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integers. The solution (x, y, z) is (1, 0, 3).
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1. Introduction

In 2007, Acu [1] proved that the Diophantine equation 2x + 5y = z2 has only
two non-negative integer solutions where x, y and z are non-negative integers.
The solutions (x, y, z) are (3, 0, 3) and (2, 1, 3). In 2011, Suvarnamani, Singta
and Chotchaisthit [11] proved that the two Diophantine equations 4x+7y = z2

and 4x + 11y = z2 have no non-negative integer solution where x, y and z

are non-negative integers. In 2012, Chotchaisthit [3] solved the Diophantine
equation 4x+py = z2 for all positive prime number p, where x, y and z are non-
negative integers. In the same year, Sroysang [5] proved that the Diophantine
equation 3x + 5y = z2 has a unique non-negative integer solution where x,
y and z are non-negative integers. The solution (x, y, z) is (1, 0, 2). In the
same year, Sroysang [6] proved that the Diophantine equation 8x + 19y = z2

has a unique non-negative integer solution where x, y and z are non-negative
integers. The solution (x, y, z) is (1, 0, 3). Moreover, he [7] proved that the
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Diophantine equation 31x+32y = z2 has no non-negative integer solution where
x, y and z are non-negative integers. In 2013, Chotchaisthit [2] proved that the
Diophantine equation 2x +11y = z2 has a unique non-negative integer solution
where x, y and z are non-negative integers. The solution (x, y, z) is (3, 0, 3). In
the same year, Sroysang [8] proved that the Diophantine equation 7x +8y = z2

has a unique non-negative integer solution where x, y and z are non-negative
integers. The solution (x, y, z) is (0, 1, 3). In the same year, Sroysang [9] proved
that the Diophantine equation 2x+3y = z2 has only three non-negative integer
solutions where x, y and z are non-negative integers. The solutions (x, y, z) are
(0, 1, 2), (3, 0, 3) and (4, 2, 5). Moreover, he [10] proved that the Diophantine
equation 23x + 32y = z2 has no non-negative integer solution where x, y and
z are non-negative integers. In this paper, we prove that the Diophantine
equation 8x + 13y = z2 has a unique non-negative integer solution where x, y
and z are non-negative integers. The solution (x, y, z) is (1, 0, 3).

2. Preliminaries

Proposition 2.1. [4] (the Catalan’s conjecture) (3, 2, 2, 3) is a unique
solution (a, b, x, y) for the Diophantine equation ax − by = 1 where a, b, x and

y are integers with min{a, b, x, y} > 1.

Lemma 2.2. [6] (1, 3) is a unique solution (x, z) for the Diophantine

equation 8x + 1 = z2 where x and z are non-negative integers.

Lemma 2.3. The Diophantine equation 1+13y = z2 has no non-negative

integer solution where y and z are non-negative integers.

Proof. Suppose that there are non-negative integers y and z such that 1 +
13y = z2. If y = 0, then z2 = 2 which is impossible. Then y ≥ 1. Thus,
z2 = 1 + 13y ≥ 1 + 131 = 14. Then z ≥ 4. Now, we consider on the equation
z2 − 13y = 1. By Proposition 2.1, we have y = 1. Then z2 = 14. This is a
contradiction.

3. Results

Theorem 3.1. (1, 0, 3) is a unique solution (x, y, z) for the Diophantine

equation 8x + 13y = z2 where x, y and z are non-negative integers.
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Proof. Let x, y and z be non-negative integers such that 8x +13y = z2. By
Lemma 2.3, we have x ≥ 1. This implies that z is odd. Then z = 2t + 1 for
some a non-negative integer t. Thus, 8x + 13y = 4t(t + 1) + 1. We note that
t(t + 1) is even, so 8x + 13y = 8m + 1 for some a non-negative integer m. It
follows that 13y ≡ 1 (mod 8). This implies that y is even. Now, we will divide
the number y into two cases.

Case y = 0. By Lemma 2.2, we have x = 1 and z = 3.

Case y ≥ 2. Let y = 2n where n is a positive integer. Then z2 − 132n = 8x.
Then (z − 13n)(z + 13n) = 23x. Thus, z − 13n = 2k where k is a non-negative
integer. Then z + 13n = 23x−k. Thus, 2(13n) = 23x−k − 2k = 2k(23x−2k − 1).
Next, we will divide the number k into two subcases.

Subcase k = 0. Then z − 13n = 1. This implies that z is even. This is a
contradiction.

Subcase k = 1. Then 23x−2 − 1 = 13n. Then 23x−2 − 13n = 1. If x = 1,
then n = 0 so y = 0. Thus, x ≥ 2. By Proposition 2.1, we have n = 1. Then
23x−2 = 14. This is impossible.

Therefore, (1, 0, 3) is a unique solution (x, y, z) for the equation 8x + 13y =
z2.

Corollary 3.2. The Diophantine equation 8x + 13y = w4 has no non-

negative integer solution where x, y and w are non-negative integers.

Proof. Suppose that there are non-negative integers x, y and w such that
8x + 13y = w4. Let z = w2. Then 8x + 13y = z2. By Theorem 3.1, we have
(x, y, z) = (1, 0, 3). Then w2 = z = 3. This is a contradiction.
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