IJPAM: Volume 89, No. 2 (2013)
EQUATIONS: A MODERN APPLICATION
OF INVARIANT THEORY
Sul Ross State University
Alpine, TX 79830, USA
Abstract. Algebraic invariants are defined for the purpose of gaining insights into solving polynomial equations. Polynomial invariants are disclosed here as an alternative to and to clarify the umbral method of Gian-Carlo Rota. A process for solving cubic polynomial equations is examined and extended to quintic (or 5th degree) polynomial equations.
It is proved that a general cubic polynomial is ``apolar'' to a quadratic
polynomial. It is proved that a quadratic polynomial and cubic polynomial
which are apolar either both have repeated roots or both have distinct
roots. In the case of repeated roots, these roots are shared by the cubic
and quadratic polynomials that are apolar. In the case, in which the
derived quadratic which is apolar to a given cubic has distinct roots, it is
shown the cubic polynomial may be transformed to
where
and
are the distinct roots of the
quadratic polynomial. This will allow the roots of the cubic to be found
using algebraic operations.
It will be shown that these methods can be extended to show that a given
quintic polynomial is in general apolar to a cubic polynomial. Some
remaining questions are posed at the end of the article.
Received: July 17, 2013
AMS Subject Classification: 13A50
Key Words and Phrases: invariant theory, invariants, polynomial equations
Download paper from here.
DOI: 10.12732/ijpam.v89i2.4 How to cite this paper?
Source: International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2013
Volume: 89
Issue: 2