International Journal of Pure and Applied Mathematics Volume 86 No. 5 2013, 791-798 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: http://dx.doi.org/10.12732/ijpam.v86i5.3

σ -STRUCTURES AND QUASI-ENLARGING OPERATIONS

Young Key Kim¹, Won Keun Min²[§]

¹Department of Mathematics MyongJi University Youngin, 449-728, KOREA ²Department of Mathematics Kangwon National University Chuncheon, 200-701, KOREA

Abstract: The purpose of this paper is to introduce the notion of σ -structures and to investigate some properties for the structures. In particular, we investigate enlarging and quasi-enlarging operations induced by σ -structures.

AMS Subject Classification: 54A05

Key Words: σ -structure, quasi-enlargement, preserving maps

1. Introduction

Let X be a non-empty set with the power set 2^X . A function $\gamma : 2^X \to 2^X$ is said to be *monotonic* [2] iff $A \subseteq B \subseteq X$ implies $\gamma A \subseteq \gamma B$. The collection of all monotonic functions is denoted by $\Gamma(X)$ and the elements of $\Gamma(X)$ are said to be *operations*. If $\gamma, \phi \in \Gamma(X)$ and $A \subseteq X$, we write $\gamma \phi$ instead of $\gamma \circ \phi$. If $\gamma \in \Gamma(X)$ then a set $A \subseteq X$ is said to be γ -open [2] iff $A \subseteq \gamma A$.

Let X be a nonempty set and μ be a collection of subsets of X. Then μ is called a *generalized topology* (briefly GT) on X iff $\emptyset \in \mu$ and $G_i \in \mu$ for $i \in I \neq \emptyset$ implies $G = \bigcup_{i \in I} G_i \in \mu$. The elements of μ are called μ -open sets and the complements are called μ -closed sets.

Received: February 21, 2013

© 2013 Academic Publications, Ltd. url: www.acadpubl.eu

[§]Correspondence author

For $A \subseteq X$, we denote by $i_{\mu}A$ the union of all μ -open sets contained in A, i.e. the largest μ -open set contained in A. The complement of a μ -open set is said to be μ -closed. Any intersection of μ -closed sets is μ -closed, and for $A \subseteq X$, we denote by $c_{\mu}A$ the intersection of all μ -closed sets containing A, i.e. the smallest μ -closed set containing A. The purpose of this paper is to introduce the notion of σ -structures, which are extended notions of topology and generalized topology , and to investigate some properties for the structures. In particular, we investigate enlarging and quasi-enlarging operations ($\gamma i_s, i_s \gamma i_s, i_s \gamma, \gamma i_s \gamma$) induced by σ -structures.

2. σ -Structures

Definition 2.1. Let X be a nonempty set and $s \subseteq 2^X$. Then s is called a σ -structure on X if for $i \in I \neq \emptyset$, $U_i \in s$ implies $\bigcup_{i \in I} U_i \in s$. The elements of s are called σ -open sets and the complements are called σ -closed sets.

If s is a topology (or generalized topology), then it is obviously σ -structure. In [3], Császár introduced the notion of weak structure as the following: A family $w \in 2^X$ is called a *weak structure* (briefly WS) on X if $\emptyset \in w$. So we can get the next result.

Lemma 2.2. Let X be a nonempty set. Then a family $s \subseteq 2^X$ is a GT on X iff s is a WS and a σ -structure on X.

Definition 2.3. Let X be a nonempty set, and let s be a σ -structure on X. Then the two operators i_s and c_s are defined as the following:

 $i_s A = \cup \{ S \subseteq X : S \subseteq A, S \text{ is } \sigma \text{-open } \};$

 $c_s A = \cap \{F \subseteq X : A \subseteq F, \ F \text{ is } \sigma\text{-closed } \}.$

Theorem 2.4. Let *s* be a σ -structure on a nonempty set *X* and *A*, *B* \subseteq *X*. Then:

- (1) $i_s \emptyset = \emptyset;$
- (2) $i_s A \subseteq A;$
- (3) if $A \subseteq B$, then $i_s A \subseteq i_s B$;
- $(4) i_s i_s A = i_s A;$
- (5) A is σ -open iff $A = i_s A$ for $A \neq \emptyset$.

Theorem 2.5. Let *s* be a σ -structure on a nonempty set *X* and *A*, *B* \subseteq *X*. Then:

- (1) $c_s X = X;$
- (2) $A \subseteq c_s A;$
- (3) if $A \subseteq B$, then $c_s A \subseteq c_s B$;
- $(4) c_s c_s A = c_s A;$
- (5) A is σ -closed iff $A = c_s A$ for $A \neq X$.

Example 2.6. Let $X = \{a, b, c\}$ and a σ -structure $s = \{\{a\}, \{b\}, \{a, b\}\}$. Then $i_s X = \{a, b\} \neq X$ and $c_s \emptyset = \{c\} \neq \emptyset$.

Theorem 2.7. Let *s* be a σ -structure on a nonempty set *X* and $A \subseteq X$. Then:

- (1) The collection $\mu = \{A \subseteq X : i_s A = A\}$ is a generalized topology on X.
- (2) $x \in i_s A$ iff there exists a σ -open set S containing x such that $S \subseteq A$.
- (3) $x \in c_s A$ iff $S \cap A \neq \emptyset$ for every σ -open set S containing x.
- (4) $c_s(A) = X i_s(X A).$
- (5) $i_s(A) = X c_s(X A).$

Proof. (1) By Theorem 2.4, $\emptyset \in \mu$ and every element in μ is σ -open, and so μ is a generalized topology.

(2) Obvious.

(3) For $A \subseteq X$, $x \notin c_s A$ iff there exists a σ -closed set F such that $A \subseteq F$ and $x \notin F$ iff for the σ -open set G = X - F containing $x, G \cap A = \emptyset$ iff there exists a σ -open set S containing $x, S \cap A = \emptyset$.

(4) By (3), $x \notin c_s A$ iff there exists a σ -open set S containing $x, S \cap A = \emptyset$ iff $x \in i_s(X - A)$.

Similarly, we can show the statement (5).

Definition 2.8. Let s, s' be σ -structures on X and Y, respectively. Then a function $f: X \to Y$ is said to be

(1) σ -continuous if $f^{-1}(G) \in s$ for every $G \in s'$;

(2) σ -open if $f(S) \in s'$ for every $S \in s$.

Theorem 2.9. Let $f : (X, s) \to (Y, s')$ be a function, let s and s' be σ -structures on X, Y, respectively. Then

- (1) f is σ -continuous iff $f^{-1}(i'_s A) \subseteq i_s f^{-1}(A)$ for every $A \subseteq Y$.
- (2) f is σ -open iff $f(i_s B) \subseteq i'_s f(B)$ for every $B \subseteq X$.

Proof. (1) Let f be σ -continuous. For $A \subseteq Y$, since $i'_s A$ is σ -open, $f^{-1}(i'_s A) = i_s f^{-1}(i'_s A) \subseteq i_s f^{-1}(A)$.

For the converse, let $G \in s'$; then $i'_s G = G$ and from hypothesis, it follows $f^{-1}(G) = f^{-1}(i'_s G) \subseteq i_s f^{-1}(G)$. So by Theorem 2.4, $f^{-1}(G)$ is σ -open.

(2) It is similar to the proof of (1).

Let X be a nonempty set and s be a σ -structure. Then s is called a strong σ -structure on X if $X \in s$.

Obviously we have the following theorem:

Theorem 2.10. Let $f : (X, s) \to (Y, s')$ be a function, let s and s' be σ -structures on X, Y, respectively. Then:

(1) if f is σ -continuous and s' is strong, then s is strong;

(2) if f is σ -open, surjective and s is strong, then s' is strong.

3. Enlarging and Quasi-Enlarging Operations on σ -Structures

Let X be a non-empty set and $\gamma \in \Gamma(X)$ (see [4]).

(1) γ is said to be *enlarging* if $A \subseteq \gamma A$ for $A \subseteq X$.

(2) γ is said to be quasi-enlarging if $\gamma A \subseteq \gamma(A \cap \gamma A)$ for $A \subseteq X$.

(3) γ is said to be *weakly-quasi-enlarging* if $A \cap \gamma A \subseteq \gamma(A \cap \gamma A)$ for $A \subseteq X$.

(4) For $\mu \subseteq 2^X$, γ is said to be μ -enlarging if $L \subseteq \gamma L$ for all $L \in \mu$.

Clearly every enlarging operation is quasi-enlarging. For a σ -structure s, since the operation c_s is enlarging, it is also quasi-enlarging.

Lemma 3.1. Let s be a σ -structure on a nonempty set X. Then the operation i_s is quasi-enlarging.

Proof. For $A \subseteq X$, since $i_s A \subseteq A \cap i_s A$, from (3) and (4) of Theorem 2.4, $i_s A = i_s i_s A \subseteq i_s (A \cap i_s A)$. So i_s is quasi-enlarging.

Corollary 3.2. (see Proposition 1.6 of [4]) Let s be a GT on a nonempty set X. Then the operation i_s is quasi-enlarging.

Henceforth, we deal with the special operations γi_s , $i_s \gamma i_s$, $i_s \gamma$, $\gamma i_s \gamma$.

Lemma 3.3. Let s be a σ -structure on a nonempty set X, and let γ be s-enlarging. Then for $A \in s$,

- (1) $A \subseteq \gamma i_s A;$
- (2) $A \subseteq i_s \gamma i_s A;$
- (3) $A \subseteq \gamma i_s \gamma A;$
- (4) $A \subseteq i_s \gamma A$.

Proof. (1) For $A \in s$, $A = i_s A \in s$. Since γ is an s-enlargement of s, $A \subseteq \gamma A = \gamma i_s A$.

- (2) For $A \in s$, by (1), $A \subseteq \gamma i_s A$ and so it implies $A = i_s A \subseteq i_s \gamma i_s A$.
- (3) For $A \in s$, by (1) and $A \subseteq \gamma A$, $A \subseteq \gamma i_s A \subseteq \gamma i_s \gamma A$. So $A \subseteq \gamma i_s \gamma A$.
- (4) For $A \in s$, from (2) and $i_s A = A$, $A \subseteq i_s \gamma i_s A \subseteq i_s \gamma A$.

By Lemma 3.3, we have the following theorem.

Theorem 3.4. Let s be a σ -structure on a nonempty set X, and let γ be s-enlarging. Let an operation $\lambda : 2^X \to 2^X$ be defined as $\lambda(A) = \gamma i_s A$ ($\gamma i_s \gamma A$, $i_s \gamma i_s A$, $i_s \gamma A$) for $A \in 2^X$. Then λ is s-enlarging.

Corollary 3.5. Let s be a σ -structure on a nonempty set X. Then for $A \in s$,

- (1) $A \subseteq c_s i_s A;$
- (2) $A \subseteq i_s c_s i_s A;$
- (3) $A \subseteq c_s i_s c_s A;$
- (4) $A \subseteq i_s c_s A$.

Proof. Since c_s is an *s*-enlarging operation, by Lemma 3.3, the things are obtained.

Theorem 3.6. Let s be a σ -structure on a non empty set X, and let γ be s-enlarging. Then the operation γi_s is quasi-enlarging.

Proof. For $A \subseteq X$, since i_s is quasi-enlarging, $i_s A \subseteq i_s (A \cap i_s A) \subseteq i_s (A \cap \gamma i_s A)$. From the monotonicity of γ , it follows $\gamma i_s A \subseteq \gamma i_s (A \cap \gamma i_s A)$. So γi_s is quasi-enlarging.

Corollary 3.7. (see Corollary 1.8 of [4]) Let s be a GT on a nonempty set X, and let γ be s-enlarging. Then the operation γi_s is quasi-enlarging.

Theorem 3.8. Let s be a σ -structure on a non empty set X, and let γ be s-enlarging. Then the operation $i_s \gamma i_s$ is quasi-enlarging.

Proof. For $A \subseteq X$, from Theorem 2.4 (4) and Theorem 3.6, it follows

$$\begin{array}{rcl} \gamma i_s A &\subseteq& \gamma i_s (A \cap \gamma i_s A) \\ &=& \gamma i_s i_s (A \cap \gamma i_s A) \\ &\subseteq& \gamma i_s (i_s A \cap i_s \gamma i_s A) \\ &\subseteq& \gamma i_s (A \cap i_s \gamma i_s A) \end{array}$$

This implies $i_s \gamma i_s A \subseteq i_s \gamma i_s (A \cap i_s \gamma i_s A)$. Hence $i_s \gamma i_s$ is quasi-enlarging.

Corollary 3.9. Let s be a GT on a nonempty set X, and let γ be s-enlarging. Then the operation $i_s\gamma i_s$ is quasi-enlarging.

Theorem 3.10. Let s be a σ -structure on a nonempty set X, and let γ be s-enlarging. If $\gamma(A \cap B) = \gamma A \cap \gamma B$ for $A, B \subseteq X$, then the operation $\gamma i_s \gamma$ is quasi-enlarging.

Proof. For $A \subseteq X$, since $\gamma A \subseteq X$ and $i_s \gamma A \in s$, from Theorem 2.4 (4) and Theorem 3.6, it follows

$$\begin{aligned} \gamma i_s \gamma A &\subseteq \gamma i_s (\gamma A \cap \gamma i_s \gamma A) \\ &\subseteq \gamma i_s (\gamma A \cap \gamma \gamma i_s \gamma A) \\ &= \gamma i_s \gamma (A \cap \gamma i_s \gamma A) \end{aligned}$$

Hence $\gamma i_s \gamma$ is quasi-enlarging.

Corollary 3.11. Let s be a GT on X, and let γ be s-enlarging. If $\gamma(A \cap B) = \gamma A \cap \gamma B$ for $A, B \subseteq X$, then the operation $\gamma i_s \gamma$ is quasi-enlarging.

Let X be a non-empty set and $\gamma \in \Gamma(X)$. Then for $\mu \in 2^X$, γ is said to be μ -friendly [4] if $\gamma A \cap L \subseteq \gamma(A \cap L)$ for $A \subseteq X, L \in \mu$.

Theorem 3.12. Let s be a σ -structure on a non empty set X, and let γ be s-friendly. Then the operation $i_s \gamma$ is quasi-enlarging.

Proof. For $A \subseteq X$, $i_s \gamma A = \gamma A \cap i_s \gamma A$. Since $i_s \gamma A \in s$ and γ is s-friendly, $i_s \gamma A = \gamma A \cap i_s \gamma A \subseteq \gamma(A \cap i_s \gamma A)$. This implies $i_s i_s \gamma A \subseteq i_s \gamma(A \cap i_s \gamma A)$. Finally, from $i_s i_s \gamma A = i_s \gamma A$, we have the result that $i_s \gamma$ is quasi-enlarging.

Corollary 3.13. Let s be a σ -structure on a non empty set X, and let γ be s-friendly. Then the operation $\gamma i_s \gamma$ is quasi-enlarging.

Proof. For $A \subseteq X$, from Theorem 3.12, it follows $i_s \gamma A \subseteq i_s \gamma (A \cap i_s \gamma A) \subseteq i_s \gamma (A \cap \gamma i_s \gamma A)$. So $\gamma i_s \gamma A \subseteq \gamma i_s \gamma (A \cap \gamma i_s \gamma A)$.

Corollary 3.14. Let s be a GT on X, and let γ be s-friendly. Then the operations $i_s\gamma$, $\gamma i_s\gamma$ are quasi-enlarging.

Lemma 3.15. Let s be a σ -structure on a non empty set X, and let γ be s-enlarging and $A \subseteq X$.

(1)
$$A \subseteq i_s \gamma i_s A \subseteq \gamma i_s A \subseteq \gamma A;$$

(2) $A \subseteq i_s \gamma i_s A \subseteq \gamma i_s A \subseteq \gamma i_s \gamma A \subseteq \gamma \gamma A;$
(3) $A \subseteq i_s \gamma i_s A \subseteq i_s \gamma A \subseteq \gamma A;$
(4) $A \subseteq i_s \gamma i_s A \subseteq i_s \gamma A \subseteq \gamma i_s \gamma A \subseteq \gamma \gamma A.$

Proof. (1) Since $i_s A \in s$, it is obvious.

(2) By (1), $A \subseteq \gamma A$ and $\gamma i_s A \subseteq \gamma i_s \gamma A$. So we have (2).

(3) and (4) are obvious.

Corollary 3.16. Let s be a σ -structure on a non empty set X, and let γ be s-enlarging and $A \subseteq X$. If $\gamma \gamma A = \gamma A$, then:

(1)
$$A \subseteq i_s \gamma i_s A \subseteq \gamma i_s A \subseteq \gamma i_s \gamma A \subseteq \gamma A;$$

(2)
$$A \subseteq i_s \gamma i_s A \subseteq i_s \gamma A \subseteq \gamma i_s \gamma A \subseteq \gamma A.$$

Let us consider the s-enlarging operations λ defined in Theorem 3.4. For $A \subseteq X$, we will call A a γ_{σ} -semiopen (resp., γ_{σ} - α -open, γ_{σ} -preopen, γ_{σ} - β -open) set if A is λ -open, that is, $A \subseteq \gamma i_s A$ (resp., $A \subseteq i_s \gamma i_s A$, $A \subseteq \gamma i_s \gamma A$). We denote $S(\gamma_{\sigma})$ (resp., $\alpha(\gamma_{\sigma})$, $P(\gamma_{\sigma})$, $\beta(\gamma_{\sigma})$) the set of all γ_{σ} -semiopen (resp., γ_{σ} - α -open, γ_{σ} -preopen, γ_{σ} - β -open) sets in X.

If the σ -structure s is a topology on X and the s-enlarging operation $\gamma = c_s$, then the γ_{σ} -semiopen (resp., γ_{σ} - α -open, γ_{σ} -preopen, γ_{σ} - β -open) set is the semiopen [6] (resp., α -open [8], preopen [7], β -open [1]). Furthermore, if the σ -structure s is a generalized topology on X and the s-enlarging operation $\gamma = c_s$, then the γ_{σ} -semiopen (resp., γ_{σ} - α -open, γ_{σ} -preopen, γ_{σ} - β -open) set is the s-semiopen (resp., s- α -open, s-preopen, s- β -open) [3]. So we can the following diagrams:

Theorem 3.17. Let s be a σ -structure on a non empty set X, and let γ be s-enlarging and $A \subseteq X$. If $\gamma \gamma = \gamma$, then $\alpha(\gamma_{\sigma}) = S(\gamma_{\sigma}) \cap P(\gamma_{\sigma})$.

Proof. It is sufficient to show that $S(\gamma_{\sigma}) \cap P(\gamma_{\sigma}) \subseteq \alpha(\gamma_{\sigma})$. For $A \in S(\gamma_{\sigma}) \cap P(\gamma_{\sigma})$, $A \subseteq i_s \gamma A \subseteq i_s \gamma \gamma i_s A = i_s \gamma i_s A$. So $A \in \alpha(\gamma_{\sigma})$.

References

- M.E. Abd El-Monsef, S.N. El-Deeb, R.A. Mahmoud, β-open sets and βcontinuous mappings, Bull. Fac. Sci. Assiut Univ., 12 (1983), 77-90.
- [2] A. Császár, Generalized open sets, Acta. Math. Hungar., 75, No-s: 1-2 (1997), 65-87.
- [3] A. Császár, Generalized open sets in generalized topologies, Acta. Math. Hungar., 106 (2000), 53-66.
- [4] A. Császár, Further remarks on the formular for γ-interior, Acta. Math. Hungar., 113, No. 4 (2006), 325-332.
- [5] A. Császár, Weak structures, Acta. Math. Hungar., 131, No-s: 1-2 (2011), 193-195.
- [6] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41.
- [7] A.S. Mashhour, M.E. Abd El-Monsef, S.N. El-Deeb, On precontinuous and weak precontinuous mappings, *Proc. Math. and Phys. Soc. Egypt*, 53 (1982), 47-53.
- [8] O. Njästad, On some classes of nearly open sets, *Pacific Journal of Math-ematics*, 15, No. 3 (1964), 961-970.