A CLASS OF SPANNED, SIMPLE AND BIUNIFORM VECTOR BUNDLES ON THE SMOOTH QUADRIC SURFACE

E. Ballico
Department of Mathematics
University of Trento
38 123 Povo (Trento) - Via Sommarive, 14, ITALY

Abstract: We study a class of spanned, simple and biuniform vector bundles on a smooth quadric surface Q (the duals of general surjections $\mathcal{O}_Q^{(r+1)} \to \mathcal{O}_Q(a,b)$).

AMS Subject Classification: 14J60
Key Words: spanned vector bundle, quadric surface, biuniform vector bundle

1. Introduction

Let $Q := \mathbb{P}^1 \times \mathbb{P}^1 \subset \mathbb{P}^3$ be a smooth quadric surface. In this note we study the following family of spanned vector bundles on Q. Fix positive integers a, b, r such that $2 \leq r \leq ab + a + b$. Let $S(a, b, r)$ be the set of all surjective maps $\mathcal{O}_Q^{\oplus(r+1)} \to \mathcal{O}_Q(a,b)$. Since $r + 1 \geq 3 > \dim(Q)$, a dimensional count gives that the set $S(a, b, r)$ is a non-empty open subset of the vector space $H^0(\mathcal{O}_Q(a,b)^{\oplus(r+1)})$ and hence it is an integral variety of dimension $(a + 1)(b + 1)(r + 1)$. For each $\phi \in S(a, b, r)$ the sheaf $\ker(\phi)$ is a vector bundle on Q with determinant isomorphic to $\mathcal{O}_Q(-a, -b)$. The sheaf $\ker(\phi)$ is a subsheaf...
of $\mathcal{O}^{(r+1)}_Q$ and $\mathcal{O}^{(r+1)}_Q/\ker(\phi) \cong \mathcal{O}_Q(a,b)$. Since the dual of a short exact sequence of vector bundles is exact, the vector bundle $\ker(\phi)\nu$ is spanned. Let $G(a,b,r)$ be the set of all vector bundles $\{\ker(\phi)\nu\}_{\phi \in S(a,b,r)}$. Any $E \in G(a,b,r)$ has rank r, $c_1(E) = (a,b)$, and it is spanned by its global sections. Since E is spanned, then $h^2(E) = h^0(E\nu(-2,-2)) = 0$. It fits in an exact sequence

$$0 \to \mathcal{O}_Q(-a,-b) \to \mathcal{O}^{(r+1)}_Q \to E \to 0.$$

Since $a > 0$ and $b > 0$, we have $h^i(\mathcal{O}_Q(-a,-b)) = 0$, $i = 0,1$. Hence $h^0(E) = r + 1$ and $h^1(E) = h^2(\mathcal{O}_Q(-a,-b)) = (a - 1)(b - 1)$. We may do the same definition even if $r \geq (a + 1)(b + 1)$, but if $r \geq (a + 1)(b + 1)$, then $E \in G(a,b,r)$ if and only if $E \in G'(a,b,r)$ if and only if $E \in G(a,b,r)$ and \mathcal{O}_Q is not a factor of E.

Let E be a rank r vector bundle on Q. We say that E is biuniform if there are integers $a_1 \geq \cdots \geq a_r$ and $b_1 \geq \cdots \geq b_r$ such that $E|D$ has splitting type (a_1, \ldots, a_r) for all $D \in |\mathcal{O}_Q(0,1)|$ and splitting type (b_1, \ldots, b_r) for all $T \in |\mathcal{O}_Q(1,0)|(1)]$. We say that a splitting type $c_1 \geq \cdots \geq c_r$ is balanced if $c_1 \leq c_r + 1$. In this note we prove the following result.

Theorem 1. Assume $2 \leq r \leq ab + a + b$.

1. Every $E \in G'(a,b,r)$ is simple.

2. Assume that neither a nor b is divisible by r. Then a general $E \in G(a,b,r)$ is biuniform with balanced splitting types.

Part 1 easily follows from the fact that the spanned bundle E has no trivial factor and that $\text{rank}(E) = h^0(E) - 1$ (see step (a) of the proof of Theorem 1). Part 2 is related to the following result concerning simple bundles. For all $c_1 \in \text{Pic}(Q)$, $c_2 \in \mathbb{Z}$ and $r \geq 2$ let $S(c_1,c_2;r)$ denote the moduli space of all rank r simple vector bundles F on Q with $c_1(F) = c_1$ and $c_2(F) = c_2$. It exists ([3], [4]), although it may be empty for some c_1, c_2, r. It is everywhere smooth (Remark 2). We need to adapt to the bundles in $G'(a,b,r)$ a proof of the following well-known result (true because the anticanonical line bundle $\omega_Q^\nu \cong \mathcal{O}_Q(2,2)$ is ample and spanned).

Proposition 1. Fix c_1, c_2, r such that $r \geq 2$ and $S(c_1,c_2;r) \neq \emptyset$. Take $c_1 = (a,b)$ and assume that neither a nor b is divisible by r. Let S be any connected component of $S(c_1,c_2;r)$. Then a general $E \in S$ is biuniform.
When b is large we also show how to construct many non-biuniform vector bundles $E \in G'(a, b, r)$ with prescribed splitting type at several elements of $|\mathcal{O}_Q(0, 1)|$ (Proposition 2).

Remark 1. There is a unique bundle $E \in G'(a, b, ab + a + b)$ (up to isomorphisms), because any $E \in G'(a, b, ab + a + b)$ is induced by the complete linear system $|\mathcal{O}_Q(a, b)|$. Hence $f^*(E) \cong E$ for all $f \in \text{Aut}(\mathbb{P}^1) \times \text{Aut}(\mathbb{P}^1)$ (the connected component of the identity of the algebraic group $\text{Aut}(Q)$). If $a = b$, then $\sigma^*(E) \cong E$ for the order two automorphism of Q which exchanges the two rulings of Q. Take $r \geq (a + 1)(b + 1)$ and a general $A \in G(a, b, r)$. Since $A \cong E \oplus \mathcal{O}_Q^{(r-2a-2b)}$ for some $E \in G'(a, b, ab + a + b)$, we get that A is biuniform (but not simple).

2. The Proof

We fix integers a, b, r such that $a > 0$, $b > 0$ and $2 \leq r \leq ab + a + b$. Let A be a rank r vector bundle on \mathbb{P}^1. The splitting type of A is balanced if and only if $h^1(A \otimes A^\vee) = 0$.

Lemma 1. Let E be a simple vector bundle on Q. Then $h^2(\text{End}(E)(c, d)) = 0$ for all integers $c \geq -1$ and $d \geq -1$.

Proof. Since E is simple, every element of $H^0(\text{End}(E))$ is induced by the multiplication by a scalar. Hence $h^0(\text{End}(E)(-2-c, -2-d)) = 0$ for all $c \geq -1$ and $d \geq -1$. \hfill \Box

Remark 2. Let E be a simple vector bundle. Set $c_i := c_i(E)$ and $r := \text{rank}(E)$. Since $h^2(\text{End}(E)) = 0$ (Lemma 1), $S(c_1, c_2, r)$ is smooth at E and of dimension $h^1(\text{End}(E))$.

Proof of Proposition 1. Since S is smooth (Remark 2) and connected, it is irreducible. Hence it is sufficient to prove the existence of non-empty open subsets U_1 and U_2 of S such that each $E_i \in U_i$ is uniform with respect to the ruling of $Q = \mathbb{P}^1 \times \mathbb{P}^1$ corresponding to the i-th projection $Q \to \mathbb{P}^1$. Just to fix the notation we prove the existence of this open subset of S with respect to the projection $\pi : Q \to \mathbb{P}^1$ such that $\mathcal{O}_Q(0, 1) \cong \pi^*(\mathcal{O}_{\mathbb{P}^1}(1))$. Write $c_1 = \mathcal{O}_Q(u, v)$. By assumption $u/r \notin \mathbb{Z}$. For all $u_1 \geq \cdots \geq u_r$ such that $u_1 + \cdots + u_r$ and each $D \in |\mathcal{O}_Q(0, 1)|$ let $S(D; u_1, \ldots, u_r)$ be the set of all $E \in S$ such that $E|D$ has splitting type u_1, \ldots, u_r. Since S is an algebraic variety, the semicontinuity theorem for cohomology gives that $S(D; u_1, \ldots, u_r) \neq \emptyset$ only for
Assume the existence of \(E \). We get \(B \) spanned, \(\neq B \) a balanced vector bundle associated to some element of \(\mathcal{O}_{Q}(0,1) \) with a prescribed point \(o \in U \) corresponding to \(F \). Since \(u/r \not\in \mathbb{Z} \) and \(u_{1}, \ldots, u_{r} \) is unbalanced, we have \(h^{1}(D, \text{End}(F)) \geq 2 \). Fix any \(E \in \mathcal{S}(D; u_{1}, \ldots, u_{r}) \). Since \(h^{2}(E(0,-1)) = 0 \) (Lemma 1), the restriction map \(H^{1}(\text{End}(E)) \rightarrow H^{1}(D, \text{End}(F)) \) is surjective. Hence \(\mathcal{S}(D; u_{1}, \ldots, u_{r}) \) has codimension \(h^{1}(D, \text{End}(F)) \) in \(\mathcal{S} \). Since \(h^{1}(D, \text{End}(F)) \geq 2 \), we are done.

Lemma 2. Fix \(D \in |\mathcal{O}_{Q}(0,1)| \) and integers \(a_{1} \geq \cdots \geq a_{r} \geq 0 \) such that \(a_{1} + \cdots + a_{r} = a \). Set \(F := \oplus_{i=1}^{r} \mathcal{O}_{D}(u_{i}) \) and call \(U \) a versal deformation space of \(F \) (smooth of dimension \(h^{1}(D, \text{End}(F)) \)). Since \(\text{dim}(\mathcal{O}_{Q}(0,1)) = 1 \), to conclude the proof it is sufficient to prove that for each unbalanced splitting type \(u_{1}, \ldots, u_{r} \) and for each \(D \in |\mathcal{O}_{Q}(0,1)| \) the set \(\mathcal{S}(D; u_{1}, \ldots, u_{r}) \) has codimension at least two in \(\mathcal{S} \). Set \(F := \oplus_{i=1}^{r} \mathcal{O}_{D}(u_{i}) \) and call \(U \) a versal deformation space of \(F \) (smooth of dimension \(h^{1}(D, \text{End}(F)) \)) with a prescribed point \(o \in U \) corresponding to \(F \). Since \(u/r \not\in \mathbb{Z} \) and \(u_{1}, \ldots, u_{r} \) is unbalanced, we have \(h^{1}(D, \text{End}(F)) \geq 2 \). Fix any \(E \in \mathcal{S}(D; u_{1}, \ldots, u_{r}) \). Since \(h^{2}(E(0,-1)) = 0 \) (Lemma 1), the restriction map \(H^{1}(\text{End}(E)) \rightarrow H^{1}(D, \text{End}(F)) \) is surjective. Hence \(\mathcal{S}(D; u_{1}, \ldots, u_{r}) \) has codimension \(h^{1}(D, \text{End}(F)) \) in \(\mathcal{S} \). Since \(h^{1}(D, \text{End}(F)) \geq 2 \), we are done.

Proof. Every spanned vector bundle \(G \) on an integral variety \(T \) is spanned by at most \(\text{dim}(T) + \text{rank}(G) \) sections (wait a few lines for the proof of this claim). Hence \(A \neq \emptyset \). Fix \(\psi \in A \). Let \(B' \) be the set of all surjective maps \(\psi : \mathcal{O}_{p_{1}}(r+1) \rightarrow \mathcal{O}_{p_{1}}(a) \) such that \(\text{ker}(\psi) \cong F^{\vee} \). Then \(A \neq \emptyset \). Fix \(\psi \in A \). Let \(B \) (resp. \(B' \)) be the set of all \(E \in G(a,b,r) \) (resp. \(E \in G'(a,b,r) \)) of the form \(\text{ker}(u)^{\vee} \) with \(u : \mathcal{O}_{Q}^{(r+1)} \rightarrow \mathcal{O}_{Q}(a,b) \) a surjection and \(u|D = \psi \). Then \(B \) is an irreducible variety of dimension \((r+1)(a+1)b \) and \(B' \) is a non-empty Zariski open subset of \(B \).

Let \(S(a;r) \) be the set of all surjective maps \(\mathcal{O}_{p_{1}}^{(r+1)} \rightarrow \mathcal{O}_{p_{1}}(a) \). Since \(r+1 \geq 3 > \text{dim}(\mathbb{P}^{1}) \), the set \(S(a;r) \) is a non-empty open subset of the vector space \(H^{0}(\mathcal{O}_{p_{1}}(a)^{(r+1)}) \) and hence it is an integral variety of dimension \((a+1)(r+1) \). For each \(\phi \in S(a;r) \) the sheaf \(\text{ker}(\phi) \) is a vector bundle on \(\mathbb{P}^{1} \) with determinant isomorphic to \(\mathcal{O}_{p_{1}}(-a) \). The sheaf \(\text{ker}(\phi) \) is a subsheaf of \(\mathcal{O}_{p_{1}}^{(r+1)} \) and \(\mathcal{O}_{p_{1}}^{(r+1)}/\text{ker}(\phi) \cong \mathcal{O}_{p_{1}}(a) \). Since the dual of a short exact sequence of
vector bundles is exact, the vector bundle \(\ker(\phi)^{\vee} \) is spanned. Let \(G(a; r) \) be the flat family \(\{ \ker(\phi)^{\vee} \}_{\phi \in S(a; r)} \) of vector bundles on \(\mathbb{P}^1 \). Any \(E \in G(a; r) \) has rank \(r \) and it is spanned. Hence the splitting type \(a_1 \geq \cdots \geq a_r \) of any \(E \in G(a; r) \) satisfies the conditions \(a_r \geq 0 \) and \(a_1 + \cdots + a_r = a \).

Lemma 3. Fix integers \(a_1 \geq \cdots \geq a_r \) such that \(a_1 + \cdots + a_r = a \) and set
\[
F := \bigoplus_{i=1}^{r} \mathcal{O}_{\mathbb{P}^1}(a_i).
\]
The set of all \(E \in G(a; r) \) isomorphic to \(F \) is non-empty and it has dimension \((r+1)(a+1) - h^1(\text{End}(F))\).

Proof. We have \(h^0(F) = a + r \). Hence the Grassmannian of all \((r+1)\)-dimensional linear subspaces of \(H^0(F) \) has dimension \((r+1)(a-1)\). For any rank \(r \) vector bundle \(A \) on \(\mathbb{P}^1 \) we have \(\chi(\text{End}(A)) = r^2 \), because \(\text{End}(A) \) has rank \(r^2 \) and degree 0. Hence \(h^0(\text{End}(F)) = h^1(\text{End}(F)) + r^2 \). We have \(\dim(\text{Aut}(F)) = h^0(\text{End}(F)) \). Two injective maps with locally free cokernels \(u_i : F \to \mathcal{O}_{\mathbb{P}^1}^{\oplus(r+1)}, i = 1, 2 \), have the same image if and only if \(u_2 = u_1 \circ w \) for some automorphism \(w \) of \(F \).

We leave to the reader the proof of the following elementary lemma.

Lemma 4. Let \(T \) be an integral projective variety. Let \(E \) be a rank \(r \) spanned torsion free sheaf on \(T \). \(E \) is a trivial vector bundle if and only if it is spanned by an \(r \)-dimensional linear subspace of \(H^0(E) \).

Proof of Theorem 1. Fix \(E \in G'(a, b, r) \) (it exists, because \(r \leq ab + a + b \)). Since \(E \) is spanned and without trivial factors, we have \(h^0(E^{\vee}) = 0 \), i.e. there is no non-zero map \(E \to \mathcal{O}_Q \).

(a) Assume that \(E \) is not simple. Hence there is a non-zero map \(f : E \to E \) such that \(G := \text{Im}(f) \) has rank \(m < r \). Since \(G \subset E \), \(G \) is torsion free. Let \(V \subset H^0(G) \) be the image of the map \(u : H^0(E) \to H^0(G) \) induced by the surjection \(E \to G \). Since \(G = f(E) \) is a quotient of the spanned sheaf \(E \), the sheaf \(G \) is spanned by \(V \). Set \(W := \ker(u) \subset H^0(E) \). Since every map \(E \to \mathcal{O}_Q \) is trivial, \(G \) is not a trivial vector bundle. Hence \(\dim(V) \geq m+1 \) (Lemma 4). Hence \(\dim(W) \leq r - m \). Let \(A \) be the saturation of \(G \) in \(E \), i.e. the only rank \(m \) subsheaf of \(E \) containing \(G \) and such that \(E/A \) has no torsion. The sheaf \(E/A \) has rank \(r - m \). Since \(E/A \) is a quotient of \(E/G \), it is spanned by a quotient of \(W \). Since \(\dim(W) \leq r - m \), the torsion free sheaf \(E/A \) is a trivial vector bundle (Lemma 4). Hence \(E \) has \(\mathcal{O}_Q^{r-m} \) as a factor, a contradiction.

(b) In this step we assume that neither \(a \) nor \(b \) is divisible by \(r \) and prove that a general \(E \in G'(a, b, r) \) is biuniform. We adapt the proofs in [2]. We fix one of the two rulings of \(Q \), say \(|\mathcal{O}_Q(0,1)| \), since the proof for the other ruling is similar. Fix \(D \in |\mathcal{O}_Q(0,1)| \). Fix integers \(a_1 \geq \cdots \geq a_r \geq 0 \) such
that \(a_1 + \cdots + a_r = a \) and \(a_r \leq a_1 - 2 \). Call \(u : G'(a, b, r) \times |\mathcal{O}_Q(0, 1)| \to |\mathcal{O}_Q(0, 1)| \) the projection onto the second factor. Let \(\Gamma(a_1, \ldots, a_r) \) be the set of all \((E, D) \in G'(a, b, r) \times |\mathcal{O}_Q(0, 1)|\) such that \(E|D \) has splitting type \((a_1, \ldots, a_r)\). We have \(\Gamma(a_1, \ldots, a_r) = \emptyset \) if \(a_r < 0 \). Hence we only have finitely many non-empty sets \(\Gamma(a_1, \ldots, a_r) \). Since \(\dim(|\mathcal{O}_Q(0, 1)|) = 1 \), to prove that a general \(E \in G'(a, b, r) \) is uniform with respect to the ruling associated to \(|\mathcal{O}_Q(0, 1)| \) it is sufficient to prove that each non-empty \(\Gamma(a_1, \ldots, a_r) \) has codimension \(\geq 2 \) in \(G'(a, b, r) \times |\mathcal{O}_Q(0, 1)| \). Fix \(D \in |\mathcal{O}_Q(0, 1)| \). It is sufficient to prove that \(\dim(u^{-1}(D)) \leq \dim(G'(a, b, r)) - 2 \). Set \(F := \oplus_{i=1}^r \mathcal{O}_D(d_i) \). Lemmas 2 and 3 give that \(u^{-1}(D) \) has dimension \(\dim(G'(a, b, r)) - h^1(\text{End}(F)) \). Since \(F \) is unbalanced and \(a/r \notin \mathbb{Z} \), we have \(h^1(\text{End}(F)) \geq 2 \). \(\square \)

Lemma 5. Let \(E \) be a rank \(r \) vector bundle on \(Q \). Fix \(T \in |\mathcal{O}_Q(1, 0)| \) and let \(b_1 \geq \cdots \geq b_r \) be the splitting type of \(E|T \). Assume the existence of \(c \in \mathbb{Z} \) such that \(E|D \) has splitting type \((c, \ldots, c)\) for all \(D \in |\mathcal{O}_Q(0, 1)| \). Then \(E \cong \oplus_{i=1}^r \mathcal{O}_Q(c, b_i) \).

Proof. Taking \(E(-c, 0) \) instead of \(E \) we reduce to the case \(c = 0 \). Let \(\pi : Q \to \mathbb{P}^1 \) denote the projection such that \(\mathcal{O}_Q(0, 1) \cong \pi^*(\mathcal{O}_{\mathbb{P}^1}(1)) \). Since \(h^0(E|D) = r \) and \(h^1(E|D) = 0 \) for every fiber \(D \) of \(\pi \), a theorem of base change gives that \(\pi_*(E) \) is a rank \(r \) vector bundle ([5], page 11). We have \(\pi_*(E) \cong \oplus_{i=1}^r \mathcal{O}_{\mathbb{P}^1}(d_i) \) for some integers \(d_1 \geq \cdots \geq d_r \). For each fiber \(D \) of \(\pi \) the natural map \(H^0(D, \pi^*(\pi_*(E))|D) \to H^0(D, E|D) \) is an isomorphism ([5], page 11). Since \(E|D \) is trivial, we get that the natural map \(\pi^*(\pi_*(E)) \to E \) is an isomorphism (see [5], page 53, for a similar proof). Since \(E|T \) has splitting type \(b_1 \geq \cdots \geq b_r \), we get \(d_i = b_i \) for all \(i \). \(\square \)

Remark 3. Lemma 5 shows that if either \(a/r \in \mathbb{Z} \) or \(b/r \in \mathbb{Z} \), then every biuniform vector bundle with balanced splitting type is isomorphic to a direct sum of \(r \) line bundles.

Proposition 2. Fix positive integers \(a, b, r, c \), such that \(r \geq 2 \), \(b > c \), \(a_1(i) \geq \cdots \geq a_r(i) \geq 0 \), \(1 \leq i \leq c \), and \(a_1(i)+\cdots+a_r(i) = a \) for all \(i \in \{1, \ldots, c\} \). Fix \(D_i \in |\mathcal{O}_Q(0, 1)| \), \(1 \leq i \leq c \), with \(D_i \neq D_h \) for all \(i \neq h \). Then there is \(E \in G'(a, b, r) \) such that \(E|D_i \) has splitting type \(a_1(i) \geq \cdots \geq a_r(i) \) for all \(i \).

Proof. Set \(T := D_1 \cup \cdots \cup D_c \). Let \(G \) be the vector on \(D \) such that \(G|D_i = \mathcal{O}_{D_i}(a_h(i)) \) for all \(i \). Fix a surjection \(\psi : \mathcal{O}_T^{\oplus(r+1)} \to G \) (it exists, because \(G \) is spanned and \(\dim(T) + \text{rank}(G) = r + 1 \)). Since \(b - c > 0 \), the proof of Lemma 2 works with \(T \) instead of \(D \). \(\square \)
Assume $a \geq 2$ and $b \geq 2$ and fix integers $a_1 \geq \cdots \geq a_r \geq 0$ such that $a_1 + \cdots + a_r = a + b$. Fix a smooth $T \in |\mathcal{O}_Q(1,1)|$. The proof of Proposition 2 shows the existence of $E \in G'(a,b,r)$ such that $E|T$ has splitting type a_1, \ldots, a_r.

Acknowledgements

The author was partially supported by MIUR and GNSAGA of INdAM (Italy).

References

