International Journal of Pure and Applied Mathematics

Volume 89 No. 2 2013, 283-286

ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version)

url: http://www.ijpam.eu

doi: http://dx.doi.org/10.12732/ijpam.v89i2.12

ON THE DIOPHANTINE EQUATION $89^x + 91^y = z^2$

Banyat Sroysang

Department of Mathematics and Statistics Faculty of Science and Technology Thammasat University Rangsit Center, Pathumthani, 12121, THAILAND

Abstract: In this paper, we prove that the Diophantine equation $89^{x} + 91^{y} = z^{2}$ has no non-negative integer solution where x, y and z are non-negative integers.

AMS Subject Classification: 11D61

Key Words: exponential Diophantine equation

1. Introduction

In 2012, Sroysang [6] posed an open problem that, for any positive odd prime numbers p and q such that q - p = 2, what is the set of all solutions (x, y, z) for the Diophantine equation $p^{\mathsf{X}} + q^{\mathsf{Y}} = z^2$ where x, y and z are non-negative integers. Moreover, he [6] also proved that (1,0,2) is a unique solution (x,y,z) for the Diophantine equation $3^{\mathsf{X}} + 5^{\mathsf{Y}} = z^2$ where x, y and z are non-negative integers. In this paper, we prove that the Diophantine equation $89^{\mathsf{X}} + 91^{\mathsf{Y}} = z^2$ has no non-negative integer solution where x, y and z are non-negative integers. For related papers, we list them as follows. Acu [1] showed, in 2007, that the Diophantine equation $2^{\mathsf{X}} + 5^{\mathsf{Y}} = z^2$ has only two non-negative integer solutions where x, y and z are non-negative integers. The solutions (x, y, z) are (3, 0, 3) and (2, 1, 3). Suvarnamani, Singta and Chotchaisthit [12] showed, in 2011, that the two Diophantine equations $4^{\mathsf{X}} + 7^{\mathsf{Y}} = z^2$ and $4^{\mathsf{X}} + 11^{\mathsf{Y}} = z^2$ have no non-negative integer solution where x, y and z are non-negative integers. In 2012,

Received: September 27, 2013 © 2013 Academic Publications, Ltd. url: www.acadpubl.eu

284 B. Sroysang

Chotchaisthit [4] found all non-negative integer solutions for the Diophantine equation of type $4^{\times} + p^{y} = z^{2}$ where p is a positive prime number. Sroysang [7] showed, in 2012, that (1,0,3) is a unique solution (x,y,z) for the Diophantine equation $8^{\times} + 19^{y} = z^{2}$ where x, y and z are non-negative integers. Moreover, he [8] showed that the Diophantine equation $31^{\times} + 32^{y} = z^{2}$ has no non-negative integer solution where x, y and z are non-negative integers. Chotchaisthit [3] showed, in 2013, that (3,0,3) is a unique solution (x,y,z) for the Diophantine equation $2^{\times} + 11^{y} = z^{2}$ where x,y and z are non-negative integers. Sroysang [9] showed, in 2013, that (0,1,3) is a unique solution (x,y,z) for the Diophantine equation $7^{\times} + 8^{y} = z^{2}$ where x,y and z are non-negative integers. Moreover, he [10] showed, in 2013, that the Diophantine equation $2^{\times} + 3^{y} = z^{2}$ has only three non-negative integer solutions where x, y and z are non-negative integers. The solutions (x,y,z) are (0,1,2), (3,0,3) and (4,2,5). In the same year, he [11] showed that the Diophantine equation $23^{\times} + 32^{y} = z^{2}$ has no non-negative integer solution where x,y and z are non-negative integers.

2. Preliminaries

Proposition 2.1. [5] (3,2,2,3) is a unique solution (a,b,x,y) for the Diophantine equation $a^{x} - b^{y} = 1$ where a,b,x and y are integers with $\min\{a,b,x,y\} > 1$.

Lemma 2.2. The Diophantine equation $89^{x} + 1 = z^{2}$ has no non-negative integer solution where x and z are non-negative integers.

Proof. Suppose that there are non-negative integers x and z such that $89^{\times} + 1 = z^2$. If x = 0, then $z^2 = 2$ which is impossible. Then $x \ge 1$. Thus, $z^2 = 89^{\times} + 1 \ge 89^1 + 1 = 90$. Then $z \ge 10$. Now, we consider on the equation $z^2 - 89^{\times} = 1$. By Proposition 2.1, we have x = 1. Then $z^2 = 90$. This is a contradiction. Hence, the equation $89^{\times} + 1 = z^2$ has no non-negative integer solution.

Lemma 2.3. The Diophantine equation $1 + 91^y = z^2$ has no non-negative integer solution where y and z are non-negative integers.

Proof. Suppose that there are non-negative integers y and z such that $1+91^y=z^2$. If y=0, then $z^2=2$ which is impossible. Then $y\geq 1$. Thus, $z^2=1+91^y\geq 1+91^1=92$. Then $z\geq 10$. Now, we consider on the equation $z^2-91^y=1$. By Proposition 2.1, we have y=1. Then $z^2=92$. This is a

contradiction. Hence, the equation $1+91^{\mathsf{y}}=z^2$ has no non-negative integer solution. \square

3. Results

Theorem 3.1. The Diophantine equation $89^{x} + 91^{y} = z^{2}$ has no nonnegative integer solution where x, y and z are non-negative integers.

Proof. Suppose that there are non-negative integers x, y and z such that $89^{\mathsf{X}} + 91^{\mathsf{Y}} = z^2$. By Lemma 2.2 and 2.3, we have $x \ge 1$ and $y \ge 1$. Note that z is even. Then $z^2 \equiv 0 \pmod{6}$ or $z^2 \equiv 4 \pmod{6}$. Moreover, $91^{\mathsf{Y}} \equiv 1 \pmod{6}$. It follows that $89^{\mathsf{X}} \equiv 5 \pmod{6}$ or $89^{\mathsf{X}} \equiv 3 \pmod{6}$. Note that $89^{\mathsf{X}} \equiv 5^{\mathsf{X}} \pmod{6}$. But $5^{\mathsf{X}} \equiv 1 \pmod{6}$ or $5^{\mathsf{X}} \equiv 5 \pmod{6}$. This implies that $89^{\mathsf{X}} \equiv 5^{\mathsf{X}} \equiv 5 \pmod{6}$. Thus, x is odd. Then $89^{\mathsf{X}} \equiv 3 \pmod{7}$ or $89^{\mathsf{X}} \equiv 5 \pmod{7}$ or $89^{\mathsf{X}} \equiv 5 \pmod{7}$. Note that $91^{\mathsf{X}} \equiv 0 \pmod{7}$. It follows that $z^2 \equiv 3 \pmod{7}$ or $z^2 \equiv 5 \pmod{7}$ or $z^2 \equiv 6 \pmod{7}$. This is a contradiction since $z^2 \equiv 0 \pmod{7}$ or $z^2 \equiv 1 \pmod{7}$ or $z^2 \equiv 2 \pmod{7}$ or $z^2 \equiv 4 \pmod{7}$.

Corollary 3.2. The Diophantine equation $89^{x} + 91^{y} = w^{4}$ has no non-negative integer solution where x, y and w are non-negative integers.

Proof. Suppose that there are non-negative integers x, y and w such that $89^{x} + 91^{y} = w^{4}$. Let $z = w^{2}$. Then $89^{x} + 91^{y} = z^{2}$. By Theorem 3.1, the equation $89^{x} + 91^{y} = z^{2}$ has no non-negative integer solution. This implies that the equation $89^{x} + 91^{y} = w^{4}$ has no non-negative integer solution.

References

- [1] D. Acu, On a Diophantine equation $2^{x} + 5^{y} = z^{2}$, Gen. Math., **15** (2007), 145-148.
- [2] E. Catalan, Note extraite dune lettre adressee a lediteur, *J. Reine Angew. Math.*, **27** (1844), 192.
- [3] S. Chotchaisthit, On the Diophantine equation $2^{x} + 11^{y} = z^{2}$, Maejo Int. J. Sci. Technol., 7 (2013), 291–293.
- [4] S. Chotchaisthit, On the Diophantine equation $4^{x} + p^{y} = z^{2}$ where p is a prime number, Amer. J. Math. Sci., 1 (2012), 191–193.

286 B. Sroysang

[5] P. Mihailescu, Primary cycolotomic units and a proof of Catalan's conjecture, *J. Reine Angew. Math.*, **27** (2004), 167–195.

- [6] B. Sroysang, On the Diophantine equation $3^{x} + 5^{y} = z^{2}$, Int. J. Pure Appl. Math., 81 (2012), 605–608.
- [7] B. Sroysang, More on the Diophantine equation $8^{x} + 19^{y} = z^{2}$, Int. J. Pure Appl. Math., 81 (2012), 601–604.
- [8] B. Sroysang, On the Diophantine equation $31^{x} + 32^{y} = z^{2}$, Int. J. Pure Appl. Math., 81 (2012), 609-612.
- [9] B. Sroysang, On the Diophantine equation $7^{x} + 8^{y} = z^{2}$, Int. J. Pure Appl. Math., 84 (2013), 111–114.
- [10] B. Sroysang, More on the Diophantine equation $2^x + 3^y = z^2$, Int. J. Pure Appl. Math., 84 (2013), 133–137.
- [11] B. Sroysang, On the Diophantine equation $23^{x} + 32^{y} = z^{2}$, Int. J. Pure Appl. Math., 84 (2013), 231–234.
- [12] A. Suvarnamani, A. Singta, S. Chotchaisthit, On two Diophantine equations $4^{x} + 7^{y} = z^{2}$ and $4^{x} + 11^{y} = z^{2}$, Sci. Technol. RMUTT J., 1 (2011), 25–28.