EXISTENCE AND UNIQUENESS OF SELF-SIMILAR
SOLUTIONS OF A NONHOMOGENEOUS EQUATION

Badia Hamri1, Abdelilah Gmira2, Youssef Jabri3§

1,2Department of Mathematics
Faculty of Science
University Abdelmalek Essaâdi
B.P. 2121, Tétouan, MOROCCO

3Department of Mathematics
National School of Applied Sciences
University Mohammed I
B.P. 669, Oujda, MOROCCO

Abstract: In this paper, we shall prove the existence and uniqueness of radial solutions for the nonhomogeneous elliptic equation

$$\text{div} \left(|\nabla u|^{p-2} \nabla u \right) + \beta x \nabla u + \alpha u + |x|^l |u|^{q-1} u = 0, \quad x \in \mathbb{R}^N,$$

These solutions are related to self-similar solutions of the degenerate parabolic equation

$$v_t = \text{div} \left(|\nabla v|^{p-2} \nabla v \right) + |x|^l |v|^{q-1} v, \quad (t, x) \in (0, +\infty) \times \mathbb{R}^N.$$

where \(p > 2, \quad q \geq 1, \quad N \geq 1, \quad -p < l, \quad -N < l\).

AMS Subject Classification: 35K55, 35K65

Key Words: elliptic problem, parabolic problem, nonhomogeneous equation, self-similar solution, existence, uniqueness

1. Introduction

In this paper, we analyse the self-similar solutions of a nonhomogeneous degenerate...
erate parabolic equation

\[w_t = \Delta_p w + |x|^l |w|^{q-1} w, \quad \text{in } \mathbb{R}^N \times (0, +\infty) \] (1.1)

where \(p > 2, \quad q \geq 1, \quad N \geq 1, \quad -p < l < 0, \quad -N < l < 0. \)

As usual, \(\nabla U \) denotes the gradient of \(U \), and \(\Delta_p U = \text{div}(|\nabla U|^{p-2} \nabla U) \) is the \(p \)-Laplacian operator.

If we look for self-similar solutions of the form

\[w(x, t) = t^{-\alpha} U(t^{-\beta} x), \quad \text{in } \mathbb{R}^N \times (0, +\infty), \] (1.2)

then the profile \(U \) must satisfy the nonhomogeneous elliptic equation

\[\Delta_p U + \beta x \nabla U + |x|^l |U|^{q-1} U = 0, \quad \text{for } x \in \mathbb{R}^N, \] (1.3)

where the scaling factors are given by

\[\alpha = \frac{p + l}{p(q - 1) + l(p - 2)}, \quad \beta = \frac{q - p + 1}{p(q - 1) + l(p - 2)}, \] (1.4)

with \(l \neq -\frac{p(q - 1)}{p - 2} \).

It is worth mentioning that several recent papers have been devoted to the study of equation (1.3) when \(l = 0 \) and \(p = 2 \), cf. e.g. [5, 6, 7, 8, 10]. Quite recently, in [4] the case \(p = 2 \) and \(-2 < l < 0 \) was treated. Note also when \(l = 0 \) and \(p > 2 \) our equation was investigated in [2] and [9]. The present paper is devoted to the case \(p > 2, \quad -p < l < 0, \quad -N < l < 0 \) and, \(\alpha \) and \(\beta \) are real parameters. More precisely, the main purpose of this paper is to study existence and uniqueness of radially-symmetric solutions; which are functions \(U(y) = u(|y|) = u(r) \) where \(u : \mathbb{R}^+ \to \mathbb{R} \) satisfies the following O.D.E

\[(|u'|^{p-2} u')' + \frac{N - 1}{r} |u'|^{p-2} u' + \alpha u + \beta ru' + r^l |u|^{q-1} u = 0, \quad r > 0, \] (1.5)

the prime denotes the differentiation with respect to \(r \).

In order to study equation (1.5) we shall use the shooting method, we then consider the following Cauchy problem \((P)\)

\[(P) \quad \left\{ \begin{array}{l} (|u'|^{p-2} u')' + \frac{N - 1}{r} |u'|^{p-2} u' + \alpha u + \beta ru' + r^l |u|^{q-1} u = 0 \\
 u(0) = a \end{array} \right. \] (1.6)

where \(p > 2, \quad q \geq 1, \quad N \geq 1, \quad 0 > l > -p \) and \(0 > l > -N \), and \(\alpha, \beta, a \) are real parameters.
2. Existence and Uniqueness of Solutions

In this section we investigate the existence and uniqueness of a solution of the problem (P).

By a solution of (P) on some interval \([0, R]\) we mean a function \(u \in C^1([0, R]) \cap C^0(0, R)\) such that \(|u'|^{p-2} u' \in C^1([0, R])\) and which satisfies (1.6) on the open interval \((0, R)\), with \(\lim_{r \to 0} r^{N-1} |u'|^{p-2} u' = 0\).

To emphasize the dependence of \(u\) on the parameters \(\alpha, \beta\) and \(a\), we sometimes denote a solution of (P) by \(u(., a, \alpha, \beta)\).

We start with a local existence and uniqueness result.

Proposition 2.1. Assume \(p > 2, q \geq 1, N \geq 1, -p < l < 0, -N < l\) and \(\alpha, \beta \in \mathbb{R}^*\). Then for any \(a \in \mathbb{R}^*\), there exists a constant \(R(a) > 0\) such that the problem (P) has a unique maximal solution \(u\) defined in \([0, R(a)]\).

Remark 2.1. Note that equation (1.6) can be written as in the following system

\[
(S) \begin{cases}
 u' = |v|^{-\frac{p-2}{p-1}} v, \\
 v' = -\frac{N-1}{r} v - \beta r |v|^{-\frac{p-2}{p-1}} v - \alpha u - r^l |u|^q u.
\end{cases}
\]

Let \(r_0 > 0, \mu \in \mathbb{R}\) and \(\eta \in \mathbb{R}^*\) such that

\[
\begin{cases}
 u(r_0) = \mu, \\
 v(r_0) = \eta.
\end{cases}
\]

As \((r, u, v) \mapsto (r, |v|^{-\frac{p-2}{p-1}} v, -\frac{N-1}{r} v - \beta r |v|^{-\frac{p-2}{p-1}} v - \alpha u - r^l |u|^q u)\) is locally Lipschitz continuous function in the set \(\{(r, u, v) \in \mathbb{R}^*_+ \times \mathbb{R} \times \mathbb{R}^*\}\), we deduce (from the theory of O.D.E [1]) the local existence and uniqueness solution of (2.1)–(2.2).

In spite of the degenerescence of (P) at \(r = 0\), the Banach fixed point theorem ensures the local existence and uniqueness. We prove that this solution is global indeed.

Let \(u\) be a solution of problem (P) in some interval \([0, R]\); then if we multiply (1.6) by \(r^{N-1}\) and integrate twice from 0 to \(r\) \((0 < r < R)\) we get

\[
u(r) = a - \int_0^r \Psi \{f_u(s)\} ds,
\]

where

\[f_u(s) = \beta su(s)\]
\[+ s^{1-N} \left[(\alpha - \beta N) \int_0^s \sigma^{N-1} u(\sigma) d\sigma + \int_0^s \sigma^{l+N-1} |u|^{q-1} u(\sigma) d\sigma \right] \] (2.4)

and

\[\Psi(s) = |s|^{-r/p} s \quad \text{for any } s \in \mathbb{R}^*. \] (2.5)

Let us introduce some notations. For any \(0 < M < a \), we denote

\[E_{M,a} = \left\{ u \in C^0([0, r_a]); \|u - a\|_{E_{M,a}} \leq M \right\}, \] (2.6)

where \(C^0([0, r_a]) \) is the Banach space of continuous functions on \([0, r_a]\) where

\[r_a = \min \{r_i, i = 1, 2, 3\}. \] (2.7)

The reals \(r_i \) are given explicitly by

\[r_1 = k_2^{-1/p}\left(\frac{p + l}{p - 1} M \right)^{\frac{p-1}{p+l}}, \] (2.8)

\[r_2 = K_1^{\frac{p-2}{p+l}} \left(\frac{p + l}{2q} \frac{l + N}{(M + a)^{q-1}} \right)^{\frac{p-1}{p+l}}, \] (2.9)

\[r_3 = k_1^{\frac{p-2}{p(l+2)}} \left[\frac{p - l(p - 2)}{2} \left(|\beta| + \frac{|\alpha - N\beta|}{N} \right)^{-1} \right]^{\frac{p-1}{p-(p-2)}}, \] (2.10)

with

\[K_1 = \frac{(a - M)^q}{2(l + N)} \quad \text{and} \quad K_2 = 2 \frac{(a + M)^q}{(l + N)}. \] (2.11)

The following result is the keystone of the proof of the existence.

Lemma 2.1. Let \(a \in \mathbb{R}_+^* \) and \(0 < M < a \). For each \(v \in E_{M,a} \), the function \(f_v \) given by (2.4) satisfies

\[K_1 s^{l+1} < f_v(s) \leq K_2 s^{l+1}, \quad \forall 0 \leq s \leq r_0, \] (2.12)

where \(r_a \) as in the formula (2.7) and \(K_1 \) and \(K_2 \) are given by (2.11).

Proof. The idea is to limit the function \(f_v(r) \) with two expressions having the same sign. These expressions depend strongly on the sign of \(\beta \) and \(\alpha - N\beta \). For this purpose we assume \(\beta \geq 0 \) and \(\alpha - N\beta \geq 0 \), (the reasoning in the others three cases is similar). Using the definition of \(E_{M,a} \), the following estimates hold for any \(v \in E_{M,a} \):
\[
\left\{ \left(\frac{\alpha}{N} - \beta \right) + \frac{(a - M)^{q-1}}{l + N} s^l \right\} (a - M)s \leq g(s) \\
\leq \left\{ \left(\frac{\alpha}{N} - \beta \right) + \frac{(a + M)^{q-1}}{l + N} s^l \right\} (a + M)s, \quad (2.13)
\]
where

\[
g(s) = s^{1-N} \left[(\alpha - \beta N) \int_0^s \sigma^{N-1} v(\sigma)d\sigma + \int_0^s \sigma^{l+N-1} |v|^{q-1} v(\sigma)d\sigma \right]. \quad (2.14)
\]

Hence if we chose \(s \) small enough we get

\[
\frac{(a - M)^q}{2(l + N)} s^{l+1} \leq f_v(s) \leq 2 \frac{(a + M)^q}{(l + N)} s^{l+1} \quad (2.15)
\]

Then the lemma follows. \(\Box \)

Now we are able to prove the proposition.

Proof. The proof is divided into two steps.

Step 1: Local Existence and Uniqueness. For the set \(E_{M,a} \) given by (2.6), consider the mapping \(T \) defined on \(E_{M,a} \) by

\[
T(v)(r) = a - \int_0^r \Psi(f_v)(s)ds \quad (2.16)
\]

where \(\Psi \) and \(f_v \) are given by (2.4) and (2.5). Using Lemma 2.1 we deduce

\[
|T(v)(r) - a| \leq \frac{p - 1}{l + p} K_{\frac{1}{l+p}} \frac{1}{r^{\frac{1}{l+p}}} r^{\frac{l+p}{l+p}}. \quad (2.17)
\]

From the choice of (2.7) we deduce that \(T \) maps \(E_{M,a} \) into itself.

Now we assert that \(T \) is a contraction. In fact let \(v, w \in E_{M,a} \) and \(r \in [0, r_a] \), then

\[
|T(v)(r) - T(w)(r)| \\
\leq \int_0^r |\Psi(f_v(s)) - \Psi(f_w(s))| ds, \text{ for any } r \in [0, r_a]. \quad (2.18)
\]

Set

\[
\Phi(s) = \min(|f_v(s)|, |f_w(s)|) \quad \text{for any } s \in [0, r_a], \quad (2.19)
\]

then

\[
|T(v)(r) - T(w)(r)| \leq \int_0^r \frac{\Psi(\Phi(s))}{\Phi(s)} |(f_v - f_w)(s)| ds. \quad (2.20)
\]
Since the estimate (2.12) holds for \(f_v \) and also for \(f_w \), we get
\[
|\Psi(f_v(s)) - \Psi(f_w(s))| \leq \frac{1}{p-1} \left| K_1 s^{l+1} \right| \frac{p-2}{p-1} |f_v(s) - f_w(s)|
\]
for any \(s \in [0, r_a] \) \hspace{1cm} (2.21)

But (2.11) and the definition of the space \(E_{M,a} \), imply that the following estimate holds true
\[
|f_v(s) - f_w(s)| \leq \left[(|\beta| + \frac{|\alpha - \beta N|}{N}) s + q \frac{(M + a)^{q-1}}{l + N} s^{l+1} \right] \|v - w\|_0 , \hspace{1cm} (2.22)
\]
for any \(s \in [0, r_a] \). Putting together (2.20), (2.21) and (2.22) we get
\[
|T(v)(r) - T(w)(r)| \leq \frac{1}{l+p} K_1 \frac{p-2}{p-1} \left[q \frac{(M + |a|)^{q-1}}{l + N} r^{l+p} \right] + \frac{1}{p-l(p-2)} (|\beta| + \frac{|\alpha - \beta N|}{N}) r^{p-l(p-2)} \|v - w\|_{E_{M,a}} , \hspace{1cm} (2.23)
\]
for any \(0 < r \leq r_a \).

From the choice of \(r_a \), we conclude that \(T \) is a contraction; and then the Banach contraction theorem implies that there exists a unique function \(u \) solving the problem \((P)\) in \([0, r_a]\).

Note that as \(u \) is continuous, as given by (2.3). We deduce easily that \(u \in C^1([0, r_a]) \) and also \(|u'|^{p-2} u' \in C^1([0, r_a]) \).

Step 2. \(\lim_{r \to 0} r^{N-1} |u'|^{p-2} u' = 0. \)

Using again the implicit formula given by (2.7) we deduce
\[
|u'|^{p-2} u'(r) = \beta r u(r) + r^{1-N} \left[(\alpha - \beta N) \int_0^r s^{N-1} u(s) ds \right.
\]
\[
+ \left. \int_0^r s^{l+N-1} |u|^{q-1} u(s) ds \right] \hspace{1cm} (2.24)
\]
for any \(0 < r \leq r_a \). As \(l > -N \) we obtain \(\lim_{r \to 0} r^{N-1} |u'|^{p-2} u' = 0 \), which completes the proof.

Remark 2.2. The following holds true:

i) It is easy to see that the function \(f_v \) has the following behavior
\[
f_v(r) \simeq a \left\{ \frac{\alpha}{N} + \frac{1}{l + N} q^{-1} r^l \right\} r , \hspace{1cm} (2.25)
\]
when \(r \) tends towards 0. We deduce that if \(-N < l < 0\) and \(-p < l < 0\) then for any \(a > 0 \) the solution \(u \) starts decreasing independently of sign of \(\alpha \) and \(\beta \). Moreover, (1.6) implies that if \(\alpha > 0 \) and \(\beta > 0 \) the solution \(u \) is strictly decreasing until it reaches the axis of \(x \).

ii) Proposition 2.1 is also valid for \(l \geq 0 \), if we replace the power \(l + 1 \) in formula (2.15) by 1.

iii) Note that \(u(., a, \alpha, \beta) = -u(., -a, \alpha, \beta) \).

Proposition 2.2. Let \(\alpha, \beta \in \mathbb{R}, \ q > 1, \ p > 2, \ -p < l < 0 \) and \(-N < l \). Then for any \(a > 0 \), the solution \(u \) of the problem \((P) \) is global.

Proof. Let \([0, R(a)]\) be the maximum interval of existence. Integrating equation (1.6) on \([r_0, r]\) for some \(0 < r_0 < r < R(a) \), we get

\[
\frac{p-1}{p} u'^p(r) - \frac{p-1}{p} u'^p(r_0) - \frac{\alpha}{2} u^2(r_0) - \frac{r_0 u^{q+1}(r_0)}{q+1} = \tag{2.26}
\]

\[
+ u^2(r) \left[\frac{\alpha}{2} + \frac{p}{q+1} r^l u(r)^{q-1} \right] - (N-1) \int_{r_0}^r \frac{1}{s} |u'(s)|^p \, ds
\]

\[
- \beta \int_{r_0}^r s(u')^2(s) \, ds + \frac{l}{q+1} \int_{r_0}^r s^{l-1} |u(s)|^{q+1} \, ds
\]

Assume \(R(a) \) is finite. Then, the functions \(u(r) \) and \(u'(r) \) go to \(\infty \) when \(r \) goes to \(R(a) \). As \(l < 0 \) we claim that the right hand side of (2.26) is strictly negative for \(r \) close to \(R(a) \). This is obvious for \(\beta \geq 0 \). On the other hand, when \(\beta < 0 \) we use the following estimate

\[
\int_{r_0}^r s(u')^2(s) \, ds \leq \left[\frac{r^2}{2} - \frac{r_0^2}{2} \right] \frac{p-2}{p} \left[\int_{r_0}^r \frac{1}{s} |u'(s)|^p \, ds \right]^{\frac{2}{p}} \tag{2.27}
\]

to deduce that

\[
-(N-1) \int_{r_0}^r \frac{1}{s} |u'(s)|^p \, ds - \beta \int_{r_0}^r s(u')^2(s) \, ds \leq \frac{2}{s} \left[\int_{r_0}^r \frac{1}{s} |u'(s)|^p ds \right]^{\frac{2}{p}} \left\{ \beta \left(\frac{r^2}{2} - \frac{r_0^2}{2} \right) - \frac{p-2}{p} - (N-1) \left[\int_{r_0}^r \frac{|u'(s)|^p}{s} ds \right]^{\frac{2}{p}} \right\}, \tag{2.28}
\]

which implies that the right hand side of (2.26) is strictly negative, for \(r \) close to \(R(a) \), while the expression \(\frac{2}{2} + \frac{p |u(r)|^{q-1}}{q+1} \) goes to \(+\infty \) when \(r \) tends to \(R(a) \), and so the left side of (2.26) is strictly positive. This is a contradiction. Thereby \([0, R(a)] = [0, \infty]\). \(\square \)
Remark 2.3. Note that if $\alpha > 0$, $\beta > 0$ and $-p < l < 0$ and $-N < l$ the global existence can be shown easily. In fact consider the energy function defined by

$$E(r) = \frac{p-1}{p} |u'|^p + \frac{\alpha}{2} u^2 + r^l |u|^{q+1}$$

According to equation (1.6), E satisfies

$$E'(r) = -\left\{ \frac{N-1}{r} |u'|^p + \beta ru^2 - \frac{l}{q+1} r^{l-1} |u|^{q+1} \right\}.$$

As $l < 0$, the energy is strictly decreasing and then the maximal existence interval is $[0, \infty[$.

References

