σ-STRUCTURES AND QUASI-ENLARGING OPERATIONS

Young Key Kim¹, Won Keun Min²

¹Department of Mathematics
MyongJi University
Youngin, 449-728, KOREA

²Department of Mathematics
Kangwon National University
Chuncheon, 200-701, KOREA

Abstract: The purpose of this paper is to introduce the notion of σ-structures and to investigate some properties for the structures. In particular, we investigate enlarging and quasi-enlarging operations induced by σ-structures.

AMS Subject Classification: 54A05
Key Words: σ-structure, quasi-enlargement, preserving maps

1. Introduction

Let X be a non-empty set with the power set 2^X. A function γ: 2^X → 2^X is said to be monotonic [2] iff A ⊆ B ⊆ X implies γA ⊆ γB. The collection of all monotonic functions is denoted by Γ(X) and the elements of Γ(X) are said to be operations. If γ, φ ∈ Γ(X) and A ⊆ X, we write γφ instead of γ ◦ φ. If γ ∈ Γ(X) then a set A ⊆ X is said to be γ-open [2] iff A ⊆ γA.

Let X be a nonempty set and μ be a collection of subsets of X. Then μ is called a generalized topology (briefly GT) on X iff ∅ ∈ μ and G_i ∈ μ for i ∈ I ≠ ∅ implies G = ∪_{i ∈ I} G_i ∈ μ. The elements of μ are called μ-open sets and the complements are called μ-closed sets.

Received: February 21, 2013

© 2013 Academic Publications, Ltd.
url: www.acadpubl.eu

§Correspondence author
For $A \subseteq X$, we denote by $i_\mu A$ the union of all μ-open sets contained in A, i.e. the largest μ-open set contained in A. The complement of a μ-open set is said to be μ-closed. Any intersection of μ-closed sets is μ-closed, and for $A \subseteq X$, we denote by $c_\mu A$ the intersection of all μ-closed sets containing A, i.e. the smallest μ-closed set containing A. The purpose of this paper is to introduce the notion of σ-structures, which are extended notions of topology and generalized topology, and to investigate some properties for the structures. In particular, we investigate enlarging and quasi-enlarging operations ($\gamma i_s, i_s \gamma i_s, i_s \gamma, \gamma i_s \gamma$) induced by σ-structures.

2. σ-Structures

Definition 2.1. Let X be a nonempty set and $s \subseteq 2^X$. Then s is called a σ-structure on X if for $i \in I \neq \emptyset$, $U_i \in s$ implies $\bigcup_{i \in I} U_i \in s$. The elements of s are called σ-open sets and the complements are called σ-closed sets.

If s is a topology (or generalized topology), then it is obviously σ-structure. In [3], Császár introduced the notion of weak structure as the following: A family $w \in 2^X$ is called a weak structure (briefly WS) on X if $\emptyset \in w$. So we can get the next result.

Lemma 2.2. Let X be a nonempty set. Then a family $s \subseteq 2^X$ is a GT on X iff s is a WS and a σ-structure on X.

Definition 2.3. Let X be a nonempty set, and let s be a σ-structure on X. Then the two operators i_s and c_s are defined as the following:

- $i_sA = \bigcup\{S \subseteq X : S \subseteq A, \ S \ \text{is} \ \sigma\text{-open}\};$
- $c_sA = \bigcap\{F \subseteq X : A \subseteq F, \ F \ \text{is} \ \sigma\text{-closed}\}.$

Theorem 2.4. Let s be a σ-structure on a nonempty set X and $A, B \subseteq X$. Then:

1. $i_s \emptyset = \emptyset$;
2. $i_s A \subseteq A$;
3. if $A \subseteq B$, then $i_s A \subseteq i_s B$;
4. $i_s i_s A = i_s A$;
5. A is σ-open iff $A = i_s A$ for $A \neq \emptyset$.

Theorem 2.5. Let s be a σ-structure on a nonempty set X and $A, B \subseteq X$. Then:
\(\sigma\)-STRUCTURES AND QUASI-ENLARGING OPERATIONS

(1) \(c_\sigma X = X\);
(2) \(A \subseteq c_\sigma A\);
(3) if \(A \subseteq B\), then \(c_\sigma A \subseteq c_\sigma B\);
(4) \(c_\sigma c_\sigma A = c_\sigma A\);
(5) \(A\) is \(\sigma\)-closed iff \(A = c_\sigma A\) for \(A \neq X\).

Example 2.6. Let \(X = \{a, b, c\}\) and a \(\sigma\)-structure \(s = \{\{a\}, \{b\}, \{a, b\}\}\). Then \(i_s X = \{a, b\} \neq X\) and \(c_\sigma \emptyset = \{c\} \neq \emptyset\).

Theorem 2.7. Let \(s\) be a \(\sigma\)-structure on a nonempty set \(X\) and \(A \subseteq X\).

Then:

(1) The collection \(\mu = \{A \subseteq X : i_s A = A\}\) is a generalized topology on \(X\).
(2) \(x \in i_s A\) iff there exists a \(\sigma\)-open set \(S\) containing \(x\) such that \(S \subseteq A\).
(3) \(x \in c_\sigma A\) iff \(S \cap A \neq \emptyset\) for every \(\sigma\)-open set \(S\) containing \(x\).
(4) \(c_\sigma (A) = X - i_s (X - A)\).
(5) \(i_s (A) = X - c_\sigma (X - A)\).

Proof. (1) By Theorem 2.4, \(\emptyset \in \mu\) and every element in \(\mu\) is \(\sigma\)-open, and so \(\mu\) is a generalized topology.

(2) Obvious.

(3) For \(A \subseteq X\), \(x \notin c_\sigma A\) iff there exists a \(\sigma\)-closed set \(F\) such that \(A \subseteq F\) and \(x \notin F\) iff for the \(\sigma\)-open set \(G = X - F\) containing \(x\), \(G \cap A = \emptyset\) iff there exists a \(\sigma\)-open set \(S\) containing \(x\), \(S \cap A = \emptyset\).

(4) By (3), \(x \notin c_\sigma A\) iff there exists a \(\sigma\)-open set \(S\) containing \(x\), \(S \cap A = \emptyset\) iff \(x \in i_s (X - A)\).

Similarly, we can show the statement (5).

Definition 2.8. Let \(s, s'\) be \(\sigma\)-structures on \(X\) and \(Y\), respectively. Then a function \(f : X \rightarrow Y\) is said to be

(1) \(\sigma\)-continuous if \(f^{-1} (G) \in s\) for every \(G \in s'\);
(2) \(\sigma\)-open if \(f(S) \in s'\) for every \(S \in s\).

Theorem 2.9. Let \(f : (X, s) \rightarrow (Y, s')\) be a function, let \(s\) and \(s'\) be \(\sigma\)-structures on \(X, Y\), respectively. Then

(1) \(f\) is \(\sigma\)-continuous iff \(f^{-1} (i'_{s'} A) \subseteq i_s f^{-1} (A)\) for every \(A \subseteq Y\).
(2) \(f\) is \(\sigma\)-open iff \(f(i_s B) \subseteq i'_s f (B)\) for every \(B \subseteq X\).
Proof. (1) Let \(f \) be \(\sigma \)-continuous. For \(A \subseteq Y \), since \(i'_s A \) is \(\sigma \)-open, \(f^{-1}(i'_s A) = i_s f^{-1}(i'_s A) \subseteq i_s f^{-1}(A) \).

For the converse, let \(G \in s' \); then \(i'_s G = G \) and from hypothesis, it follows \(f^{-1}(G) = f^{-1}(i'_s G) \subseteq i_s f^{-1}(G) \). So by Theorem 2.4, \(f^{-1}(G) \) is \(\sigma \)-open.

(2) It is similar to the proof of (1). \(\square \)

Let \(X \) be a nonempty set and \(s \) be a \(\sigma \)-structure. Then \(s \) is called a strong \(\sigma \)-structure on \(X \) if \(X \in s \).

Obviously we have the following theorem:

Theorem 2.10. Let \(f : (X, s) \to (Y, s') \) be a function, let \(s \) and \(s' \) be \(\sigma \)-structures on \(X, Y \), respectively. Then:

(1) if \(f \) is \(\sigma \)-continuous and \(s' \) is strong, then \(s \) is strong;

(2) if \(f \) is \(\sigma \)-open, surjective and \(s \) is strong, then \(s' \) is strong.

3. Enlarging and Quasi-Enlarging Operations on \(\sigma \)-Structures

Let \(X \) be a non-empty set and \(\gamma \in \Gamma(X) \) (see [4]).

(1) \(\gamma \) is said to be **enlarging** if \(A \subseteq \gamma A \) for \(A \subseteq X \).

(2) \(\gamma \) is said to be **quasi-enlarging** if \(\gamma A \subseteq \gamma(A \cap \gamma A) \) for \(A \subseteq X \).

(3) \(\gamma \) is said to be **weakly-quasi-enlarging** if \(A \cap \gamma A \subseteq \gamma(A \cap \gamma A) \) for \(A \subseteq X \).

(4) For \(\mu \subseteq 2^X \), \(\gamma \) is said to be **\(\mu \)-enlarging** if \(L \subseteq \gamma L \) for all \(L \in \mu \).

Clearly every enlarging operation is quasi-enlarging. For a \(\sigma \)-structure \(s \), since the operation \(c_s \) is enlarging, it is also quasi-enlarging.

Lemma 3.1. Let \(s \) be a \(\sigma \)-structure on a nonempty set \(X \). Then the operation \(i_s \) is quasi-enlarging.

Proof. For \(A \subseteq X \), since \(i_s A \subseteq A \cap i_s A \), from (3) and (4) of Theorem 2.4, \(i_s A = i_s i_s A \subseteq i_s (A \cap i_s A) \). So \(i_s \) is quasi-enlarging. \(\square \)

Corollary 3.2. (see Proposition 1.6 of [4]) Let \(s \) be a GT on a nonempty set \(X \). Then the operation \(i_s \) is quasi-enlarging.

Henceforth, we deal with the special operations \(\gamma i_s, i_s \gamma i_s, i_s \gamma, \gamma i_s \gamma \).
Lemma 3.3. Let s be a σ-structure on a nonempty set X, and let γ be s-enlarging. Then for $A \in s$,

1. $A \subseteq \gamma i_s A$;
2. $A \subseteq i_s \gamma i_s A$;
3. $A \subseteq \gamma i_s \gamma A$;
4. $A \subseteq i_s \gamma A$.

Proof. (1) For $A \in s$, $A = i_s A \in s$. Since γ is an s-enlargement of s, $A \subseteq \gamma A = \gamma i_s A$.

(2) For $A \in s$, by (1), $A \subseteq \gamma i_s A$ and so it implies $A = i_s A \subseteq i_s \gamma i_s A$.

(3) For $A \in s$, by (1) and $A \subseteq \gamma A$, $A \subseteq \gamma i_s A \subseteq \gamma i_s \gamma A$. So $A \subseteq \gamma i_s \gamma A$.

(4) For $A \in s$, from (2) and $i_s A = A$, $A \subseteq i_s \gamma i_s A \subseteq i_s \gamma A$.

By Lemma 3.3, we have the following theorem.

Theorem 3.4. Let s be a σ-structure on a nonempty set X, and let γ be s-enlarging. Let an operation $\lambda : 2^X \to 2^X$ be defined as $\lambda(A) = \gamma i_s A \ (\gamma i_s \gamma A, i_s \gamma i_s A, i_s \gamma A)$ for $A \in 2^X$. Then λ is s-enlarging.

Corollary 3.5. Let s be a σ-structure on a nonempty set X. Then for $A \in s$,

1. $A \subseteq c_s i_s A$;
2. $A \subseteq i_s c_s i_s A$;
3. $A \subseteq c_s i_s c_s A$;
4. $A \subseteq i_s c_s A$.

Proof. Since c_s is an s-enlarging operation, by Lemma 3.3, the things are obtained.

Theorem 3.6. Let s be a σ-structure on a non empty set X, and let γ be s-enlarging. Then the operation γi_s is quasi-enlarging.

Proof. For $A \subseteq X$, since i_s is quasi-enlarging, $i_s A \subseteq i_s(A \cap i_s A) \subseteq i_s(A \cap \gamma i_s A)$. From the monotonicity of γ, it follows $\gamma i_s A \subseteq \gamma i_s(A \cap \gamma i_s A)$. So γi_s is quasi-enlarging.

Corollary 3.7. (see Corollary 1.8 of [4]) Let s be a GT on a nonempty set X, and let γ be s-enlarging. Then the operation γi_s is quasi-enlarging.
Theorem 3.8. Let \(s \) be a \(\sigma \)-structure on a nonempty set \(X \), and let \(\gamma \) be \(s \)-enlarging. Then the operation \(i_s\gamma i_s \) is quasi-enlarging.

Proof. For \(A \subseteq X \), from Theorem 2.4 (4) and Theorem 3.6, it follows
\[
\gamma i_s A \subseteq \gamma i_s(A \cap \gamma i_s A)
\]
\[
= \gamma i_s i_s(A \cap \gamma i_s A)
\]
\[
\subseteq \gamma i_s(i_s A \cap i_s \gamma i_s A)
\]
\[
\subseteq \gamma i_s(A \cap i_s \gamma i_s A)
\]
This implies \(i_s \gamma i_s A \subseteq i_s \gamma i_s(A \cap i_s \gamma i_s A) \). Hence \(i_s \gamma i_s \) is quasi-enlarging. \(\Box \)

Corollary 3.9. Let \(s \) be a GT on a nonempty set \(X \), and let \(\gamma \) be \(s \)-enlarging. Then the operation \(i_s \gamma i_s \) is quasi-enlarging.

Theorem 3.10. Let \(s \) be a \(\sigma \)-structure on a nonempty set \(X \), and let \(\gamma \) be \(s \)-enlarging. If \(\gamma(A \cap B) = \gamma A \cap \gamma B \) for \(A, B \subseteq X \), then the operation \(\gamma i_s \gamma \) is quasi-enlarging.

Proof. For \(A \subseteq X \), since \(\gamma A \subseteq X \) and \(i_s \gamma A \in s \), from Theorem 2.4 (4) and Theorem 3.6, it follows
\[
\gamma i_s \gamma A \subseteq \gamma i_s(\gamma A \cap \gamma i_s \gamma A)
\]
\[
\subseteq \gamma i_s(\gamma A \cap \gamma i_s \gamma A)
\]
\[
= \gamma i_s \gamma(A \cap \gamma i_s \gamma A)
\]
Hence \(\gamma i_s \gamma \) is quasi-enlarging. \(\Box \)

Corollary 3.11. Let \(s \) be a GT on \(X \), and let \(\gamma \) be \(s \)-enlarging. If \(\gamma(A \cap B) = \gamma A \cap \gamma B \) for \(A, B \subseteq X \), then the operation \(\gamma i_s \gamma \) is quasi-enlarging.

Let \(X \) be a non-empty set and \(\gamma \in \Gamma(X) \). Then for \(\mu \in 2^X \), \(\gamma \) is said to be \(\mu \)-friendly [4] if \(\gamma A \cap L \subseteq \gamma(A \cap L) \) for \(A \subseteq X \), \(L \in \mu \).

Theorem 3.12. Let \(s \) be a \(\sigma \)-structure on a nonempty set \(X \), and let \(\gamma \) be \(s \)-friendly. Then the operation \(i_s \gamma \) is quasi-enlarging.

Proof. For \(A \subseteq X \), \(i_s \gamma A = \gamma A \cap i_s \gamma A \). Since \(i_s \gamma A \in s \) and \(\gamma \) is \(s \)-friendly, \(i_s \gamma A = \gamma A \cap i_s \gamma A \subseteq \gamma(A \cap i_s \gamma A) \). This implies \(i_s i_s \gamma A \subseteq i_s \gamma(A \cap i_s \gamma A) \). Finally, from \(i_s i_s \gamma A = i_s \gamma A \), we have the result that \(i_s \gamma \) is quasi-enlarging. \(\Box \)
Corollary 3.13. Let \(s \) be a \(\sigma \)-structure on a non empty set \(X \), and let \(\gamma \) be \(s \)-friendly. Then the operation \(\gamma i_s \gamma \) is quasi-enlarging.

Proof. For \(A \subseteq X \), from Theorem 3.12, it follows \(i_s \gamma A \subseteq i_s \gamma (A \cap i_s \gamma A) \subseteq i_s \gamma (A \cap \gamma i_s \gamma A) \). So \(\gamma i_s \gamma A \subseteq \gamma i_s \gamma (A \cap \gamma i_s \gamma A) \). \(\square \)

Corollary 3.14. Let \(s \) be a GT on \(X \), and let \(\gamma \) be \(s \)-friendly. Then the operations \(i_s \gamma, \gamma i_s \gamma \) are quasi-enlarging.

Lemma 3.15. Let \(s \) be a \(\sigma \)-structure on a non empty set \(X \), and let \(\gamma \) be \(s \)-enlarging and \(A \subseteq X \).

1. \(A \subseteq i_s \gamma i_s A \subseteq \gamma i_s A \subseteq \gamma A \);
2. \(A \subseteq i_s \gamma i_s A \subseteq \gamma i_s A \subseteq i_s \gamma A \subseteq \gamma A \);
3. \(A \subseteq i_s \gamma i_s A \subseteq i_s \gamma A \subseteq \gamma i_s \gamma A \subseteq \gamma A \);
4. \(A \subseteq i_s \gamma i_s A \subseteq i_s \gamma A \subseteq \gamma i_s \gamma A \subseteq \gamma A \).

Proof. (1) Since \(i_s A \in s \), it is obvious.
(2) By (1), \(A \subseteq \gamma A \) and \(\gamma i_s A \subseteq \gamma i_s \gamma A \). So we have (2).
(3) and (4) are obvious. \(\square \)

Corollary 3.16. Let \(s \) be a \(\sigma \)-structure on a non empty set \(X \), and let \(\gamma \) be \(s \)-enlarging and \(A \subseteq X \). If \(\gamma \gamma A = \gamma A \), then:

1. \(A \subseteq i_s \gamma i_s A \subseteq \gamma i_s A \subseteq i_s \gamma A \subseteq \gamma A \);
2. \(A \subseteq i_s \gamma i_s A \subseteq i_s \gamma A \subseteq \gamma i_s \gamma A \subseteq \gamma A \).

Let us consider the \(s \)-enlarging operations \(\lambda \) defined in Theorem 3.4. For \(A \subseteq X \), we will call \(A \) a \(\gamma_\sigma \)-semiopen (resp., \(\gamma_\sigma \)-open, \(\gamma_\sigma \)-preopen, \(\gamma_\sigma \)-beta-open) set if \(A \) is \(\lambda \)-open, that is, \(A \subseteq i_s A \) (resp., \(A \subseteq i_s \gamma i_s A, A \subseteq i_s \gamma A, A \subseteq i_s i_s \gamma A \)). We denote \(S(\gamma_\sigma) \) (resp., \(\alpha(\gamma_\sigma), P(\gamma_\sigma), \beta(\gamma_\sigma) \)) the set of all \(\gamma_\sigma \)-semiopen (resp., \(\gamma_\sigma \)-open, \(\gamma_\sigma \)-preopen, \(\gamma_\sigma \)-beta-open) sets in \(X \).

If the \(\sigma \)-structure \(s \) is a topology on \(X \) and the \(s \)-enlarging operation \(\gamma = c_s \), then the \(\gamma_\sigma \)-semiopen (resp., \(\gamma_\sigma \)-open, \(\gamma_\sigma \)-preopen, \(\gamma_\sigma \)-beta-open) set is the semiopen [6] (resp., \(\alpha \)-open [8], preopen [7], beta-open [1]). Furthermore, if the \(\sigma \)-structure \(s \) is a generalized topology on \(X \) and the \(s \)-enlarging operation \(\gamma = c_s \), then the \(\gamma_\sigma \)-semiopen (resp., \(\gamma_\sigma \)-open, \(\gamma_\sigma \)-preopen, \(\gamma_\sigma \)-beta-open) set is the \(s \)-semiopen (resp., \(s \)-alpha-open, \(s \)-preopen, \(s \)-beta-open) [3]. So we can the following diagrams:
Theorem 3.17. Let s be a σ-structure on a non empty set X, and let γ be s-enlarging and $A \subseteq X$. If $\gamma \gamma = \gamma$, then $\alpha(\gamma \sigma) = S(\gamma \sigma) \cap P(\gamma \sigma)$.

Proof. It is sufficient to show that $S(\gamma \sigma) \cap P(\gamma \sigma) \subseteq \alpha(\gamma \sigma)$. For $A \in S(\gamma \sigma) \cap P(\gamma \sigma)$, $A \subseteq i_s \gamma A \subseteq i_s \gamma i_s A = i_s \gamma i_s A$. So $A \in \alpha(\gamma \sigma)$. \qed

References

