FUZZY DOT $\beta-$SUBALGEBRAS OF $\beta-$ALGEBRAS

M. Abu Ayub Ansari1, M. Chandramouleeswaran2§

1M.S.S. Wakf Board College
Madurai, 625 020, Tamilnadu, INDIA

2Saiva Bhanu Kshatriya College
Aruppukottai, 626101, Tamilnadu, INDIA

Abstract: In this paper, we introduce the notion of fuzzy dot $\beta-$subalgebras on $\beta-$algebras and investigate some of their properties.

AMS Subject Classification: 03E72, 06F35, 03G25

Key Words: BCK/BCI-algebras, fuzzy dot subalgebra, $\beta-$algebras

1. Introduction

In 1966, Y. Imai and K. Iseki (see [5], [6], [7]) introduced two classes of abstract algebras: BCK-algebras and BCI-algebras. It is known that the class of BCK algebras is a proper subclass of the class of BCI algebras. In 2002, J. Neggers and H.S. Kim [12] introduced the notion of $B-$algebras which is another generalization of BCK algebras. Also they introduced the notion of $\beta-$algebra [13] where two operations are coupled in such a way as to reflect the natural coupling, which exists between the usual group operation and its associated B-algebra. In 2012, Y.H. Kim [10] investigated some properties of $\beta-$algebras.

The important point in the evaluation of the modern concept of uncertainty

In their paper [9], the authors introduced the notion of fuzzy dot subalgebras of BCK/BCI-algebras as a generalization of a fuzzy subalgebra, and then investigated several basic properties which are related to fuzzy dot subalgebras. In [2], Al-Shehrie introduced the notion of fuzzy dot d-ideals of d-algebras. In [4], the authors introduced the notion of fuzzy dot SU-subalgebras. In [11], K.H. Kim introduced the notion of fuzzy dot subalgebras of d-algebras. In [3], fuzzy dot BCK/BCI algebras were discussed.

This motivated us to study the fuzzy dot algebraic structures on β-algebras. In this paper, we introduce the notion of fuzzy dot β-subalgebras of a β-algebra and investigate some of their properties.

2. Preliminaries

In this section we recall some basic definitions that are required in the sequel.

Definition 2.1. [5] A BCK-algebra $(X, \ast, 0)$ is a non-empty set X with a constant 0 and a binary operation \ast satisfying the following axioms:

1. $((x \ast y) \ast (x \ast z)) \ast (z \ast y) = 0$.
2. $(x \ast (x \ast y)) \ast y = 0$.
3. $x \ast x = 0$.
4. $x \ast y = 0$ and $y \ast x = 0 \Rightarrow x = y$.
5. $0 \ast x = 0 \forall x, y, z \in X$.

Definition 2.2. [6] A BCI-algebra $(X, \ast, 0)$ is a non-empty set X with a constant 0 and a binary operation \ast satisfying the following axioms:

1. $((x \ast y) \ast (x \ast z)) \ast (z \ast y) = 0$.
2. $(x \ast (x \ast y)) \ast y = 0$.
3. $x \ast x = 0$.
4. $x \ast y = 0$ and $y \ast x = 0 \Rightarrow x = y \forall x, y, z \in X$.

Definition 2.3. [12] A B-algebra \((X, *, 0)\) is a non-empty set \(X\) with a constant 0 and a binary operations \(*\) satisfying the following axioms:

1. \(x * x = 0\)
2. \(x * 0 = x\)
3. \((x * y) * z = x * (z * (0 * y))\) \(\forall x, y, z \in X.\)

Definition 2.4. [13] \([10]\) A \(\beta\)-algebra is a non-empty set \(X\) with a constant 0 and two binary operations \(+\) and \(−\) satisfying the following axioms:

1. \(x - 0 = x.\)
2. \((0 - x) + x = 0.\)
3. \((x - y) - z = x - (z + y)\) \(\forall x, y, z \in X.\)

Example 2.5. Let \(X = \{0, 1, 2, 3\}\) be a set with constant 0 and two binary operations \(+\) and \(-\) are defined on \(X\) with the Cayley’s table

\[
\begin{array}{cccc}
+ & 0 & 1 & 2 & 3 \\
0 & 0 & 1 & 2 & 3 \\
1 & 1 & 2 & 3 & 0 \\
2 & 2 & 3 & 0 & 1 \\
3 & 3 & 0 & 1 & 2 \\
\end{array}
\quad
\begin{array}{cccc}
− & 0 & 1 & 2 & 3 \\
0 & 0 & 1 & 2 & 3 \\
1 & 1 & 0 & 3 & 2 \\
2 & 2 & 1 & 0 & 3 \\
3 & 3 & 2 & 1 & 0 \\
\end{array}
\]

Then \((X, +, −, 0)\) is a \(\beta\)-algebra.

Definition 2.6. Let \((X, +, −, 0)\) and \((Y, +, −, 0')\) be two \(\beta\)-algebras. A mapping \(f : X \to Y\) is said to be a \(\beta\)-homomorphism if \(f(x + y) = f(x) + f(y)\) and \(f(x - y) = f(x) - f(y)\), \(\forall x, y \in X.\)

Note: In a \(\beta\)-homomorphism \(f(0) = f(0').\)

Definition 2.7. Let \(X\) be a set of universal discourse. A fuzzy set \(\mu\) in \(X\) is defined as a function \(\mu : X \to [0, 1]\). For each element \(x\) in \(X\), \(\mu(x)\) is called the membership value of \(x\) in \(X\).

Definition 2.8. If \(\mu_1\) and \(\mu_2\) are two fuzzy sets of \(X\) then intersection \(\mu_1 \cap \mu_2\) of \(\mu_1\) and \(\mu_2\) is defined as \((\mu_1 \cap \mu_2)(x) = \min \{\mu_1(x), \mu_2(x)\}\).

In general \((\cap \mu_i)(x) = \min \{\mu_i(x)/i = 1, 2, 3, \ldots\}\)

Definition 2.9. If \(\mu_1\) and \(\mu_2\) are two fuzzy sets of \(X\) then union \(\mu_1 \cup \mu_2\) of \(\mu_1\) and \(\mu_2\) is defined as \((\mu_1 \cup \mu_2)(x) = \max \{\mu_1(x), \mu_2(x)\}\).
Definition 2.10. If \(\mu_1 \) and \(\mu_2 \) are two fuzzy sets of \(X \) then \(\mu_1 \subseteq \mu_2 \) if \(\mu_1(x) \leq \mu_2(x) \).

Definition 2.11. If \(\mu \) is a fuzzy set of \(X \) then the complement of \(\mu \) is \(\mu^c \) and defined as \(\mu^c(x) = 1 - \mu(x) \).

Definition 2.12. Let \(\mu_1 \) and \(\mu_2 \) be two fuzzy sets of \(X_1 \) and \(X_2 \) respectively. Then the direct product \(\mu_1 \times \mu_2 \) of \(\mu_1 \) and \(\mu_2 \) is defined as the fuzzy set of \(X_1 \times X_2 \)

\[
(\mu_1 \times \mu_2)(x_1, x_2) = \min \{\mu_1(x_1), \mu_2(x_2)\} \quad \forall \ (x_1, x_2) \in X_1 \times X_2.
\]

Definition 2.13. Let \(\mu \) be a fuzzy set in a set \(X \). For \(t \in [0, 1] \), the set \(\mu_t = \{x \in X / \mu(x) \geq t\} \) is called a level subset of \(\mu \).

Proposition 2.14. If \(t_1 \leq t_2 \), then \(\mu_{t_2} \subseteq \mu_{t_1} \) where \(\mu_{t_2} \) and \(\mu_{t_1} \) are any two level subsets of \(\mu \) where \(\mu \) be a fuzzy set on a set \(X \).

Definition 2.15. Let \(\mu \) be a fuzzy set of \(X \). \(\mu \) is said to have the supremum property if, for any subset \(A \) of \(X \), there exist a \(a_0 \in A \) such that \(\mu(a_0) = \sup_{a \in A} \mu(a) \).

3. Fuzzy Dot \(\beta \)-Subalgebras of \(\beta \)-Algebra

In section we introduce the notion of fuzzy dot \(\beta \)-subalgebras of \(\beta \)-algebras and prove some simple theorem.

Definition 3.1. Let \(\mu \) be a fuzzy set in a \(\beta \)-algebra \(X \). Then \(\mu \) is called a fuzzy dot \(\beta \)-subalgebra of \(X \) if

1. \(\mu(x + y) \geq \mu(x) \cdot \mu(y) \), \(\forall x, y \in X \).
2. \(\mu(x - y) \geq \mu(x) \cdot \mu(y) \), \(\forall x, y \in X \).

Example 3.2. Consider the \(\beta \)-algebra \((X, +, -, 0)\) in Example:2.5

Define \(\mu : X \rightarrow [0, 1] \) such that

\[
\mu(x) = \begin{cases}
0.6 & \text{if } x = 0 \\
0.7 & \text{if } x = 1 \\
0.3 & \text{if } x = 2, 3
\end{cases}
\]

then \(\mu \) is a fuzzy dot \(\beta \)-subalgebra of \(X \).
Theorem 3.3. Every fuzzy β-subalgebra of X is a fuzzy dot β-subalgebra of X. The converse need not be true.

Proof. Let μ be a fuzzy β-subalgebra of X. Then

$$
\mu(x + y) \geq \min \{\mu(x), \mu(y)\} \geq \mu(x) \cdot \mu(y)
$$

and

$$
\mu(x - y) \geq \min \{\mu(x), \mu(y)\} \geq \mu(x) \cdot \mu(y)
$$

Therefore μ is a fuzzy dot β-subalgebra of X.

Note: In the example 3.2, μ is a fuzzy dot β-subalgebra of X but μ is not a fuzzy β-subalgebra of X, since $\mu(1 - 1) = \mu(0) = 0.6 < 0.7 = \min \{0.7, 0.7\} = \min \{\mu(1), \mu(1)\}$.

Theorem 3.4. If μ_1 and μ_2 be two fuzzy dot β-subalgebras of X then $\mu_1 \cap \mu_2$ is also a fuzzy dot β-subalgebra of X.

Proof. For $x, y \in X$,

$$
(\mu_1 \cap \mu_2)(x + y) = \min \{\mu_1(x + y), \mu_2(x + y)\} \\
\geq \min \{\mu_1(x) \cdot \mu_1(y), \mu_2(x) \cdot \mu_2(y)\} \\
\geq (\min \{\mu_1(x), \mu_2(x)\}) \cdot (\min \{\mu_1(y), \mu_2(y)\}) \\
= (\mu_1 \cap \mu_2)(x) \cdot (\mu_1 \cap \mu_2)(y)
$$

Similarly we can prove that $(\mu_1 \cap \mu_2)(x - y) \geq (\mu_1 \cap \mu_2)(x) \cdot (\mu_1 \cap \mu_2)(y)$

Therefore $\mu_1 \cap \mu_2$ is fuzzy dot β-subalgebra of X.

The above theorem can be generalized as follows.

Corollary 3.5. If $\{\mu_i/i = 1, 2, 3, \cdots\}$ be a family of dot-fuzzy β-subalgebra of X, then $\cap \mu_i$ is also a dot-fuzzy β-subalgebra of X.

Notation: Hereafter by a β-algebra X we mean a β-algebra $(X, +, -, 0)$ derived from a group or a β-algebra $(X, +, -, 0)$ from a B-algebra $(X, -, 0)$.

Proposition 3.6. Let X be a β-algebra and let μ be a dot-fuzzy β-subalgebra of X then

1. $\{\mu(x)\}^6 \leq \{\mu(x)\}^2 \leq \mu(0), \forall x \in X$.
2. $\{\mu(x)\}^3 \leq \mu(x^*), \forall x \in X$, where $x^* = 0 - x$.

In general $\{\mu(x)\}^{2n-1} \leq \mu(0^n - x), \forall x \in X$, where $0^n - x = 0 - (0 - (0 - \cdots (0 - x)))$, such that 0 occurs n times.

Proof.

1. For any $x \in X, \mu(0) = \mu(x - x) \geq \mu(x) \cdot \mu(x) = \{\mu(x)\}^2$.
We can prove the general case by induction.

Theorem 3.7. Let \(X \) be a \(\beta \)-algebra and let \(\mu \) be a fuzzy set of \(X \). If \(\mu(x + y) \geq \mu(x) \cdot \mu(y) \) and \(\mu(x^*) \geq \mu(x) \), \(\forall x, y \in X \), then \(\mu \) be a fuzzy dot \(\beta \)-subalgebra of \(X \).

Proof. Given \(\mu(x + y) \geq \mu(x) \cdot \mu(y) \), \(\forall x, y \in X \).
Hence it is enough to prove \(\mu(x - y) \geq \mu(x) \cdot \mu(y) \), \(\forall x, y \in X \). Now

\[
\mu(x - y) = \mu(x - (y^*)^*) = \mu(x + y^*) \geq \mu(x) \cdot \mu(y^*) \geq \mu(x) \cdot \mu(y),
\]

since \(y = (y^*)^* \) and \(x + y = x - y^* \).
Therefore \(\mu \) is a fuzzy dot \(\beta \)-subalgebra of \(X \).

Theorem 3.8. If \(A \) and \(B \) a \(\beta \)-subalgebra of \(X \), then the characteristic function \(\chi_A \) is a fuzzy dot \(\beta \)-subalgebra of \(X \).

Proof. Let \(x, y \in X \).

Case 1 If \(x, y \in A \), then \(x + y, x - y \in A \) since \(A \) is a \(\beta \)-subalgebra of \(X \).
This implies that \(\chi_A(x) = 1, \chi_A(y) = 1, \chi_A(x + y) = 1 \) and \(\chi_A(x - y) = 1 \).
which implies

1. \(\chi_A(x + y) = 1 = 1 \cdot 1 = \chi_A(x) \cdot \chi_A(y), \forall x, y \in X. \)
2. \(\chi_A(x - y) = 1 = 1 \cdot 1 = \chi_A(x) \cdot \chi_A(y), \forall x, y \in X. \)

Case 2 If \(x, y \notin A \), then \(\chi_A(x) = 0, \chi_A(y) = 0 \).
which implies,

1. \(\chi_A(x + y) \geq 0 = 0 \cdot 0 = \chi_A(x) \cdot \chi_A(y), \forall x, y \in X. \)
2. \(\chi_A(x - y) \geq 0 = 0 \cdot 0 = \chi_A(x) \cdot \chi_A(y), \forall x, y \in X. \)

Case 3 If \(x \in A, y \notin A \), then \(\chi_A(x) = 1, \chi_A(y) = 0 \).
which implies,

1. \(\chi_A(x + y) \geq 0 = 1 \cdot 0 = \chi_A(x) \cdot \chi_A(y), \forall x, y \in X. \)
2. \(\chi_A(x - y) \geq 0 = 1 \cdot 0 = \chi_A(x) \cdot \chi_A(y), \forall x, y \in X. \)

Case 4 When \(x \notin A, y \in A \), by interchanging the roles of \(x \) and \(y \) in case 3) we can prove \(\mu \) is a fuzzy dot \(\beta \)-subalgebra of \(X \). This completes the proof.
The converse of this result is also true.

Theorem 3.9. Let \(A \) be any subset of a \(\beta \)-algebra \(X \). If any characteristic function \(\chi_A \) of \(A \) is a fuzzy dot \(\beta \)-subalgebra of \(X \) then \(A \) is a \(\beta \)-subalgebra of \(X \).
Proof. Let \(\chi_A \) is a fuzzy dot/\(\beta \)-subalgebra of \(X \) then
\[
\chi_A(x + y) \geq \chi_A(x) \cdot \chi_A(y), \quad \forall x, y \in X.
\]
And \(\chi_A(x - y) \geq \chi_A(x) \cdot \chi_A(y), \quad \forall x, y \in X. \)
Let \(x, y \in A \) which implies \(\chi_A(x) = 1, \chi_A(y) = 1 \). Therefore

1. \(\chi_A(x + y) \geq \chi_A(x) \cdot \chi_A(y) = 1 \cdot 1 = 1 \Rightarrow \chi_A(x + y) = 1 \Rightarrow x + y \in A. \)
2. \(\chi_A(x - y) \geq \chi_A(x) \cdot \chi_A(y) = 1 \cdot 1 = 1 \Rightarrow \chi_A(x + y) = 1 \Rightarrow x - y \in A. \)

Hence \(A \) is a \(\beta \)-subalgebra of \(X \).

Theorem 3.10. Let \(\mu_1 \) and \(\mu_2 \) be two fuzzy dot /\(\beta \)-subalgebras of \(\beta \)-algebra \(X \). Then the direct product \(\mu_1 \times \mu_2 \) of \(\mu_1 \) and \(\mu_2 \) is defined by \((\mu_1 \times \mu_2)(x, y) = \mu_1(x) \cdot \mu_2(y) \) is also a fuzzy dot /\(\beta \)-subalgebra of \(X \times X \).

Proof. Let \(X = X \times X \) and let \(\mu = \mu_1 \times \mu_2 \).
Let \(x = (x_1, x_2) \) and \(y = (y_1, y_2) \) be two elements of \(X \). Now
\[
\mu(x + y) = \mu(((x_1, x_2) + (y_1, y_2))
= \mu(x_1 + y_1, x_2 + y_2)
= (\mu_1 \times \mu_2)(x_1 + y_1, x_2 + y_2)
= \mu_1(x_1 + y_1) \cdot \mu_2(x_2 + y_2)
\geq \mu_1(x_1) \cdot \mu_1(y_1) \cdot \mu_2(x_2) \cdot \mu_2(y_2)
= \mu_1(x_1) \cdot \mu_2(x_2) \cdot \mu_1(y_1) \cdot \mu_2(y_2)
= (\mu_1 \times \mu_2)(x_1, x_2) \cdot (\mu_1 \times \mu_2)(y_1, y_2)
= \mu(x) \cdot \mu(y).
\]

Similarly we can prove \(\mu(x - y) \geq \mu(x) \cdot \mu(y), \quad \forall x, y \in X. \)
Hence \(\mu_1 \times \mu_2 \) is a fuzzy dot /\(\beta \)-subalgebra of \(X \times X \).

Theorem 3.11. Let \(\mu_1 \) and \(\mu_2 \) be two fuzzy dot /\(\beta \)-subalgebras of \(\beta \)-algebra \(X_1 \) and \(X_2 \) respectively. Then the direct product \(\mu_1 \times \mu_2 \) of \(\mu_1 \) and \(\mu_2 \)'s defined by
\[
(\mu_1 \times \mu_2)(x, y) = \mu_1(x) \cdot \mu_2(y), \quad \forall x, y \in X_1 \times X_2 \text{ is a fuzzy dot } /\(\beta \)-subalgebra of \(X_1 \times X_2 \).
\]

Proof. The Proof is straightforward.

Theorem 3.12. Let \(f : X \rightarrow Y \) be a homomorphism of a \(\beta \)-algebra \(X \) into a \(\beta \)-algebra \(Y \). If \(\mu \) is a fuzzy dot /\(\beta \)-algebra of \(Y \), then the pre-image of \(\mu \), denoted by \(f^{-1}(\mu) \) is defined as \(\{ f^{-1}(\mu) \} (x) = \mu(f(x)), \quad \forall x \in X \), is a fuzzy dot /\(\beta \)-subalgebra of \(X \).
Proof. Let μ be a fuzzy dot β–subalgebra of Y and let $x, y \in X$. Then
\[
\{f^{-1}(\mu)\}(x + y) = \mu(f(x + y)) \\
= \mu(f(x) + f(y)) \\
\geq \mu(f(x)) \cdot \mu(f(y)) \\
= \{f^{-1}(\mu)(x)\} \cdot \{f^{-1}(\mu)\}(y).
\]
Also
\[
\{f^{-1}(\mu)\}(x - y) = \mu(f(x - y)) \\
= \mu(f(x) - f(y)) \\
\geq \mu(f(x)) \cdot \mu(f(y)) \\
= \{f^{-1}(\mu)\}(x) \cdot \{f^{-1}(\mu)\}(y).
\]
Hence $f^{-1}(\mu)$ is a fuzzy dot β–subalgebra of X.

Theorem 3.13. Let $f : X \to X$ be an endomorphism on a β–algebra X. If μ be a fuzzy dot β–subalgebra of X. Define a fuzzy set $\mu_f : X \to [0, 1]$ by $\mu_f(x) = \mu(f(x)), \forall x \in X$. Then μ_f is a fuzzy dot β–subalgebra of X.

Proof. Let $x, y \in X$. Then
\[
\mu_f(x + y) = \mu(f(x + y)) \\
= \mu(f(x) + f(y)) \\
\geq \mu(f(x)) \cdot \mu(f(y)) \\
= \mu_f(x) \cdot \mu_f(y)
\]
Also,
\[
\mu_f(x - y) = \mu(f(x - y)) \\
= \mu[f(x) - f(y)] \\
\geq \mu(f(x)) \cdot \mu(f(y)) \\
= \mu_f(x) \cdot \mu_f(y)
\]
Hence μ_f is a fuzzy dot β–subalgebra of X.

Theorem 3.14. For a fuzzy set θ of a β–algebra X. Let μ_θ be a fuzzy relation defined by $\mu_\theta(x + y) = \theta(x) \cdot \theta(y)$. Then θ is a fuzzy dot β–subalgebra of X if and only if μ_θ is a fuzzy dot β–subalgebra of $X \times X$.

Proof. Assume that θ is a fuzzy dot β–subalgebra of X.
Let $x = (x_1, x_2)$ and $y = (y_1, y_2)$ be two elements of $X \times X$. We have
\[
\mu_\theta(x + y) = \mu_\theta((x_1, x_2) + (y_1, y_2))
\]
\[\begin{align*}
\mu_{\theta}(x_1 + x_2, y_1 + y_2) &= \mu_{\theta}(x_1 + x_2, 0) + \mu_{\theta}(0, y_1 + y_2) \\
&= \mu(x_1 + x_2, y_1 + y_2) \\
&\geq \mu(x_1) \cdot \mu(x_2) \cdot \mu(y_1) \cdot \mu(y_2) \\
&= \mu(x_1, x_2) \cdot \mu(y_1, y_2) \\
&= \mu(x) \cdot \mu(y)
\end{align*} \]

Similarly we can prove \(\mu_{\theta}(x - y) \geq \mu_{\theta}(x) \cdot \mu_{\theta}(y) \). Hence \(\mu_{\theta} \) is a fuzzy dot \(\beta \)-subalgebra of \(X \times X \).

Conversely, \(\mu_{\theta} \) is a fuzzy dot \(\beta \)-subalgebra of \(X \times X \). Let \(x, y \in X \). Then
\[
[\theta(x + y)]^2 = \theta(x + y) \cdot \theta(x + y) \\
= \mu_{\theta}(x + y, x + y) \\
= \mu_{\theta}([x, x] + [y, y]) \\
\geq \mu_{\theta}(x, x) \cdot \mu_{\theta}(y, y) \\
= \theta(x) \cdot \theta(x) \cdot \theta(y) \cdot \theta(y) \\
= \theta(x)^2 \cdot \theta(y)^2
\]

Hence \(\theta(x + y) \geq \theta(x) \cdot \theta(y) \). Similarly we can prove \(\theta(x - y) \geq \theta(x) \cdot \theta(y) \). Therefore \(\theta \) is a fuzzy dot \(\beta \)-subalgebra of \(X \).

Theorem 3.15. Let \(X \) and \(Y \) be \(\beta \)-algebras. Let \(\mu \) be a fuzzy dot \(\beta \)-subalgebra of \(X \times Y \). Define a fuzzy set \(p_x(\mu) \) of \(X \) such that \(p_x(\mu)(x) = \mu(x, 0) \), \(\forall x \in X \). Then \(p_x(\mu) \) is a fuzzy dot \(\beta \)-subalgebra of \(X \). Also define a fuzzy set \(p_y(\mu) \) of \(Y \) such that \(p_y(\mu)(y) = \mu(0, y) \), \(\forall y \in Y \). Then \(p_y(\mu) \) is a fuzzy dot \(\beta \)-subalgebra of \(Y \).

Proof. For any \(x, y \in X \), we have
\[
\mu_\theta(x + y) = \mu(x + y, 0) \\
= \mu(x + y, 0 + 0) \\
= \mu([x, 0] + [y, 0]) \\
\geq \mu(x, 0) \cdot \mu(y, 0) \\
= p_x(\mu)(x) \cdot p_x(\mu)(y)
\]

Similarly we can prove \(p_x(\mu)(x - y) \geq p_x(\mu)(x) \cdot p_x(\mu)(y) \). Hence \(p_x(\mu) \) is a fuzzy dot \(\beta \)-subalgebra of \(X \).

Also For any \(x, y \in Y \), we have
\[
p_y(\mu)(x + y) = \mu(0, x + y)
\[= \mu(0 + 0, x + y)\]
\[= \mu[(0, x) + (0, y)]\]
\[\geq \mu(0, x) \cdot \mu(0, y)\]
\[= p_y(\mu)(x) \cdot p_y(\mu)(y)\]

Similarly we can prove \(p_y(\mu)(x - y) \geq p_y(\mu)(x) \cdot p_y(\mu)(y) \). Hence \(p_y(\mu) \) is a fuzzy dot \(\beta \)-subalgebra of \(X \).

References

[1] M. Abu Ayub Ansari, M. Chandramouleeswaran, Fuzzy \(\beta \)-subalgebra of \(\beta \)-algebra, Accepted.

