POSTULATION OF CURVES CONTAINED IN
A UNION OF HYPERPLANES OF \mathbb{P}^4

E. Ballico
Department of Mathematics
University of Trento
38 123 Povo (Trento) - Via Sommarive, 14, ITALY

Abstract: Let $A \subset \mathbb{P}^4$ be a union of m distinct hyperplanes. In this note for many m, d we prove the existence of reduced, connected and nodal curves $C \subset A$ with $\deg(C) = d$, $p_a(C) = 0$ and maximal rank, i.e. $h^0(A, I_{C,A}(t)) \cdot h^1(A, I_{C,A}(t)) = 0$ for all $t \in \mathbb{N}$.

AMS Subject Classification: 14H50, 14N05
Key Words: postulation, reducible curve, reducible hypersurface, Hilbert function

1. The Statements

Let $A \subset \mathbb{P}^r$ be a reduced, but reducible hypersurface. For most quadruples $(d, g, r, \deg(A))$ there are reduced and connected and (say) nodal curve with degree d and arithmetic genus g which are contained in no irreducible hypersurface of degree $\deg(A)$ of \mathbb{P}^r. Hence allowing reducible hypersurface it is quite easy to construct reducible curve $C \subset A$ with prescribed degree and genera and some other properties (e.g. good postulation) (see [3], [2]). Here “good postulation” means that C has maximal rank in A, i.e. for each integer $t > 0$ the restriction map $r_{A,Y,t} : H^0(A, \mathcal{O}_A(t)) \to H^0(C, \mathcal{O}_C(t))$ has maximal rank as a linear map (i.e. it is either injective or surjective). Since A is arithmetically Cohen-
Macaulay, C has maximal rank if and only if $h^0(A, \mathcal{I}_C(t)) \cdot h^1(A, \mathcal{I}_C(t)) = 0$ for all $t \in \mathbb{Z}$. In this paper we take $r = 4$ and as A a reduced union of m hyperplanes.

Let $A \subset \mathbb{P}^4$ be a reduced union of $m \geq 2$ hyperplanes. For each integer $k > m$ we have $h^0(A, \mathcal{O}_A(k)) = \binom{k+4}{4} - \binom{k-m+4}{4}$. This equality explains the integers appearing in the statements of Theorems 1 and 2.

Theorem 1. Fix integers $k \geq 2m \geq 4$ and $d \geq 4$ such that $kd + 1 \leq \binom{k+4}{4} - \binom{k-m+4}{4}$. Let $A = H_1 \cup \cdots \cup H_m$ be a union of m hyperplanes such that $H_i \neq H_j$ for all $i \neq j$, the intersection of any 3 of them is a line, the intersection of any 4 of them is a point and no 5 of them has a common point. Then there exists a reduced, connected and nodal curve $C \subset A$ such that $\deg(C) = d$, $p_a(C) = 0$ and $h^1(A, \mathcal{I}_{C,A}(k)) = 0$.

Theorem 2. Fix integers $k \geq 2m \geq 4$ and $d \geq 4$ such that $kd + 1 \geq \binom{k+4}{4} - \binom{k-m+4}{4}$. Let $A = H_1 \cup \cdots \cup H_m$ be a union of m hyperplanes such that $H_i \neq H_j$ for all $i \neq j$, the intersection of any 3 of them is a line, the intersection of any 4 of them is a point and no 5 of them has a common point. Then there exists a reduced, connected and nodal curve $C \subset A$ such that $\deg(C) = d$, $p_a(C) = 0$ and $h^0(A, \mathcal{I}_{C,A}(k)) = 0$.

Fix integers m, k, d such that $m \geq k+2 \geq 4$, $d \geq 4$, $kd + 1 \leq \binom{k+4}{4} - \binom{k-m+4}{4}$ and $(k-1)d + 1 > \binom{k+3}{4} - \binom{k-m+3}{4}$ and A as in Theorems 1 and 2. We do not claim the existence of $C \subset A$ as in Theorem 1 with the additional condition $h^0(A, \mathcal{I}_{C,A}(k-1)) = 0$, i.e. we do not claim that C has maximal rank, i.e. the same curve may be used for Theorem 1 and for the case $k' := k-1$ of Theorem 2. In most cases this is a byproduct of our proof, but for numerical reasons we are unable to prove it in all cases. We prove in the case $m = 2$, i.e. we prove the following result.

Theorem 3. Fix hyperplanes $H_i \subset \mathbb{P}^4$, $i = 1, 2$ such that $H_1 \neq H_2$. Set $A := H_1 \cup H_2$. For each integer $d > 0$ there is a connected and nodal curve $C \subset A$ such that $\deg(C) = d$, $p_a(C) = 0$ and C has maximal rank.

The curve C in Theorems 1, 2 and 3 satisfies $h^1(C, \mathcal{O}_C(1)) = 0$. It seems obvious how to extend these theorems to curves with arithmetic genus g at least if $d \gg g$. This in left to any interested reader (the only problems should be numerical, the most annoying ones being the ones related to Lemma 1 and Claim 3 of the proof of Theorem 1).
2. The Proofs

For any hyperplane $H \subset \mathbb{P}^4$ and all integers $a \geq 0$ and $b \geq 0$ let $Z(H, a, b)$ denote the set of all smooth curve $E \subset H$ which are the disjoint union of a smooth rational curve of degree a and b lines. $Z(H, a, b)$ is a quasi-projective variety of dimension $4a + 4b$.

Let $H \subset \mathbb{P}^4$ be any hyperplane. Let $Z \subset H$ be any closed subscheme with dim$(Z) \leq 1$. We do not assume that Z is equidimensional, because we need the concepts which are discussing here for the scheme $E_i \cap H_i$ which is the disjoint union of a very nice curve and finitely many points. If either $\dim(Z) = 0$ or each connected component of the one-dimensional part of Z has degree 1, then set $e(Z) = -1$. In all other cases let $e(Z)$ be the first integer $t \geq 0$ such that $h^1(Z, O_Z(t)) = 0$. We have $h^1(Z, O_Z(t)) = 0$ for all $t \geq e(Z)$ and either $\dim(Z) = 0$ or $h^1(Z, O_Z(t)) > 0$ for each $t < e(Z)$. Since each connected component of C_i is a reduced curve with arithmetic genus 0 and one connected component of C_i is not a line, we have $e(C_i) = 0$. Since $E_i \cap H_i$ is the disjoint union of C_i and finitely many points, we have $e(E_i \cap H_i) = 0$. Let $c(Z)$ be the minimal integer $t > e(Z)$ such that $h^0(Z, O_Z(t)) \leq (\frac{t+3}{3})$. Fix an integer $x > e(Z)$ and assume $h^1(H, \mathcal{I}_{Z,H}(x)) = 0$. Since $x > e(Z)$, we have $h^2(H, \mathcal{I}_{Z,H}(x-1)) = h^1(Z, O_Z(x-1)) = 0$. Hence Castelnuovo-Mumford’s lemma gives $h^1(H, \mathcal{I}_{Z,H}(t)) = 0$ for all $t \geq x$. Hence $c(Z)$ is the first integer $t > e(Z)$ such that $h^1(H, \mathcal{I}_{Z,H}(t)) = 0$. Assume (as in our cases with C_i or $E_i \cap H$ as Z) that $h^0(Z, O_Z(e(Z)) \geq (\frac{e(Z)+3}{3})$. We say that Z has maximal rank if $h^1(H, \mathcal{I}_{Z,H}(c(Z))) = 0$ and $h^1(H, \mathcal{I}_{Z,H}(c(Z)-1))$. In our set-up C_i has maximal rank, while $E_i \cap H$ has maximal rank if and only if $h^1(H_i, \mathcal{I}_{E_i \cap H_i}(k+i-1)) = 0$.

Lemma 1. Let $H \subset \mathbb{P}^4$ be a hyperplane. Fix a reduced curve $D \subset H$ such that each connected component of D has arithmetic genus 0. Set $d := \deg(D)$ and let u be the number of the connected components of D. Assume that D has maximal rank. Fix integers $b \geq 0$ and $f > 0$. Take a finite set $B \subset H \setminus D$ such that $\sharp(B) = b$ and $h^0(H, \mathcal{I}_{D \cup B}(t)) = \max\{0, h^0(H, \mathcal{I}_D(t)) - b\}$ for all $t > 0$. Set $w := c(D \cup B)$ and $a := h^0(H, \mathcal{I}_{D \cup B}(w)) = (\frac{w+3}{3}) - wd - u - b$. If $f > a$, then assume $f + d \leq (\frac{w+2}{2})$. Fix a plane $M \subset H$ such that $B \cap M = \emptyset$ and no irreducible component of D is contained in M. Then $D \cup B$ and $D \cup B \cup F$ has maximal rank.

Proof. Obviously $D \cup B$ has maximal rank. The integer $c(D \cup B)$ is the first positive integer t such that $td + u + b \leq (\frac{t+3}{3})$. We order the points P_1, \ldots, P_f of F. For each integer x set $S_x := \cup_{i \leq x} P_i$. Notice that $S_0 = \emptyset$ and
Define the integers \(x \). Set \(x \), and assume defined the integers \(S = E \). Ballico

\[e(1)) = 0. \]

Since \(e(D \cup B \cup F) = 0 \), we have \(h^0(H, I_{D \cup B \cup F}(w)) = 0 \). Since \(e(D \cup B \cup F) = e(D) \leq 0 \), Castelnuovo-Mumford’s lemma shows that \(D \cup B \cup F \) has maximal rank, it is sufficient to prove \(h^1(H, I_{D \cup B \cup F}(w)) = 0 \).

Let \(y \) be the maximal integer \(\leq m \) such \(h^1(H, I_{D \cup B \cup F}(w)) = 0 \). Assume \(y < f \). Since \(h^1(H, I_{D \cup B \cup F}(w)) = 0 \), we have \(h^0(H, I_{D \cup B \cup F}(w)) = a - y \).

Since \(h^1(H, I_{D \cup B \cup F}(w)) = 0 \) and \(P_{y+1} \) is a general in \(M \), \(M \) is in the base locus of \(|I_{D \cup B \cup F}| \). Since \(M \) contains no irreducible component of \(D \) and \(B \cap M = \emptyset \), we get \(h^0(H, I_{D \cup B}(w-1)) \geq a - y > 0 \), a contradiction. Now assume \(f > a \). Take any \(F' \subset F \) such that \(\sharp(F') = a \). The first part of the proof gives \(h^0(H, I_{D \cup B \cup F'}(w)) = 0 \). Hence \(h^0(H, I_{D \cup B \cup F}(w)) = 0 \). Hence to prove that \(D \cup B \cup F \) has maximal rank it is sufficient to prove that \(h^1(H, I_{D \cup B \cup F}(w+1)) = 0 \). Let \(z \) be the maximal integer \(\leq f \) such that \(h^1(H, I_{D \cup B \cup F}(w+1)) = 0 \). Assume \(z < f \). We have \(h^0(H, I_{D \cup B \cup F}(w+1)) = (w+4)/(w+1)d - u - b - z \).

Since \(P_{z+1} \) is a general point of \(M \), we get that \(M \) is contained in the base locus of \(|I_{D \cup B \cup F}(w+1)| \). Hence \(h^0(H, I_{D \cup B \cup F}(w+1)) = h^0(H, I_{D \cup B}(w)) \), i.e. \((w+4)/(w+1)d - u - b - z = (w+3)/(w+1) - wd - u - b \). Hence \(m > z = (w+2) - d \), a contradiction.

Proof of Theorem 1. For all integers \(k > m \geq 1 \) define the integers \(d_{k,m} \) and \(a_{k,m} \) by the following relations

\[
k d_{k,m} + 1 + a_{k,m} = \left(\frac{k+4}{4}\right) - \left(\frac{k+4-m}{4}\right), \quad 0 \leq a_{k,m} \leq k - 1 \quad (1)
\]

Set \(x_{m,k,m} := d_{k-m+1,1} \) and \(y_{m,k,m} := a_{k-k+1,1} \). Fix an integer \(i \) such that \(1 \leq i < m \) and assume defined the integers \(x_{i,k,m} \) and \(y_{i,k,m} \) for all \(j \in \{i+1, \ldots, m\} \).

Define the integers \(x_{i,k,m} \) and \(y_{i,k,m} \) by the relations

\[
(k + 1 - i)x_{i,k,m} + 1 + y_{i,k,m} - y_{i+1,k,m} + \sum_{j=i+1}^{m} x_{i,k,m} = \left(\frac{k - i + 1}{3}\right), \quad 0 \leq y_{i,k,m} \leq k - i \quad (2)
\]

Hence \(d_{k,m} = \sum_{i=1}^{m} x_{i,k,m} \)

Claim 1. \(x_{i,k,m} > 0 \) and \(x_{i,k,m} \leq (k+4-i)(k+3-i)(k+2-j)/6(k+1-i) \) for all \(i \).

Proof of Claim 1. We have \(x_{m,k,m} = \lfloor((k+4-m)/3 - 1)/k \rfloor > 0 \). Hence \(0 < x_{m,k,m} \leq (k + 4 - m)(k + 3 - m)(k + 2 - m)/6(k + 1 - m) \). Fix an
integer $i \in \{1, \ldots, m\}$ and assume $0 < x_{j,k,m} \leq (k + 4 - j)(k + 3 - j)/6$ for all $j \in \{i, i + 1, \ldots, m\}$. Since $x_{j,k,m} > 0$ for all $j > 0$, we have $x_i \leq (k + 4 - i)(k + 3 - i)(k + 2 - j)/6(k + 1 - i)$. Since $(m - i)(k + 3 - i)(k + 2 - i)/6(k - i) + 1 + (k + 1 - i) + (k - i) \leq \binom{k - i + 1}{3}$, we get $b_{i,k,m} > 0$, concluding the proof of Claim 1.

Claim 2. Assume $k \geq m + 2$. Then $x_{i,k,m} \geq x + 1 - i$.

Proof of Claim 2. Assume $x_{i,k,m} \leq x - i$. First assume $i = m$. By the case $m = 1$ and $k' := k - m + 1$ of (1) we get $(k + 1 - m)^2 + 1 > \binom{k + 4 - m}{3}$, i.e. $6(k + 1 - m)^2 \geq (k + 4 - m)(k + 3 - m)(k + 2 - m)$, contradicting the assumption $k > m$. Now assume $i < m$ and that i is the maximal positive integer for which Claim 2 fails. Claim 1 gives $x_{j,k,m} \leq (k + 4 - j)(k + 3 - j)(k + 2 - j)/6(k + 1 - j)$ for all j. We have $y_{i,k,m} \leq k - i$ and $y_{i+1,k,m} \geq 0$. Hence from (2) we get

$$(k + 1 - i)(k + 1 - i) + \sum_{j=i+1}^{m} (k + 4 - j)(k + 3 - j)(k + 2 - j)/6(k + 1 - j) \leq \binom{k + 1 - i}{3}$$

Hence

$$6(k + 1 - i)(k + 1 - i)(k - i) + (m - i)(k + 3 - i)(k + 2 - i)(k + 1 - i) \leq (k + 4 - i)(k + 3 - i)(k + 2 - i)(k - i)$$

with strict inequality if $i \neq m - 1$. First assume $i \neq m - 1$. Since $k \geq m + 2$ and $i < m$, we have $k + 4 - i \geq m + 6 - i$. Hence we get a contradiction. Now assume $i = m - 1$. From (4) we get $6(k + 2 - m)(k + 3 - m)(k + 1 - m) + (k + 4 - m)(k + 3 - m)(k + 2 - m) \leq (k + 5 - m)(k + 4 - m)(k + 3 - m)(k + 1 - m)$, a contradiction. Let $C_m \subset H_m$ be a general union of $y_{m,k,m}$ lines and a smooth rational curve of degree $x_{m,k,m} - y_{m,k,m}$. By [2], C_m has maximal rank in H_m. By our definition of the integers $x_{m,k,m}$ and $y_{m,k,m}$ we have $h^i(H_m, \mathcal{I}_{C_m,H_m}(k - m + 1)) = 0$, $j = 1, 2$. Let N_{C_m,H_m} denote the normal bundle of C_m in H_m. Since each connected component of C_m is smooth and rational and the tangent bundle of H_m is a quotient of $\mathcal{O}_{H_m}(1)^{\oplus 4}$ by the Euler’s sequence, we have $h^1(C_m, N_{C_m,H_m}(-1)) = 0$. By [4] we get that for general C_m each set $C_m \cap H_i$, $1 \leq i < m$, is formed by $x_{m,k,m}$ general points of H_i. Fix an integer $i \in \{1, \ldots, m - 1\}$ and assume defined the curves $C_j \subset H_j$, $i + 1 \leq j \leq m$, with the following properties:

(a) $C_j \subset H_j$ is a disjoint union of $y_{j,k,m}$ lines and a smooth rational curve of degree $x_{y,k,m} - y_{j,k,m}$;
(b) Each curve $E_j := \cup_{h=j}^{m} C_h$ is nodal, with exactly $y_{j,k,m}$ connected components, each of them with arithmetic genus 0;

c) Each C_j is transversal to H_h for all $h \neq j$;

d) no C_j contains a point common to 3 of the planes H_h;

e) for each h, j such that $1 \leq h < j \leq m$ the set $E_j \cap H_h$ is general in H_h.

Part (b) implies that each irreducible component of E_j is smooth and rational. Since $x_{i,k,m} \geq k + 1 - i$ we may find a disjoint union $C_i \subset H_i$ of $x_{i,k,m} - y_{i,k,m}$ lines and a smooth rational curve, such that no point of C_i is contained in two other hyperplanes H_h, $h \neq i$, and $E_i := E_{i-1} \cup C_i$ satisfies properties (b) and (c) above. Since for a general $S \subset H_i \cap H_{i-1}$ with $\sharp(S) = x_{i,k,m}$ there is $E \in Z(H_i, x_{i,k,m} - y_{i,k,m}, y_{i,k,m})$ containing it, we may also assume that C_i is a general element of $Z(H_i, x_{i,k,m} - y_{i,k,m}, y_{i,k,m})$ (seen as an abstract curve in H_i, independently of the curve E_{i-1} constructed before). Hence C_i has maximal rank as a curve as a curve of H_i. We may also assume that $E_i := E_{i+1} \cup C_i$ satisfies condition (d). Set $E_m := C_m$. Since $E_m = C_m \subset H_m$, we have $C_m = E_m \cap H_m$ (scheme-theoretic intersection). For any $i \in \{1, \ldots, m-1\}$ the set $E_i \cap H_i$ is a disjoint union of C_i and the points of $E_{i+1} \cap H_i$ not contained in C_i. Each of these points corresponds to a reduced connected component of the scheme-theoretic intersection $E_i \cap H_i$, because E_i is a nodal curve. Now fix $P \in C_i \cap E_{i-1}$ (if any). We have $P \in H_i \cap H_{i-1}$ and $P \in C_{i-1}$. Since E_i is nodal and the tangent line to C_{i-1} is not contained in H_i, $E_i \cap H_i$ and C_i coincide in a neighborhood of P. Hence the scheme-theoretic and the set-theoretic intersections of E_i and H_i are the same. We again remark that this construction make sense, because $\sum_{j=i+1}^{m} b_j - y_{i-1,k,m} \geq 0$; indeed, $y_{i-1,k,m} \leq (k-i) \leq b_{i-1,k,m} \leq \sum_{j=i+1}^{m} b_j,k,m$, the second inequality being true by Claim 2. For all $i \in \{1, \ldots, m-1\}$ the set $E_i \cap H_i \setminus C_i$ has exactly $\sum_{j=i+1}^{m} b_j,k,m - y_{i-1,k,m}$ points.

Claim 3. For each $i \in \{1, \ldots, m\}$ we have $h^j(H_i, I_{E_i \cap H_i} \cdot H_i, H_i(k+i-1)) = 0$, $j = 0, 1$.

Proof of Claim 3. The case $i = m$ is true by our choice of the curve C_m. Now assume $i \in \{1, \ldots, m-1\}$. The scheme $E_i \cap H_i$ is the disjoint union of C_i and finitely many points. We have $h^0(C_i, \mathcal{O}_{C_i}(k+i-1)) = (k+i-1)x_{i,k,m} + 1 + y_{i,k,m}$. By (3) we have $h^0(E_i \cap H_i, \mathcal{O}_{E_i \cap H_i}(k+1-i)) = \binom{k+1-i}{3}$. Hence $h^0(H_i, I_{E_i \cap H_i} \cdot H_i, H_i(k+i-1)) = h^0(H_i, I_{E_i \cap H_i} \cdot H_i, H_i(k+i-1)) = 0$. Thus it is sufficient to show that either $h^0(H_i, I_{E_i \cap H_i}(k+i-1)) = 0$ or $h^1(H_i, I_{E_i \cap H_i}(k+i-1)) = 0$. In our set-up we have $H := H_i$, $D := C_i$ (which have maximal rank) and
\[f := \#(S) = -y_{i+1,k,m} + \sum_{j=i+1}^{m} x_{j,k,m}. \] However, \(S \) is not general in \(H_i \), since we prescribed the values of the cardinalities of the sets \(S_j := S \cap H_j, i + 1 \leq j \leq m \) and \(S \subset H_{j+1} \cup \cdots \cup H_m \). We apply \(m - i + 1 \) times Lemma 1.

Claim 4. For each \(i \in \{1, \ldots, m\} \) have \(h^j(H_i \cup \cdots \cup H_m, I_{E_i,H_i \cup \cdots \cup H_m}(k)) = 0, j = 0, 1. \)

Proof of Claim 4. Since \(E_m = C_m \), Claim 4 is true for \(i = m \). Now assume \(i < m \) and that Claim 4 is true for the integer \(i + 1 \). Since the set-theoretic and the scheme-theoretic intersection of \(H_{i-1} \) and \(E_i \) are the same, we have an exact sequence of sheaves on \(H_i \cup \cdots \cup H_m \):

\[0 \to I_{E_{i-1},H_{i-1} \cup \cdots \cup H_m}(k-i) \to I_{E_i,H_i \cup \cdots \cup H_m}(k) \to I_{E_i \cap H_i,H_i}(k+1-i) \to 0 \quad (5) \]

The inductive assumption gives \(h^j((H_{i+1}, i \cup \cdots \cup H_m, I_{E_{i-1},H_{i-1} \cup \cdots \cup E_m}(k-i)) = 0, j = 0, 1. \) Claim 3 gives \(h^j(H_i, I_{E_i \cap H_i}(k+1-i)) = 0, j = 0, 1. \) Apply (5).

Claim 5. We have \(h^1(A, I_{E_1,A}(k)) = 0. \)

Proof of Claim 5. This is the case \(i = m \) of Claim 4.

Recall that \(d \leq d_{k,m} = \sum_{i=1}^{m} x_{i,k,m} \). Let \(c \) be the minimal integer \(\leq m \) such that \(d \leq \sum_{i=c}^{m} x_{i,k,m} \). First assume \(c = m \). In this case we may take as \(C \) a general element of \(Z(H_m, d, 0) \). Since \(d \leq x_{k+1-m,k,m} \) and \(C \) has maximal rank \((3)\), we have \(h^1(H_m, I_{C,H_m}(k+1-m)) = 0. \) Hence \(h^1(H_m, I_{C,H_m}(k)) = 0. \) Since the restriction map \(H^0(A, O_A(k)) \to H^0(H_m, O_{H_m}(k)) \) is surjective, we get \(h^1(A, I_{C,A}(k)) = 0. \) Hence we may assume \(1 \leq c < m \). First assume \(d \geq \sum_{i=c+1}^{m} x_{i,k,m} + y_{c+1,k,m} + 1. \) Take as \(C \) the union of \(E_{c-1} \) with a general \(F \in Z(H_c, d - x_{c+1,k,m}, 0) \) with the only restriction that \(F \cap H_{c-1} \) contains exactly one point of each of the connected components of \(E_{c-1} \). Since \(d \geq x_{c-1,k,m} + y_{c-1,k,m} + 1, F \) may be considered as a general smooth rational curve of degree \(d - x_{c+1,k,m} \) of \(H_c \). Hence it has maximal rank \((3)\). As in the proofs of Claims 3 and 4 we get \(h^1(H_c \cup \cdots \cup C_m, I_{C,H_c \cup \cdots \cup C_m}(k+1-c)) = 0. \) Hence \(h^1(H_c \cup \cdots \cup C_m, I_{C,H_c \cup \cdots \cup C_m}(k)) = 0. \) Hence \(h^1(A, I_{C,A}(k)) = 0. \) Now assume \(d \leq \sum_{i=c+1}^{m} x_{i,k,m} + y_{c+1,k,m}. \) Instead of \(E_{c+1} \) we take the following curve \(F_{c+1} \).

We start with \(E_{c+2} \) (with the convention \(E_{c+2} = \emptyset \) if \(c = m - 1 \). Let \(D_{c+1} \) be a general element of \(Z(H_{c+1}, x_{c+1,k,m}, 0) \) with the only condition that \(D_{c+1} \cap H_{c+2} \) contains exactly one point of each of the \(y_{c+2,k,m} + 1 \) connected components of \(E_{c+2} \).

Proof of Theorem 2. Take the proof just given for the integer \(k' := k + 1 \) and make minimal modifications.

Proof of Theorem 3. Take \(A = H_1 \cup H_2 \subset \mathbb{P}^4 \) with \(H_1 \) and \(H_2 \) hyperplanes and \(H_1 \neq H_2 \). For all integers \(k \geq 3 \) we have \(h^0(A, O_A(k)) = \binom{k+4}{4} - \binom{k+2}{4} = \)
\[2^{(k+3)/3} - \binom{k+2}{2} = (k + 2)(k + 1)(2k + 3)/6. \] We have \(h^0(A, \mathcal{O}_A(2)) = 14 \) and \(h^0(A, \mathcal{O}_A(1)) = 4. \) Set \(d_1 := 4, \alpha_1 := 0, d_2 := 6 \) and \(\alpha_2 := 1. \) For all integer \(k \geq 3 \) define the integers \(d_k \) and \(\alpha_k \) by the relations

\[kd_k + \alpha_k = \binom{k+4}{4} - \binom{k+2}{4}, \quad 0 \leq \alpha_k \leq k - 1 \]

(a) We have \(d_k := \lfloor ((k + 2)(k + 1)(2k + 3) - 6)/6k \rfloor = \lfloor (2k^2 + 9k + 13)/6 \rfloor. \) Hence

\[(2k^2 + 9k + 13)/6 - 1 \leq d_k \leq (2k^2 + 9k + 13)/6 \]

Claim 1. \(d_k > d_{k-1} \) for all \(k \geq 2. \)

Proof of Claim 1. Since \(d_3 = 10, \) we may assume \(k \geq 4. \) Subtracting the case \(k' := k - 1 \) of (6) from (6) we get

\[(k - 1)(d_k - d_{k-1}) + d_k + \alpha_k - \alpha_{k-1} = (k + 1)^2 \]

Assume \(d_k \leq d_{k-1}, \) Since \(\alpha_k \leq k - 1, \) step (a) gives a contradiction.

Fix an integer \(d > 0 \) and let \(k \) be the minimal positive integer such that \(d \leq d_k. \) Claim 1 gives that \(k \) is the only integer such that \(d_{k-1} < d \leq d_k. \) To prove Theorem 3 for the integer \(d \) it is sufficient to prove the existence of a reduced, connected and nodal curve \(C \subset A \) such that \(\deg(C) = d, \) \(p_a(C) = 0, \) \(h^0(A, \mathcal{I}_{C,A}(k - 1)) = 0 \) and \(h^1(A, \mathcal{I}_{C,A}(t)) = 0 \) for all \(t \geq k. \) Since \(h^1(C, \mathcal{O}_C) = 0 \) for any reduced and connected curve with arithmetic genus zero, Castelnuovo-Mumford’s lemma gives that it is sufficient to prove the existence of a reduced, connected and nodal curve \(C \subset A \) such that \(\deg(C) = d, \) \(p_a(C) = 0, \) \(h^0(A, \mathcal{I}_{C,A}(k - 1)) = 0 \) and \(h^1(A, \mathcal{I}_{C,A}(t)) = 0. \) The case \(k = 1, \) i.e. \(d \leq 4, \) is obvious.

(b) Assume \(k = 2, \) i.e. assume \(5 \leq d \leq 7. \) Take as \(C = A_1 \cup A_2 \) the union of rational normal curve \(A_1 \subset H_1 \) and a general \(A_2 \in Z(H_2, d - 3, 0) \) meeting \(C_1 \) at one point.

(c) From now on we assume \(k \geq 3. \) For all integers \(t > 0, \) define the integers \(u_t \) and \(\gamma_t \) by the relations

\[tu_t + 1 + \gamma_t = \binom{t+3}{3}, \quad 0 \leq \gamma_t \leq t - 1 \]

The explicit values of the integers \(u_t \) and \(\gamma_t \) given in [3] show that \(u_t > \gamma_t \) for all \(t \geq 2. \) Let \(C_1 \subset H_1 \) be a general union of a smooth rational curve of
degree \(u_{k-1} - \gamma_{k-1} \) and \(\gamma_{k-1} \) lines. By [2] we have \(h^i(H_1, I_{C_1, H_1}(k - 1)) = 0 \), \(i = 0, 1 \). Let \(M_1 \subset H_1 \) be a general union of a smooth rational curve of degree \(u_{k-2} - \gamma_{k-2} \) and \(\gamma_{k-2} \) lines. By [2] we have \(h^i(H_1, I_{M_1, H_1}(k - 2)) = 0 \), \(i = 0, 1 \).

(d) In this step we assume

\[
(k - 1)(d - u_{k-1}) + 1 + u_{k-1} - \gamma_{k-1} \geq \left(\frac{k + 2}{3} \right)
\]

(10)

Claim 2. Assume (10). Then \(d - u_{k-1} \geq \gamma_{k-1} + 1 \).

Proof of Claim 2. Assume \(d - u_{k-1} \leq \gamma_{k-1} \). From (10) we get \((k - 2)\gamma_{k-1} + 1 + u_{k-1} \geq \left(\frac{k + 2}{3} \right) \). Since \(u_{k-1} \leq \left(\frac{k + 2}{3} \right)/(k - 1) \) and \(\gamma_{k-1} \leq k - 2 \), we get a contradiction.

Let \(C_1 \) be a general element of \(Z(H_1, d - u_{k-1}, 0) \), with the only restriction that \(C_1 \cap H_2 \) contains exactly one point of each connected component of \(C_2 \). Set \(C := C_1 \cup C_2 \). Since \(d \leq d_k \), Lemma 1 gives \(h^1(H_1, I_{C \cap H_1, H_1}(k)) = 0 \).

Since \(h^1(H_2, I_{C_2, H_2}(k - 1)) = 0 \), we get \(h^1(A, I_{C, A}(k)) = 0 \). From (10) and the generality of the set \(C_2 \cap H_1 \) in the plane \(H_1 \cap H_2 \), we get \(h^0(H_1, I_{C \cap H_1, H_1}(k - 1)) = 0 \). Since \(h^0(H_2, I_{C_2, H_2}(k - 1)) = 0 \), we get \(h^0(A, I_{C, A}(k - 1)) = 0 \).

(e) In this step we assume \(d \leq d_k - u_{k-1} + u_{k-2} \) and

\[
(k - 1)(d - u_{k-1}) + u_{k-1} - \gamma_{k-1} \leq \left(\frac{k + 2}{3} \right)
\]

(11)

Let \(M_1 \subset H_1 \) be a general element of \(Z(H_1, d - u_{k-2}, 0) \), with the only restriction that \(M_1 \cap H_2 \) contains exactly one point of each of the components of \(M_2 \); since \(d > d_{k-1} \) and \(d_{k-1} \geq u_{k-2} + k - 3 \), this is obviously possible. In this case we take \(C := M_1 \cup M_2 \). We first check that \(h^0(A, I_{C, A}(k - 1)) = 0 \). Since \(d > d_{k-1} \), this is just a modification of step (b), taking \(k - 1 \) instead of \(k \). The scheme \(C \cap H_1 \) is a general union of a smooth rational curve of degree \(d - u_{k-2} \) and \(u_{k-2} - \gamma_{k-2} \) general points of \(H_2 \). The assumption “\(d \leq d_k - u_{k-1} + u_{k-2} \)” gives \(h^0(C \cap H_1, O_{C \cap H_1}(k)) \leq \left(\frac{k + 3}{3} \right) \). Hence \(h^1(H_1, I_{C_1 \cap H_1, H_1}(k)) = 0 \) (Lemma 1). Hence \(h^1(A, I_{C, A}(k)) = 0 \).

(g) In this step we assume \(d \geq d_k - u_{k-1} + u_{k-2} \) and prove that (10) is satisfied. Indeed, we have \((k - 1)(d - u_{k-1}) + 1 + u_{k-1} - \gamma_{k-1} \geq (k - 1)(d_k - u_{k-1}) + 1 + u_{k-1} - \gamma_{k-1} + (k + 2)/3 - \gamma_{k-1} \). \(\square \)
Acknowledgements

The author was partially supported by MIUR and GNSAGA of INdAM (Italy).

References

