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Abstract: We determine a non-uniform bound for the distance between the
distribution function of random sums of independent geometric random vari-
ables and an appropriate Poisson distribution function. Two examples have
been given to illustrate the result obtained.

AMS Subject Classification: 62E17, 60F05, 60G05
Key Words: distribution function, geometric random variable, Poisson ap-
proximation, random sums, Stein-Chen method

1. Introduction

Let S, be a sum ;" ; X; of independently distributed geometric random vari-

ables, where P(X; = k) = (1—p;)¥p; for k = 0,1, .... Tt is well-known that if all

¢i = (1—p;) are small, the distribution of S,, can be approximated by the Poisson

distribution with mean E(S,) = >, ¢ip; L. Correspondingly, the distribution

function of 5, can also be approximated by Poisson distribution fupctkion with
e )\

these means. Let PS,(zg) = P(S, < xg) and Py, (x0) = > ;2 —5r—= be the
distribution function of S,, and the Poisson distribution function with mean A,
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at xo € N, respectively. In this case, Teerapabolarn [4] used the Stein-Chen
method to give a non-uniform bound for the difference of PS,(z¢) and Py, (xo)
as follows:

C(l—eM 1) & _
IPS,,(20) — Py, (z0)] < min{ ———, — v " ¢?p;?, (1.1)
An ol i3

where xy € N. Consider the sum Sy = ZZ]\L 1 X;, where N is a non-negative
integer valued random variable and independent of the X;’s. Then Sy is called
the random sums of independent geometric random random variables. In this
study, we are interest to approximate PSy(z¢) by Px(zp) when A = E(Ay).

2. Method

Stein’s method was originally formulated for normal approximation by Stein
[2]. It was adapted and applied to the Poisson case by Chen [1], which is refer
to as the Stein-Chen method. Following [3], Stein’s equation of the Poisson
cumulative distribution function with parameter A > 0 is of the form

hao(€) = Pa(20) = Afaq(x +1) — 2 fu,(2), (2.1)

where 29, € NU {0}, and for hy,,(z) = 1 if z < 29 and hy,(z) = 0 if z > z,
the solution fy, is

x— D)IANTTA Py (x — 1)[1 — Py(x)]], if 2 < o,
Jao(@) = < (= D)IATTA Py (x0)[L — Pr(z — 1)]], if 2 > o, (2.2)
0, if £ =0.

The following lemma gives a non-uniform bound of (2.2).

e—k)\x0+1

Lemma 2.1. For zp € N, let py(zo + 1) = G

inequality holds:

Then the following

Py (x0)(1 — Pa(xo))
0< igll) fao(@) < (xo + Dpa(zo + 1)

3]. (2.3)
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3. Result

The following theorem presents non-uniform bounds with different Poisson
mean for the distance between PSy(xg) and Py(zg).

Theorem 3.1. Let A = E(\y) and z¢ € N, then we have

N 2 -2
) 1—ew X\ E(Xiap
IPSn(z0) — Pa(zo)| < min {E <T Zqi?pi 2> 7 ( ) }
i=1

To

Px(@o)(1 = Pa(@o)) E|An — Al

(ot Dpa(@o+1) (3-1)
where PSy(0) = E(TTY, pi).
Proof. 1. We have
IPSn (20) — Pa(wo)| < !PSN(%) = Pay (@o)| + [Pay (w0) — Pa(zo)]
= Z P(N = n) [PSy(z0) — P, (z0)[ + [Pay (z0) — Pa(wo)]
<ZP mm{l_e - }Zq2 2
+ [Py, (w0) — Pa(z0)], (3.2)

where the first term of the right hand side of (3.2) follows from (1.1). Because

[Pay (20) = Pa(z0)] = [E{A fuo (Uny + 1) = Uy fio (Uny) }
= |E{NE{[fzo (Uny + DIIAN} = E{[Uxy fzo (Uny)]|I AN}
= |E{AE{[fzo (Uny + DIIAN} = ANE{[fio (Uny + DIAN}}
= [E{(A = AN)E[fzo(Ury + 1)[AN]}
< ?ill)fxo(x)E‘)‘N — Al

Px(z0)(1 = Px(w0)) E[AN — Al
(w0 + L)pa(wo + 1)

(3.3)
Combining (3.2) and (3.3), the proof is complete. O

If X;’s are identically distributed, then the following corollary is an imme-
diately consequence of the Theorem 3.1
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Corollary 3.1. If p1 = ps = --- = p, then we have the following:

E(N 2,,—2
IPSiy (o) — Pa(z0)] < min {E(l . M}
Zo

L Palwo)(1 = Pa(20) EIN — E(N)lap”
(w0 + D)pa(xo + 1) :

(3.4)

4. Examples

We give two examples to illustrate the result in the case of X;’s are identically
distributed.

Example 4.1. For n (n € N) is fixed, let N be a positive integer-valued
random variable with probability function

%7 k=mn,
0, otherwise.
Therefore E(N) = 2% and E|N — E(N)| = 2. Let p; = po = -+ = p, then for

zg € N, we have

. _1 3ng’p? Py (20)(1 — Px(xo))ngp™?
P —P < 1
IPSn (z0) — Pa(xo)| < min {QP S 20zo + Upa (2o £1)

Example 4.2. Let N be a positive integer-valued random variable with
probability function

1
P(N:n):2—n, n=12 ..,
then we have E(N) =2 and E|N — E(N)| =1. If py = pg = --- = p, then for

zg € N, we obtain

2, -2 2 (1 — P (x .
[PSn (20) — Px(20)| < min {qpl, 2¢°p } N Pxéx?))ill)pliéooi)g» |
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