two idempotents.
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See tables below.

∗ a b c

a a b c

b b b b

c c b b

Table 1

∗ a b c

a a b c

b b b c

c c c b

Table 2

∗ a b c

a a b c

b b b b

c c b a

Table 3

Next we consider the case of a semigroup S of order 3 with two idempotents
and S does not have an identity element.

Theorem 2. There are only 6 nonisomorphic semigroups of order 3 with

two idempotents and without identity.

Proof. Let S = ({a, b, c}, ∗) be a semigroup of order 3 with idempotents
a, b and S is without an identity element. By proposition, S has at least one
left zero element or S has at least one right zero element. Every semigroup
which has a unique left zero element or has a unique right zero element, has a
zero element. We know that every left zero element or right zero element is an
idempotent. So c is not a left zero element and c is not a right zero element.
So we consider 3 cases:

case A: S has a zero element;
case B: S has two right zero elements;
case C: S has two left zero elements.

First we consider case A. Assume that S has a zero element a. So we
consider two subcases of case A according to the product c ∗ c.

Subcase A-1. Assume that c ∗ c = a.
Since (b∗c)∗c = b∗(c∗c) = b∗a = a, b∗c 6= b. So we consider two subcases

of subcase A-1 according to the product b ∗ c.
Subcase A-1.1. Assume that b ∗ c = c. If c ∗ b = c, then b is an identity

element. So we need not consider this case. If c ∗ b = b, then a = c ∗ c =
c ∗ (b ∗ c) = (c ∗ b) ∗ c = b ∗ c = c. So c ∗ b 6= b. Therefore c ∗ b = a. So we have
table 4 (see the table below).

Subcase A-1.2. Assume that b ∗ c = a. If c ∗ b = b, then we have
b = b ∗ b = b ∗ (c ∗ b) = (b ∗ c) ∗ b = a ∗ b = a. This is impossible. So c ∗ b 6= b.
Therefore c ∗ b = a or c ∗ b = c. So we have table 5 and table 6 (see tables
below).
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Subcase A-2. Assume that c∗c = b. We have b∗c = (c∗c)∗c = c∗(c∗c) = c∗b.
If b∗c = c∗b = c, then b is an identity. So we need not consider this case. Since
c∗ (c∗b) = (c∗c)∗b = b∗b = b, c∗b can not equal a. Therefore b∗c = c∗b = b.
So we have table 7 (see the table below). Now we have all tables of case A.

∗ a b c

a a a a

b a b c

c a a a

Table 4

∗ a b c

a a a a

b a b a

c a a a

Table 5

∗ a b c

a a a a

b a b a

c a c a

Table 6

∗ a b c

a a a a

b a b b

c a b b

Table 7

Since all tables above have a zero element, it is easy to check that all tables
are associative and all tables are nonisomorphic. This completes case A.

Case B. Assume that S has two right zero elements. Therefore a and b are
right zero elements. So we consider two subcases according to the product c∗c.

Subcase B-1. Assume that c ∗ c = a. We have a ∗ c = (c ∗ c) ∗ c =
c ∗ (c ∗ c) = c ∗ a = a. Since (b ∗ c) ∗ c = b ∗ (c ∗ c) = b ∗ a = a, b ∗ c 6= b. Since
a ∗ (b ∗ c) = (a ∗ b) ∗ c = b ∗ c, b ∗ c 6= c. Therefore b ∗ c = a. So we have table 8
(see the table in next page).

Subcase B-2. Assume that c ∗ c = b. We have b ∗ c = (c ∗ c) ∗ c = c ∗ (c ∗ c) =
c ∗ b = b. Since (a ∗ c) ∗ c = a ∗ (c ∗ c) = a ∗ b = b, a ∗ c 6= a. Since
b ∗ (a ∗ c) = (b ∗ a) ∗ c = a ∗ c and b ∗ c = b, a ∗ c 6= c. Therefore a ∗ c = b. So we
have table 9 (see the table in next page). Now we have all tables of case B.

∗ a b c

a a b a

b a b a

c a b a

Table 8

∗ a b c

a a b b

b a b b

c a b b

Table 9

It is easy to check that table 8 and table 9 are associative and they are
isomorphic. This completes case B.
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Case C. Assume that S has two left zero elements. Therefore a and b are
left zero elements. So we consider two subcases according to the product c ∗ c.

Subcase C-1. Assume that c ∗ c = a. We have c ∗ a = c ∗ (c ∗ c) =
(c ∗ c) ∗ c = a ∗ c = a. Since c ∗ (c ∗ b) = (c ∗ c) ∗ b = a ∗ b = a, c ∗ b 6= b. Since
(c ∗ b) ∗ a = c ∗ (b ∗ a) = c ∗ b and c ∗ a = a, c ∗ b 6= c. Therefore c ∗ b = a. So we
have table 10 (see the table below).

Subcase C-2. Assume that c ∗ c = b. We have c ∗ b = c ∗ (c ∗ c) = (c ∗ c) ∗ c =
c ∗ b = b. Since c ∗ (c ∗ a) = (c ∗ c) ∗ a = b ∗ a = b, c ∗ a 6= a. Since
(c ∗ a) ∗ c = c ∗ (a ∗ c) = c ∗ a, c ∗ a 6= c. Therefore c ∗ a = b. So we have table
11 (see the table below). Now we have all tables of case C.

∗ a a c

a a a a

b b b b

c a a a

Table 10

∗ a b c

a a a a

b b b b

c b b b

Table 11

It is easy to check that table 10 and table 11 are associative and they are
isomorphic. This completes case C.

Hence there are 6 nonisomorphic semigroups of order 3 with two idempo-
tents which do not have an identity element.

Now we can summarize the above work in the following theorem.

Theorem 3. There are only 9 nonisomorphic semigroups of order 3 with

two idempotents.
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