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Abstract: In this Note it is worked out a new set of Laplace-Like equations for
quaternions through Riemann-Cauchy hypercomplex relations otained earlier
[1]. As in the theory of functions of a complex variable, it is expected that
this new set of Laplace-Like equations might be applied to a large number of
Physical problems, providing new insights in the Classical Fields Theory.
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1. Cauchy-Riemann Equations (Functions of One Complex Variable)

In order to fix ideas will be considered theorem that relates the partial deriva-
tives for the case of a function f(z) of a complex variable f(z) = u(x, y)+iv(x, y)
[2], which here will be called Riemann-Cauchy conditions. These relations say
that the first order partial derivatives of functions u(x, y) and v(x, y) satisfy
relations according to the following theorem:
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Theorem 1. Is f(z) = u(x, y) + iv(x, y) a function defined and continues

in a neighborhood of the point z = x + yi and differentiable at z. Then the

partial derivatives of the first order of u(x, y) and v(x, y) exist and satisfy the

relations:
∂u(x, y)

∂x
=

∂v(x, y)

∂y
, (1)

∂u(x, y)

∂y
= −

∂v(x, y)

∂x
. (2)

Thus, if f(z) is analytic in a domain Γ, its partial derivatives exist and
satisfy the set of relations (1) and (2) over all point in Gamma. Moreover, with
the above functions class C2 using Schwartz’s Theorem for partial derivatives
immediately follows the following equations:

∂2u

∂x2
+

∂2u

∂y2
= 0, (3)

∂2v

∂x2
+

∂2v

∂y2
= 0. (4)

the above equations are called Laplace’s equations.

2. Cauchy-Riemann Conditions for Quaternionic Functions

Now we may consider a set of conditions presented as the Riemann-Cauchy like
relations for quaternionic functions. It follows the Theorem [1]:

Theorem 2. For any pair pontis a and b and any path joining them

simply conect subdomain of the four-dimmensional space, the integral
∫
b

a
fdq

is independent form the given path if and only if there is a function F =
F1 + F2i + F3j + F4k such that

∫
b

a
fdq = F (a) − F (b), and satisfying the

following relations:
∂F1

∂x1
=

∂F2

∂x2
=

∂F3

∂x3
=

∂F4

∂x4
, (5)

∂F2

∂x1
= −

∂F1

∂x2
= −

∂F3

∂x4
=

∂F4

∂x3
, (6)

∂F3

∂x1
= −

∂F1

∂x3
= −

∂F2

∂x4
=

∂F4

∂x2
, (7)

∂F4

∂x1
=

∂F1

∂x4
= −

∂F2

∂x3
= −

∂F3

∂x2
. (8)
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Proof. The proof of this theorem can be analyzed in greater detail in [1].

3. The Laplace’s Equations

In this section we show that a new set of hypercomplex Laplace equations
may be generated in four dimensions, through the use of Riemann-Cauchy like
relations [1] Therefore, the functions that make up the quaternionic function,
depend on x1,x2,x3 and x4 and are supposed to be of class C2 and thus the
Schwartz’s theorem is valid.

Theorem 3. Let f(q) is an quaternionic function. If f(q) is of class C2

and satisfies the Cauchy-Riemann conditions, then

∆f1 = 0,
∆f2 = 0,
∆f3 = 0,
∆f4 = 0.

(9)

Demonstration: The first step to obtain the Laplace equation is the deriva-
tion of equations (5), (6), (7) and (8) over x1, x2, x3 and x4. That will be done
as follows: Firstly, in deriving the conditions of equation (5), we have:

∂2F1

∂x21
=

∂2F2

∂x1∂x2
=

∂2F3

∂x1∂x3
=

∂2F4

∂x1∂x4
,

∂2F1

∂x1∂x2
=

∂2F2

∂x22
=

∂2F3

∂x2∂x3
=

∂2F4

∂x2∂x4
,

∂2F1

∂x3∂x1
=

∂2F2

∂x3∂x2
=

∂2F3

∂x23
=

∂2F4

∂x4∂x3
,

∂2F1

∂x1∂x4
=

∂2F2

∂x4∂x2
=

∂2F3

∂x4∂x3
=

∂2F4

∂x24
.

(10)

In deriving the conditions of equation (6), we have:

∂2F2

∂x21
= −

∂2F1

∂x1∂x2
= −

∂2F3

∂x1∂x4
=

∂2F4

∂x1∂x3
,

∂2F2

∂x1∂x2
= −

∂1F1

∂x22
= −

∂2F3

∂x2∂x4
=

∂2F4

∂x3∂x2
,

∂2F2

∂x3∂x1
= −

∂2F1

∂x3∂x2
= −

∂2F3

∂x3∂x4
=

∂2F4

∂x23
,

∂2F2

∂x4∂x1
= −

∂2F1

∂x4∂x2
= −

∂2F3

∂x24
=

∂2F4

∂x4∂x3
.

(11)
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In deriving the conditions of equation (7), we obtain that:

∂2F3

∂x21
= −

∂2F1

∂x1∂x3
= −

∂2F2

∂x1∂x4
=

∂2F4

∂x1∂x2
,

∂2F3

∂x1∂x2
= −

∂1F1

∂x2∂x3
= −

∂2F2

∂x2∂x4
=

∂2F4

∂x22
,

∂2F3

∂x3∂x1
= −

∂2F1

∂x23
= −

∂2F2

∂x4∂x3
=

∂2F4

∂x3∂x2
,

∂2F3

∂x1∂x4
= −

∂2F1

∂x4∂x3
= −

∂2F2

∂x24
=

∂2F4

∂x4∂x2
.

(12)

And finally in deriving the conditions of equation (8), we have:

∂2F4

∂x21
=

∂2F1

∂x1∂x4
= −

∂2F2

∂x1∂x3
= −

∂2F3

∂x1∂x2
,

∂2F4

∂x1∂x2
=

∂2F1

∂x2∂x4
= −

∂2F2

∂x2∂x3
= −

∂2F3

∂x22
,

∂2F4

∂x3∂x1
=

∂2F1

∂x3∂x4
= −

∂2F2

∂x23
= −

∂2F3

∂x3∂x2
,

∂2F4

∂x1∂x4
=

∂2F1

∂x24
= −

∂2F2

∂x4∂x3
= −

∂2F3

∂x4∂x2
.

(13)

In correlating those groups of partial derivatives (9), (10), (11) and (12),
immediately follow the Laplace Equations:

∂2F1

∂x21
+

∂2F1

∂x22
+

∂2F1

∂x23
+

∂2F1

∂x24
= 0, (14)

∂2F2

∂x21
+

∂2F2

∂x22
+

∂2F2

∂x23
+

∂2F2

∂x24
= 0, (15)

∂2F3

∂x21
+

∂2F3

∂x22
+

∂2F3

∂x23
+

∂2F3

∂x24
= 0, (16)

and
∂2F4

∂x21
+

∂2F4

∂x22
+

∂2F4

∂x23
+

∂2F4

∂x24
= 0. (17)

Therefore, it is more simplified manner, the set of equations appears below:

∆f1 = 0,
∆f2 = 0,
∆f3 = 0,
∆f4 = 0,

(18)
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where,
f1 = f1(x1, x2, x3, x4),
f2 = f2(x1, x2, x3, x4),
f3 = f3(x1, x2, x3, x4),
f4 = f4(x1, x2, x3, x4).

(19)

4. Conclusion

In this note it is showed the feasibility of obtaining the equations of Laplace
through the Cauchy-Riemann conditions for quaternions. This fact will allow
the relationship between equations that can explain many physical phenomena.
You can also use the above equations as a way of stating a theorem for harmonic
functions for quaternions that satisfy the conditions of Cauchy. It is worth
mentioning the importance of [1] in performing all relations used in this work.
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