QUASI-IDEALS OF
A P-REGULAR NEAR LEFT ALMOST RINGS

T. Gaketem
Department of Mathematics
Faculty of Science
University of Phayao
Phayao, 56000, THAILAND

Abstract: S.J. Choi, P. Dheena and S. Manivasan studied property of quasi-ideals of P-regular nearring. In this page we study property of quasi-ideals of P-regular nLA-ring.

Key Words: nLA-ring, P-regular nLA-ring, quasi-ideal

1. Introduction

M.A. Kazim and MD. Naseeruddin [3, Proposition 2.1] asserted that, in every LA-semigroups G a medial law hold

$$(ab)(cd) = (ac)(bd), \quad \forall a, b, c, d \in G.$$

Q. Mushtaq and M. Khan [5, p.322] asserted that, in every LA-semigroups G with left identity

$$(ab)(cd) = (db)(ca), \quad \forall a, b, c, d \in G.$$

Further M. Khan, Faisal, and V. Amjid [4], asserted that, if a LA-semigroup G
with left identity the following law holds

\[a(bc) = b(ac), \quad \forall a, b, c \in G. \]

M. Sarwar (Kamran) [7, p.112] defined LA-group as the following; a groupoid \(G \) is called a left almost group, abbreviated as LA-group, if (i) there exists \(e \in G \) such that \(ea = a \) for all \(a \in G \), (ii) for every \(a \in G \) there exists \(a' \in G \) such that, \(a'a = e \), (iii) \((ab)c = (cb)a \) for every \(a, b, c \in G \).

Let \(\langle G, \cdot \rangle \) be an LA-group and \(S \) be a non-empty subset of \(G \) and \(S \) is itself and LA-group under the binary operation induced by \(G \), the \(S \) is called an LA-subgroup of \(G \), then \(S \) is called an LA-subgroup of \(\langle G, \cdot \rangle \).

S.M. Yusuf in [9, p.211] introduces the concept of a left almost ring (LA-ring). That is, a non-empty set \(R \) with two binary operations “+” and “·” is called a left almost ring, if \(\langle R, + \rangle \) is an LA-group, \(\langle R, \cdot \rangle \) is an LA-semigroup and distributive laws of “·” over “+” holds. T. Shah and I. Rehman [9, p.211] asserted that a commutative ring \(\langle R, +, \cdot \rangle \), we can always obtain an LA-ring \(\langle R, +, \cdot \rangle \) by defining, for \(a, b, c \in R \), \(a \oplus b = b - a \) and \(a \cdot b \) is same as in the ring. We can not assume the addition to be commutative in an LA-ring. An LA-ring \(\langle R, +, \cdot \rangle \) is said to be LA-integral domain if \(a \cdot b = 0, a, b \in R \), then \(a = 0 \) or \(b = 0 \). Let \(\langle R, +, \cdot \rangle \) be an LA-ring and \(S \) be a non-empty subset of \(R \) and \(S \) is itself and LA-ring under the binary operation induced by \(R \), the \(S \) is called an LA-subring of \(R \), then \(S \) is called an LA-subring of \(\langle R, +, \cdot \rangle \). If \(S \) is an LA-subring of an LA-ring \(\langle R, +, \cdot \rangle \), then \(S \) is called a left ideal of \(R \) if \(RS \subseteq S \). Right and two-sided ideals are defined in the usual manner.

By [6] a near-ring is a non-empty set \(N \) together with two binary operations “+” and “·” such that \(\langle N, + \rangle \) is a group (not necessarily abelian), \(\langle N, \cdot \rangle \) is a semigroup and one sided distributive (left or right) of “·” over “+” holds.

By [2] If a subgroup \(Q \) of \(\langle N, + \rangle \) has the property \(QN \cap NQ \subseteq Q \), then it is called a quasi-ideal of \(N \).

A near-ring \(N \) is a regular if for each \(x \in N \), there exists \(y \in N \) such that \(xyx = x \). A regular near-ring was introduced by J.C. Beidlemann in 1968 and later S. Leigh and H.E. Heatherly etc. studied the structure of a regular near-ring. Let \(N \) be a near-ring with the unity and \(P \) be an ideal of \(N \). Then the near-ring \(N \) is said to be a \(P \)-regular near-ring if for each \(a \in N \), there exists \(x \in N \) such that \(axa - a \in P \). If \(P = 0 \), then a \(P \)-regular near-ring is a regular near-ring. Hence the notion of \(P \)-regularity is a generalization of regularity.
2. Near Left Almost Rings

T. Shah, F. Rehman and M. Raees [8, pp.1103-1111] introduces the concept of a near left almost ring (nLA-ring).

Definition 2.1. [8, p.1104]. A non-empty set N with two binary operation “$+$” and “\cdot” is called a near left almost ring (or simply an nLA-ring) if and only if

1. $\langle N, + \rangle$ is an LA-group.
2. $\langle N, \cdot \rangle$ is an LA-semigroup.
3. Left distributive property of \cdot over $+$ holds, that is $a(b + c) = ab + ac$ for all $a, b, c \in N$.

Definition 2.2. [8, p.1105]. An nLA-ring $\langle N, +, \cdot \rangle$ with left identity 1, such that $1a = a$ for all $a \in N$, is called an nLA-ring with left identity.

Definition 2.3. [8, p.1106]. A nonempty subset S of an nLA-ring N is said to be an nLA-subring if and only if S is itself an nLA-ring under the same binary operations as in N.

Theorem 2.4. [8, p.1106]. A non-empty subset S of an nLA-ring $\langle N, + \rangle$ is an nLA-subring if and only if $a - b \in S$ and $ab \in S$ for all $a, b \in S$.

Definition 2.5. [8, p.1107]. An nLA-subring I of an nLA-ring N is called a left ideal of N if $NI \subseteq I$, and it is called a right ideal if for all $n, m \in N$ and $i \in I$ such that $(i + n)m - nm \in I$, and is called two sided ideal or simply ideal if it is both left and right ideal.

Lemma 2.6. Let N be a nLA-ring and Q is a nonempty subset of N. Then

$$QNQ \subseteq QN \cap NQ.$$

Proof. We see that

$$QNQ \subseteq QN \quad \text{and} \quad QNQ \subseteq NQ.$$

Thus $QNQ \subseteq QN \cap NQ$.

Lemma 2.7. Let N be a nLA-ring, A, B and C are a nonempty subset of N. Then

$$C(A \cap B) \subseteq CA \cap CB,$$
Proof. Let \(x \in C(A \cap B) \) then \(x = cy \) for some \(y \in A \cap B \) and \(c \in C \). Then \(x = cy \in CA \) and \(x = cy \in CB \), since \(y \in A \cap B \). Thus \(x \in CA \cap CB \). Hence \(C(A \cap B) \subseteq CA \cap CB \). □

Lemma 2.8. Let \(N \) be a nLA-ring, \(x, y \in N \) and \(A \) is a non-empty subset of \(N \) then
\[
A(x + y) \subseteq Ax + Ay
\]

Proof. Let \(c \in A(x + y) \) then \(c = a(x + y) \) for some \(a \in A \) By 2.1(3) then
\[
c = a(x + y) = ax + ay \in Ax + Ay.
\]
Thus \(A(x + y) \subseteq Ax + Ay \). □

3. Quasi-ideals of a \(P \)-Regular Near Left Almost Rings

Next we defines of a regular, quasi-ideal and \(P \)-regular in nLA-ring is defines the same as a regular, quasi-ideal and \(P \)-regular in near-ring in[2].

Definition 3.1. A nLA-ring \(N \) is called a regular nLA-ring if for each \(x \in N \) there exists \(y \in N \) such that \(xyx = x \).

Definition 3.2. If a LA-subgroup \(Q \) of \(\langle N, + \rangle \) has the property \(QN \cap NQ \subseteq Q \), then it is called a quasi-ideal of \(N \).

Lemma 3.3. Let \(N \) be a nLA-ring and \(Q_1, Q_2 \) are quasi-ideal of \(N \). Then \(Q_1 \cap Q_2 \) is a quasi-ideal of \(N \).

Proof. Since \(Q_1, Q_2 \) are LA-subgroup of \(\langle N, + \rangle \) we have \(Q_1 \cap Q_2 \) is a LA-subgroup of \(\langle N, + \rangle \). We must show that \((Q_1 \cap Q_2)N \cap N(Q_1 \cap Q_2) \subseteq Q_1 \cap Q_2 \), by lemma 2.7. Then
\[
(Q_1 \cap Q_2)N \cap N(Q_1 \cap Q_2) \subseteq Q_1N \cap Q_1NQ_1 \cap NQ_2 = (Q_1N \cap NQ_1) \cap (Q_2N \cap NQ_2) \subseteq Q_1 \cap Q_2.
\]
Thus \(Q_1 \cap Q_2 \) is a quasi-ideal of \(N \). □

Theorem 3.4. Each quasi-ideal of an nLA-ring \(N \) is a nLA-subring.

Proof. Let \(Q \) be a quasi-ideal an nLA-ring \(N \) Then \(Q \) is a nLA-subring of \(\langle N, + \rangle \). Let \(a, b \in Q \subseteq N \). Then \(ab \in NQ \subseteq NQ \) and \(ab \in QN \subseteq QN \). Thus \(ab \in NQ \cap QN \subseteq Q \), since \(Q \) is a quasi-ideal of \(N \). Hence \(ab \in Q \). Therefore \(Q \) is a nLA-subring of \(N \). □
Definition 3.5. Let N be a nLA-ring with the unity and P be an ideal of N. Then the nLA-ring N is said to be a P-regular nLA-ring if for each $a \in N$, there exists $x \in N$ such that $axa - a \in P$.

Theorem 3.6. Let N be a P-regular nLA-ring. If $P = 0$, then a P-regular nLA-ring is a regular nLA-ring.

Proof. Let N be a P-regular nLA-ring, then for each $n \in N$, there exists $x \in N$ such that $nxn - n \in P$ that is $nxn - n = P$, where P is ideal of N.

If $P = 0$ then $nxn - n = 0$ implies that $nxn = n$. Thus P is a regular nLA-ring.

The following theorems with proved is analogous as in [2, pp.1006-1010].

Theorem 3.7. Let N be a P-regular nLA-ring. Then for each $n \in N$, there exists $n' \in N$ such that $n'n \in P$.

Proof. Let N be a P-regular nLA-ring, then for each $n \in N$, there exists $x \in N$ such that $nxn - n \in P$, where P is ideal of N. So $(nx - 1)n \in P$ and then put $n' = nx - 1$. Thus we obtain $n' \in N$.

Theorem 3.8. Let N be a P-regular nLA-ring. Then for every left ideal L and every right ideal R of N, $(P + L) \cap (P + R) = P + LR$.

Proof. Suppose that N is a P-regular nLA-ring, L is a left ideal and R is a right ideal of N. If $n \in (P + L) \cap (P + R)$ then element n can be written as $n = p_1 + l$ and $n = p_2 + r$ for some $p_1, p_2 \in P, l \in L$ and $r \in R$. By definition P-regularity of N, $nxn - n \in P$ for some $x \in N$, which means that the element n can also be expressed in the form $n = -p + nxn$ for some $p \in P$. From these one the obtains.

\[
\begin{align*}
n &= -p + nxn \\
&= -p + (p_1 + l)x(p_2 + r) \\
&= -p + (p_1 + l)(xp_2 + xr), \quad \text{by (3)} \\
&= -p + [(p_1 + l)xp_2] + [(p_1 + l)xr], \quad \text{by (3)} \\
&= -p + [(p_1 + l)xp_2] \\
&\quad + [(p_1 + l)xr - lxr] + lxr \\
&= -p + [(p_1 + l)xp_2] + p_3 + lxr, \quad p_3 = [(p_1 + l)xr - lxr] \in P \\
&= p_4 + lxr \in P + LR, \quad p_4 = -p + [(p_1 + l)xp_2] + p_3 \in P.
\end{align*}
\]

Hence $(P + L) \cap (P + R) \subseteq P + LR$.

For the converse, if $n \in P + LR$, then the element n can be written as $n = p + lr$ for some $p \in P, l \in L$ and $r \in R$. Since L is a left ideal and R is a
right ideal of N, it is obvious that $n = p + lr$ belongs to $(P + L) \cap (P + R)$. Thus $P + LR \subseteq (P + L) \cap (P + R)$. Hence $(P + L) \cap (P + R) = P + LR$.

Now the question to be raised is what relationship is between a quasi-ideal and the ideal P of a P-regular nLA-ring. It leads at once to the representation of elements of quasi-ideals of a P-regular nLA-ring in connection with the ideal P. So the coming theorems present several representations of elements of quasi-ideals of a P-regular nLA-ring.

Theorem 3.9. If N is a P-regular nLA-ring, then every element of a quasi-ideal Q of N can be represented as the sum of two elements of P and Q.

Proof. Let N be a P-regular nLA-ring and Q be a quasi-ideal of N. If $q \in Q$, then there exists $x \in N$ such that $qxq - q \in P$, where P is ideal of N. So it has a representation $q = -p + qxq$ for some $p \in P$. By definition of a quasi-ideal, $qxq \in QNQ \subseteq QN \cap NQ \subseteq Q$ and therefore, we obtain $q = -p + qxq \in P + Q$.

Theorem 3.10. Let N be an P-regular nLA-ring, Q_1 and Q_2 are quasi-ideals of N. If $q \in Q_1 \cap Q_2$, then the element q can be represented as

$$q = p + q_1 x q_2$$

for some $p \in P, x \in N, q_1 \in Q_1$ and $q_2 \in Q_2$.

Proof. Suppose that N be a P-regular nLA-ring, Q_1 and Q_2 are quasi-ideals of N. Then for each $q \in N$ there is $x \in N$ such that

$$qxq - q \in P,$$

where P is ideal of N.

If $q \in Q_1 \cap Q_2$ then by lemma 3.3 thus $Q_1 \cap Q_2$ is a quasi-ideal of of N. By theorem 3.9, the element q of $Q_1 \cap Q_2$ we can be written as both $q = p_1 + q_1$ and $q = p_2 + q_2$ for some $p_1, p_2 \in P, q_1 \in Q_1$ and $q_2 \in Q_2$. By P-regularity of N, the element q also has the form $q = -p_3 + qxq$ for some $p_3 \in P$ and then it follows that

$$q = -p_3 + qxq = p_3 + (p_1 + q_1)(xp_2 + xq_2)$$

$$= -p_3 + (p_1 + q_1)(xp_2 + xq_2), \quad \text{by (3)}$$

$$= -p_3 + [(p_1 + q_1)xp_2] + [(p_1 + q_1)xq_2], \quad \text{by (3)}$$

$$= -p_3 + [(p_1 + q_1)xp_2] + [(p_1 + q_1)xq_2 - q_1 x q_2] + q_1 x q_2$$

$$= -p_3 + [(p_1 + q_1)xp_2] + p_4 + q_1 x q_2, \quad p_4 = (p_1 + q_1)xq_2 - q_1 x q_2 \in P$$

$$= p + q_1 x q_2, \quad p = -p_3 + [(p_1 + q_1)xp_2] + p_4 \in P.$$
Hence \(q = p + q_1 x q_2 \). \(\square \)

Next, by induction, Theorem 3.9 can be extended to the case of the intersection of finitely many quasi-ideals of a \(P \)-regular nLA-ring as follows.

Theorem 3.11. Let \(N \) be a \(P \)-regular nLA-ring, \(Q_i \) be a quasi-ideals of \(N \) for \(1 \leq i \leq n \). If \(q \in \bigcap_{i=1}^{n} Q_i \), then the element \(q \) can be represented as

\[
q = p + q_1 x q_2 x q_3 x \cdots x q_{n-1} x q_n
\]

for some \(p \in P, x \in N, q_i \in Q_i, i = 1, 2, \ldots, n \).

Proof. Let \(N \) be a \(P \)-regular nLA-ring, \(Q_i \) be a quasi-ideals of \(N \) for \(1 \leq i \leq n \). By induction on \(i \), if \(q \in Q_i \), then by Theorem 3.9, the element \(q \) can be represented as \(q = p + q_1 \) thus \(q_1 = -p + q \) for some \(p \in P \) and \(q_1 \in Q_1 \).

Assume that an element \(q \) of \(\bigcap_{i=1}^{n-1} Q_i \), can be represented as

\[
q = p_1 + q_1 x q_2 x q_3 x \cdots x q_{n-2} x q_{n-1}
\]

for some \(p_1 \in P, x \in N, q_i \in Q_i \) \((1 \leq i \leq n - 1)\). If \(q \in \bigcap_{i=1}^{n-1} Q_i \), then by the trivial inclusion \(\bigcap_{i=1}^{n} Q_i \subseteq \bigcap_{i=1}^{n-1} Q_i \) and the inductive assumption, the element \(q \) can be represented as \(q = p_1 + q_1 x q_2 x q_3 x \cdots x q_{n-1} \) for some \(p_1 \in P, x \in N \) and \(q_i \in Q_i \) \((1 \leq i \leq n - 1)\) by Theorem 3.9, it also has a representation \(q = p_2 + q_n \) for some \(p_2 \in P \) and \(q_n \in Q_n \).

Hence \(qxq = (p_1 + q_1 x q_2 x \cdots x q_{n-1}) x (p_2 + q_n) \) and by \(P \)-regularity of \(N \), the element \(q \) of \(\bigcap_{i=1}^{n-1} Q_i \) has another representation \(q = -p_3 + qxq \) for some \(p_3 \in P \) and \(x \in N \). So we have the following,

\[
q = -p_3 + qxq
= -p_3 + (p_1 + q_1 x q_2 x \cdots x q_{n-1}) x (p_2 + q_n)
= -p_3 + (p_1 + q_1 x q_2 x \cdots x q_{n-1}) (xp_2 + xq_n)
\]

by \((3)\)

\[
= -p_3 + [(p_1 + q_1 x q_2 x \cdots x q_{n-1})xp_2] + [(p_1 + q_1 x q_2 x \cdots x q_{n-1})xq_n]
\]

by \((3)\)

\[
= -p_3 + (p_1 + q_1 x q_2 x \cdots x q_{n-1})xp_2 + (p_1 + q_1 x q_2 x \cdots x q_{n-1})xq_n
- (q_1 x q_2 x \cdots x q_{n-1} x q_n) + (q_1 x q_2 x \cdots x q_{n-1} x q_n)
\]

\[
= -p_3 + (p_1 + q_1 x q_2 x \cdots x q_{n-1})xp_2 + [(p_1 + q_1 x q_2 x \cdots x q_{n-1})xq_n
- (q_1 x q_2 x \cdots x q_{n-1} x q_n)] + (q_1 x q_2 x \cdots x q_{n-1} x q_n)
\]

\[
= p + q_1 x q_2 x \cdots x q_{n-1} x q_n,
\]

where \(p = -p_3 + (p_1 + q_1 x q_2 x \cdots x q_{n-1})xp_2 + [(p_1 + q_1 x q_2 x \cdots x q_{n-1})xq_n
- (q_1 x q_2 x \cdots x q_{n-1} x q_n)] \in P. \)

Hence \(q = p + q_1 x q_2 x \cdots x q_{n-1} x q_n \), for \(p \in P \). \(\square \)
Theorem 3.12. If N is a P-regular nLA-ring, then every quasi-ideal Q of N has the form

$$P + Q = P + QNQ = P + (QN \cap NQ).$$

Proof. Assume that N is a P-regular nLA-ring and let Q be a quasi-ideal of N. By lemma 2.6 then $QNQ \subseteq QN \cap NQ \subseteq Q$ holds and it leads to $P + QNQ \subseteq P + (QN \cap NQ) \subseteq P + Q$.

For the opposite direction, let $n \in P + Q$, then the element n can be expressed as $n = p' + q'$ for some $p' \in P$ and $q' \in Q$. By P-regularity of N, then there exists $x \in N$ such that $q'xq' - q' \in P$. Thus $q'xq' - q' = p''$ for some $p'' \in P$ so $q' = -p'' + q'xq'$. Hence

$$n = p' + q' = p' + (-p'' + q'xq') = (p' - p'') + q'xq' \in P + QNQ.$$

Thus $P + Q \subseteq P + QNQ$, so $P + Q = P + QNQ$. Clearly $QN \cap NQ \subseteq QNQ$. Hence $P + Q = P + QNQ = P + (QN \cap NQ)$. \hfill \Box

Theorem 3.13. Let N be a P-regular nLA-ring. If Q_1 and Q_2 are quasi-ideals of N, then

$$P + (Q_1 \cap Q_2) = P + (Q_1NQ_2 \cap Q_2NQ_1).$$

Proof. Suppose that N is a P-regular nLA-ring. Let Q_1 and Q_2 be quasi-ideals of N. If $q \in P + (Q_1 \cap Q_2)$, then by Theorem 3.9, the element q can be written as $q = p + q'$ for some $p \in P$ and $q' \in Q_1 \cap Q_2$. Also, by P-regularity of N, then there exists $x \in N$ such that $q'xq' - q' \in P$. Thus $q' = -p' + q'xq'$. Hence we have

$$q = p' + q' = p + (-p' + q'xq') = p - p' + q'xq' = p'' + q'xq' \in P + (Q_1NQ_2 \cap Q_2NQ_1),$$

where $p'' = p - p'$. Thus $P + (Q_1NQ_2 \cap Q_2NQ_1) \subseteq P + (Q_1NQ_2 \cap Q_2NQ_1)$.

Conversely, by the inclusion

$$Q_1NQ_2 \cap Q_2NQ_1 \subseteq (Q_1N \cap NQ_1) \cap (NQ_2 \cap Q_2N) \subseteq Q_1 \cap Q_2,$$

it is clear to have $P + (Q_1NQ_2 \cap Q_2NQ_1) \subseteq P + (Q_1 \cap Q_2)$. Thus $P + (Q_1 \cap Q_2) = P + (Q_1NQ_2 \cap Q_2NQ_1)$. \hfill \Box
Acknowledgments

The author is very grateful to the anonymous referee for stimulating comments and improving presentation of the paper.

References

