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Abstract: Let A and B be unital complex Banach algebras, and ϕ be a
unital surjective numerical radius preserving linear map from A into B. We
discuss a Nagasawa type theorem for this maps and show that ϕ is a Jordan
isomorphism, if A and B are commutative.
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1. Introduction

Linear preserver problems(LPP)have a relatively long history and different
kinds. Some of the most popular linear preserver problems are linear maps
preserving properties related to invertibility or spectrum. This subject goes
back to 1897, when G. Frobenius describing the structure of determinant pre-
serving linear maps. In 1970 Kaplansky [6] asked the following question:

Let ϕ : A −→ B be a unital invertibility preserving linear map between
unital Banach algebras A and B. Is ϕ a Jordan homomorphism?
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The above question of Kaplansky is too general and answer to it is negative
when ϕ is not surjective or A and B are not semi-simple, thus it was reduced
to the following conjecture

Conjecture: Suppose A and B are unital semisimple Banach algebras and
ϕ : A −→ B is a unital surjective linear map preserving invertibility. Is ϕ a
Jordan homomorphism?

This problem remains unsolved. A number of partial positive results have
been found, especially in the case where A = B(X), B = B(Y ) [9] and when A
and B are Von Neumann algebra [2].

A similar conjecture is as follows:

Let A and B be unital semisimple Banach algebras and ϕ : A −→ B is a
unital surjective spectral isometry. Is ϕ a Jordan homomorphism?

A partial positive answers were given to this question by Mathieu and
Sourour when A and B are finite-dimensional [7] and by Nagasawa when A

and B are commutative [1, Theorem 4.1.17]. We answer the above conjecture
for the numerical radius preserving maps.

2. Preliminaries

Let A be a complex unital normed algebra, and

D(A, 1) = {f ∈ A′, f(1) =‖ f ‖= 1},

where A′ is the dual space of A. The elements of D(A, 1) are called normalized
states on A. For a ∈ A let,

V (a) = {f(a) : f ∈ D(A, 1)}, v(a) = sup{|λ| : λ ∈ V (A)}.

V (a) and v(a) are called the numerical range and numerical radius of a re-
spectively. The set of all singular elements of A is denoted by sing(A). The
spectrum and spectral radius of a is denoted by Sp(a) and r(a) respectively,
and defined by

Sp(a) = {λ ∈ C : λ− a ∈ sing(A)},

r(a) = inf{‖an‖
1

n : n = 1, 2, 3, ..} = sup{|λ| : λ ∈ sp(a)}.

The convex hull of Sp(x) is denoted by coSp(x). A non-zero linear functional
ϕ on Banach algebra A is called multiplicative if ϕ(xy) = ϕ(x)ϕ(y) for all
x, y ∈ A.
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Let A and B are complex unital normed algebras, a linear map ϕ : A→ B

is called numerical radius preserving if v(ϕ(a)) = v(a), and Jordan homomor-
phism if ϕ(a2) = (ϕ(a))2, and spectral radius preserving if r(ϕ(a)) = r(a) for
every a ∈ A. We say that ϕ preserves commutativity in both directions if
ab = ba if and only if ϕ(a)ϕ(b) = ϕ(b)ϕ(a) for every a, b ∈ A.

Let A be a commutative Banach algebra. We say that a linear functional f
on A is a spectral state if it satisfies f(1) = 1 and ‖f(a)‖ ≤ r(a) for all a ∈ A.

Theorem 1. Let A and B be complex Banach algebras and ϕ be a linear
map from A onto B.

(1) If ϕ preserves numerical radius, then ϕ−1 preserves numerical radius.

(2) If ϕ preserves numerical radius and commutativity in both directions,
then ϕ−1 preserves commutativity.

Proof. Let a ∈ A and ϕ(a) = 0, then v(a) = v(ϕ(a)) = v(0) = 0, and by [4,
Theorem 1.4.1] a = 0, so ϕ is injective therefore invertible.

For (1) let x ∈ B, then exists a ∈ A such that y = ϕ(a). Then v(y) =
v(ϕ(a)) = v(a) = v(ϕ−1(y)). For (2) Let x, y ∈ B and xy = yx, then exists
a, b ∈ A such that x = ϕ(a) and y = ϕ(b) and ϕ(a)ϕ(b) = φ(b)φ(a). Since ϕ
preserves commutativity in both directions, ab = ba therefore ϕ−1(x)ϕ−1(y) =
ϕ−1(y)ϕ−1(x).

Theorem 2. Let A be a unital complex Banach algebra, and f be a linear
functional on A. Then f is a normalized state on A if and only if f(x) ∈ coSp(x)
for all x ∈ A.

Proof. If f(x) ∈ coSp(x) for all x ∈ A, then f(1) ∈ coSp(1) = {1}, so
f(1) = 1. Moreover by [4, Theorem 1.4.1] and [4, Theorem 1.2.6], |f(x)| ≤
max{|z| : z ∈ coSp(x)} ≤ v(x) ≤ ‖x‖, so ‖f‖ ≤ 1 thus ‖f‖ = 1, therefore f is
a normalized state.

Conversely, suppose f is a normalized state on A, and x ∈ A. If λ ∈ C such
that λ1A 6= x, then v(x − λ1A) 6= 0, and we have |f(x) − λ| = |f(x − λ)| ≤
v(x− λ), which means that f(x) is in the closed disk centered at λ with radius
v(x − λ). So f(x) ∈ ∩B(λ, v(x − λ)) for all λ where λ1A 6= x. But coSp(x)
is the intersection of all such disks, because if λ ∈ C such that λ1A 6= x and
µ ∈ coSp(x), then µ = Σαiλi where 0 ≤ αi ≤ 1 and

∑
αi = 1, λi ∈ Sp(x),

so |µ − λ| = |
∑

(αiλi − λ)| ≤
∑
αi|λi − λ|, but by [3, Proposition 1.10.4]

λi − λ ∈ V (x) − λ = V (x − λ) thus |µ − λ| ≤ v(x − λ), this implies that
coSp(x) ⊆ B(λ, v(x−λ)) for all λ ∈ C where λ1A 6= x. Also, coSp(x) is convex
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and compact, so by [1, Exercise IV.2.8] coSp(x) = ∩B(λ, v(x−λ)), for all λ ∈ C

such that λ1A 6= x. Therefore f(x) ∈ coSp(x).

Theorem 3. Let A be a unital commutative complex Banach algebra. If
f is an extreme normalized state on A, then it is multiplicative.

Proof. Since A is commutative, by Theorem 2 and [1, Lemma 4.1.15] every
normalized state is a spectral state, so by [1, Lemma 4.1.16] f is a multiplicative.

Theorem 4. If A is a complex unital normed algebras, then ext(D(A, 1))
separates the points of A.

Proof. Let a 6= 0 ∈ A, by [3, Corollary 1.10.15] there exists f ∈ D(A, 1)
such that f(a) 6= 0. Also, by Krein-Milman Theorem [5, Theorem 5.7.4] and
[3, Lemma 1.10.3] D(A, 1) = co(ext(D(A, 1))), which implies that there ex-
ists g ∈ extD(A, 1) such that g(a) 6= 0. Otherwise, for every g belong to
co(ext(D(A, 1))) we have g(a) = 0.

3. Maine Result

Theorem 5. Let A and B be unital commutative complex Banach alge-
bras. If ϕ is a unital numerical radius preserving linear map from A onto B,
then ϕ is an isomorphism.

Proof. If a ∈A and ϕ(a) = 0, then v(a) = v(ϕ(a)) = v(0) = 0, and by
[4, Theorem 1.4.1] a = 0, so ϕ is injective therefore ϕ is invertible. By [4,
Theorem 1.4.1] 1

e
‖ϕ(x) ≤ (ϕ(x)) = v(x) ≤ ‖x‖ so ‖ϕ(x)‖ ≤ e‖x‖, therefore ϕ

is continuous.

Let f be an extreme normalized states on B and let g = fϕ. Then g is
linear, continuous, |g(x)| = |f(ϕ(x))| ≤ v(ϕ(x)) = v(x) ≤ ‖x‖ for all x ∈ A,
so ‖g‖ ≤ 1, also g(1) = (fϕ)(1) = 1, it follows that ‖g‖ = 1. Therefore g is a
normalized states on A. It is easy to see that g is an extreme point. Indeed,
assume that g1, g2 ∈ D(A, 1) such that g = 1

2(g1 + g2). We shall verify that
g = g1 = g2. Since f = gϕ−1, we have f = 1

2(g1ϕ
−1 + g2ϕ

−1).

Also since g1 ∈ D(A, 1), g1ϕ
−1 is continuous, and (g1ϕ

−1)(1) = 1, and for
all y ∈ B we have g1(ϕ

−1(y)) ∈ V (ϕ−1(y)), so |g1ϕ
−1(y)| ≤ v(ϕ−1(y)) = v(y) ≤

‖y‖ thus ‖g1ϕ
−1‖ ≤ 1, therefore g1ϕ

−1 ∈ D(B, 1). A similarly proof implies
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that g2ϕ
−1 ∈ D(B, 1), but f is an extreme point, it follows that g1ϕ

−1 =
g2ϕ

−1 = f so g = g1 = g2.
Since f and fϕ are extreme normalized states on B and A receptivity,

by Theorem 3 f and fϕ are multiplicative, so f(ϕ(xy)) = f(ϕ(x))f(ϕ(y)) =
f(ϕ(x)ϕ(y)) for all x, y ∈ A. Since f is an extreme normalized states on B by
Theorem 4 ext(D(B, 1)) separates point of B, therefore ϕ(x)ϕ(y) = ϕ(xy).

Theorem 6. Let A and B be unital complex Banach algebras. If a unital
linear map ϕ from A onto B preserves numerical radius and commutativity in
both directions, then ϕ is a Jordan isomorphism.

Proof. ϕ is invertible by Theorem 1. Suppose a ∈ A and let A1 = 〈a, 1〉
be the closed sub-algebra of A generated by a and 1. Define a linear map
ϕ1 : A1 → ϕ(A1) by ϕ1(x) = ϕ(x) for all x ∈ A1. suppose ϕ(A1) is a sub-
algebra of B, since A1 is communicative, and ϕ preserves commutativity so
ϕ(A1) is communicative. Also, ϕ1 preserves numerical radius, therefore ϕ1 is
an isomorphism by Theorem 5, so ϕ(a2) = ϕ(a)2. Otherwise, let B1 = 〈ϕ(A1)〉
and define a linear map ψ1 : B1 → ϕ−1(B1) by ψ1(y) = ϕ−1(y) for all y ∈ B1.
Suppose ϕ−1(B1) is a subalgebra of A, since B1 is communicative, and ϕ−1 pre-
serves commutativity by Theorem 1, so ϕ−1(B1) is communicative. Also ϕ−1

is numerical radius preserving by Theorem 1, therefore ψ1 is an isomorphism
by Theorem 5 and hence ψ1(y

2) = ψ1(y)
2, then ψ1(ϕ(a)

2) = ψ1(ϕ(a))
2 = a2,

therefore ϕ(a)2 = ϕ(a2). Otherwise, let A2 = 〈ϕ−1(B1)〉 and define a linear
map ϕ2 : A2 → ϕ(A2) by ϕ2(x) = ϕ(x) for all x ∈ A2. By continuing this pro-
cess we obtain sequences {An} and {Bn} commutative subalgebras of A and
B respectively such that A1 = 〈 a, 1〉, An = 〈ϕ−1(Bn−1)〉Bn = 〈ϕ(An)〉A1 ⊆
A2 ⊆ ... ⊆ A and B1 ⊆ B2 ⊆ .... ⊆ B. Define A′ = ∪ An and B′ = ∪ Bn and
ϕ′ : A′ → B′ by ϕ′(x) = ϕ(x) for every x ∈ A′. A′ and B′ are commutative,
and ϕ′ is a unital surjective and numerical radius preserving, so by Theorem 5
ϕ′ is isomorphism and hence ϕ′(a2) = ϕ′(a)2, therefore ϕ(a2) = ϕ(a)2.

Remark 7. In particular if both A and B are communicative unital
C∗ − algebras and ϕ is a unital surjective numerical radius preserving linear
map from A to B, then by Gelfand Theorem [8, Theorem 2.1.10] r(a) = ‖a‖ and
r(ϕ(a)) = ‖ϕ(a)‖, so by [4, Theorem 1.4.1] and [4, Theorem 1.2.6] r(a) = ‖a‖ =
v(a) and r(ϕ(a)) = ‖ϕ(a)‖ = v(ϕ(a)) for all a ∈ A, therefore r(a) = r(ϕ(a))
and we can use the Nagasawa Theorem[1, Theorem 4.1.17].
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