IJPAM: Volume 90, No. 4 (2014)

QUASIPOLAR PROPERTY OF TRIVAL MORITA CONTEXT

Qinghe Huang$^1$, Gaohua Tang$^2$
$^1$School of Mathematics and Physics
Jiangsu University of Science and Technology
Zhenjiang, 212003, P.R. CHINA
$^2$School of Mathematical Science
Guangxi Teacher's Education University
Nanning, 530001, P.R. CHINA


Abstract. Let $T:=\left(\begin{array}{cc}
R&M\\
N&S
\end{array}
\right)$ be a trivial Morita context. This article concerns the quasipolar properties of trivial Morita contexts over local rings. Necessary and sufficient conditions for a single matrix of $T$ (a trivial Morita context over local rings) to be quasipolar are obtained. And then we get a sufficient condition for $T$ to be a quasipolar ring.

Received: May 23, 2013

AMS Subject Classification: 16S50, 16S70, 16U99

Key Words and Phrases: quasipolar ring, local ring, trivial Morita context, spectral idempotent

Download paper from here.



DOI: 10.12732/ijpam.v90i4.4 How to cite this paper?
Source:
International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2014
Volume: 90
Issue: 4