COMMON FIXED POINT THEOREMS FOR FOUR MAPPINGS IN INTUITIONISTIC FUZZY METRIC SPACES

Saurabh Manro¹, Shin Min Kang² §

¹School of Mathematics and Computer Applications
Thapar University
Patiala 147004, Punjab, INDIA

²Department of Mathematics and RINS
Gyeongsang National University
Jinju, 660-701, KOREA

Abstract: In this paper, we prove common fixed point theorems for four mappings by using pointwise R-weakly commuting and reciprocally continuous mappings satisfying contractive condition in intuitionistic fuzzy metric spaces.

AMS Subject Classification: 47H10, 54H25
Key Words: intuitionistic fuzzy metric spaces, reciprocally continuous mappings, pointwise R-weakly commuting mappings

1. Introduction

Atanassov [3] introduced and studied the concept of intuitionistic fuzzy sets as a generalization of fuzzy sets. In 2004, Park [7] defined the notion of intuitionistic fuzzy metric space with the help of continuous t-norms and continuous t-conorms. Recently, in 2006, Alaca et al. [2] using the idea of intuitionistic fuzzy sets, defined the notion of intuitionistic fuzzy metric space with the help of continuous t-norm and continuous t-conorms as a generalization of fuzzy metric space due to Kramosil and Michálek [5]. In 2006, Türkoğlu et al. [9]...
proved Jungck’s common fixed point theorem ([4]) in the setting of intuitionistic fuzzy metric spaces for commuting mappings. For more detail, one can refer to papers ([1], [6], [10], [11]).

In this paper, we prove a common fixed point theorem for four mappings by using pointwise R-weakly commuting and reciprocally continuous mappings satisfying contractive condition in intuitionistic fuzzy metric spaces.

2. Preliminaries

Schweizer and Sklar [8] defined the following notions:

Definition 2.1. A binary operation $\ast : [0, 1] \times [0, 1] \to [0, 1]$ is continuous t-norm if \ast satisfies the following conditions:

(i) \ast is commutative and associative;
(ii) \ast is continuous;
(iii) $a \ast 1 = a$ for all $a \in [0, 1]$;
(iv) $a \ast b \leq c \ast d$ whenever $a \leq c$ and $b \leq d$ for all $a, b, c, d \in [0, 1]$.

Definition 2.2. A binary operation $\diamond : [0, 1] \times [0, 1] \to [0, 1]$ is continuous t-conorm if \diamond satisfies the following conditions:

(i) \diamond is commutative and associative;
(ii) \diamond is continuous;
(iii) $a \diamond 0 = a$ for all $a \in [0, 1]$;
(iv) $a \diamond b \leq c \diamond d$ whenever $a \leq c$ and $b \leq d$ for all $a, b, c, d \in [0, 1]$.

Alaca et al. [2] defined the notion of intuitionistic fuzzy metric space as follows:

Definition 2.3. A 5-tuple $(X, M, N, \ast, \diamond)$ is said to be an intuitionistic fuzzy metric space if X is an arbitrary set, \ast is a continuous t-norm, \diamond is a continuous t-conorm and M, N are fuzzy sets on $X^2 \times [0, \infty)$ satisfying

(i) $M(x, y, t) + N(x, y, t) \leq 1$ for all $x, y \in X$ and $t > 0$;
(ii) $M(x, y, 0) = 0$ for all $x, y \in X$;
(iii) $M(x, y, t) = 1$ for all $x, y \in X$ and $t > 0$ if and only if $x = y$;
(iv) $M(x, y, t) = M(y, x, t)$ for all $x, y \in X$ and $t > 0$;
(v) $M(x, y, t) \ast M(y, z, s) \leq M(x, z, t + s)$ for all $x, y, z \in X$ and $s, t > 0$;
(vi) for all $x, y \in X$, $M(x, y, \cdot) : [0, \infty) \to [0, 1]$ is left continuous;
(vii) $\lim_{t \to \infty} M(x, y, t) = 1$ for all $x, y \in X$ and $t > 0$;
(viii) $N(x, y, 0) = 1$ for all $x, y \in X$;
(ix) $N(x, y, t) = 0$ for all $x, y \in X$ and $t > 0$ if and only if $x = y$;
(x) $N(x, y, t) = N(y, x, t)$ for all $x, y \in X$ and $t > 0$;
(xi) \(N(x, y, t) \diamond N(y, z, s) \geq N(x, z, t + s) \) for all \(x, y, z \in X \) and \(s, t > 0 \);
(xii) for all \(x, y \in X \), \(N(x, y, \cdot) : [0, \infty) \to [0, 1] \) is right continuous;
(xiii) \(\lim_{t \to \infty} N(x, y, t) = 0 \) for all \(x, y \in X \).

Then \((M, N)\) is called an \textit{intuitionistic fuzzy metric} on \(X \). The functions \(M(x, y, t) \) and \(N(x, y, t) \) denote the degree of nearness and the degree of non-nearness between \(x \) and \(y \) with respect to \(t \), respectively.

\textbf{Remark 2.4.} Every fuzzy metric space \((X, M, \ast)\) is an intuitionistic fuzzy metric space of the form \((X, M, 1 - M, \ast, \diamond)\) such that \(t \)-norm \(\ast \) and \(t \)-conorm \(\diamond \) are associated as \(x \diamond y = 1 - ((1 - x) \ast (1 - y)) \) for all \(x, y \in X \).

\textbf{Remark 2.5.} In an intuitionistic fuzzy metric space \((X, M, N, \ast, \diamond)\), \(M(x, y, \cdot) \) is non-decreasing and \(N(x, y, \cdot) \) is non-increasing for all \(x, y \in X \).

\textbf{Definition 2.6.} Let \((X, M, N, \ast, \diamond)\) be an intuitionistic fuzzy metric space. Then a sequence \(\{x_n\} \) in \(X \) is said to be

(i) \textit{convergent} to a point \(x \in X \) if
\[
\lim_{n \to \infty} M(x_n, x, t) = 1 \quad \text{and} \quad \lim_{n \to \infty} N(x_n, x, t) = 0
\]
for all \(t > 0 \),
(ii) \textit{Cauchy sequence} if
\[
\lim_{n \to \infty} M(x_{n+p}, x_n, t) = 1 \quad \text{and} \quad \lim_{n \to \infty} N(x_{n+p}, x_n, t) = 0
\]
for all \(t > 0 \) and \(p > 0 \).

\textbf{Definition 2.7.} An intuitionistic fuzzy metric space \((X, M, N, \ast, \diamond)\) is said to be \textit{complete} if and only if every Cauchy sequence in \(X \) is convergent.

Türkoğlu et al. \[10\] defined the following notions:

\textbf{Definition 2.8.} Let \(A \) and \(S \) be self-mappings of an intuitionistic fuzzy metric space \((X, M, N, \ast, \diamond)\). Then a pair \((A, S)\) is said to be \textit{commuting} if
\[
M(ASx, SAx, t) = 1 \quad \text{and} \quad N(ASx, SAx, t) = 0
\]
for all \(x \in X \) and \(t > 0 \).

\textbf{Definition 2.9.} Let \(A \) and \(S \) be self-mappings of an intuitionistic fuzzy metric space \((X, M, N, \ast, \diamond)\). Then a pair \((A, S)\) is said to be \textit{weakly commuting} if
\[
M(ASx, SAx, t) \geq M(Ax, Sx, t)
\]
and
\[
N(ASx, SAx, t) \leq N(Ax, Sx, t)
\]
for all \(x \in X \) and \(t > 0 \).
Definition 2.10. Let A and S be self-mappings of an intuitionistic fuzzy metric space $(X, M, N, *, \diamond)$. Then a pair (A, S) is said to be compatible if
\[
\lim_{n \to \infty} M(ASx_n, SAx_n, t) = 1 \quad \text{and} \quad \lim_{n \to \infty} N(ASx_n, SAx_n, t) = 0
\]
for all $t > 0$, whenever $\{x_n\}$ is a sequence in X such that $\lim_{n \to \infty} Ax_n = \lim_{n \to \infty} Sx_n = u$ for some $u \in X$.

Definition 2.11. ([9]) Let A and S be self-mappings of an intuitionistic fuzzy metric space $(X, M, N, *, \diamond)$. Then a pair (A, S) is said to be pointwise R-weakly commuting if given $x \in X$, there exist $R > 0$ such that
\[
M(ASx, SAx, t) \geq M(Ax, Sx, t/R)
\]
and
\[
N(ASx, SAx, t) \leq N(Ax, Sx, t/R)
\]
for all $t > 0$.

Clearly, every pair of weakly commuting mappings is pointwise R-weakly commuting with $R = 1$.

Definition 2.12. ([6]) Two self-mappings A and S of an intuitionistic fuzzy metric space $(X, M, N, *, \diamond)$ is said to be reciprocally continuous if
\[
ASu_n \to Az \quad \text{and} \quad SAu_n \to Sz,
\]
whenever $\{u_n\}$ is a sequence such that $Au_n \to z$ and $Su_n \to z$ for some $z \in X$ as $n \to \infty$.

If A and S are both continuous, then they are obviously reciprocally continuous, but converse is not true.

Lemma 2.13. ([2], [9]) Let $\{u_n\}$ is a sequence in an intuitionistic fuzzy metric space $(X, M, N, *, \diamond)$. If there exists a constant $k \in (0, 1)$ such that
\[
M(u_n, u_{n+1}, kt) \geq M(u_{n-1}, u_n, t)
\]
and
\[
N(u_n, u_{n+1}, kt) \leq N(u_{n-1}, u_n, t)
\]
for $n = 1, 2, 3, \ldots$, then $\{u_n\}$ is a Cauchy sequence in X.

Lemma 2.14. ([2], [9]) Let $(X, M, N, *, \diamond)$ be an intuitionistic fuzzy metric space. If there exists a constant $k \in (0, 1)$ such that
\[
M(x, y, kt) \geq M(x, y, t) \quad \text{and} \quad N(x, y, kt) \leq N(x, y, t)
\]
for all $x, y \in X$ and $t > 0$, then $x = y$.
3. Main Results

For our main theorem, we need the following lemma.

Lemma 3.1. Let \((X, M, N, \ast, \diamond)\) be a complete intuitionistic fuzzy metric space with \(t \ast t \geq t\) and \((1 - t) \diamond (1 - t) \leq (1 - t)\) for all \(t \in [0, 1]\). Further, let \(A, B, S\) and \(T\) be four self-mappings of \(X\) satisfying

(C1) \(A(X) \subset T(X)\) and \(B(X) \subset S(X)\),

(C2) there exists a constant \(k \in (0, 1)\) such that

\[
[1 + aM(Sx, Ty, kt)] \ast M(Ax, By, kt) \\
\geq a[M(Ax, Sx, kt) \ast M(By, Ty, kt) \ast M(By, Sx, kt)] \\
+ M(Ty, Sx, t) \ast M(Ax, Sx, t) \ast M(By, Ty, t) \\
\ast M(By, Sx, \alpha t) \ast M(Ax, Ty, (2 - \alpha)t)
\]

and

\[
[1 + aN(Sx, Ty, kt)] \diamond N(Ax, By, kt) \\
\leq a[N(Ax, Sx, kt) \diamond N(By, Ty, kt) \diamond N(By, Sx, kt)] \\
+ N(Ty, Sx, t) \diamond N(Ax, Sx, t) \diamond N(By, Ty, t) \\
\diamond N(By, Sx, \alpha t) \diamond N(Ax, Ty, (2 - \alpha)t)
\]

for all \(x, y \in X, a \geq 0, \alpha \in (0, 2)\) and \(t > 0\).

If the pairs \((A, S)\) and \((B, T)\) are pointwise \(R\)-weakly commuting, then one continuity of the mappings in compatible pair \((A, S)\) or \((B, T)\) implies their reciprocal continuity.

Proof. First, assume that \(A\) and \(S\) are compatible and \(S\) is continuous. We show that \(A\) and \(S\) are reciprocally continuous. Let \(\{u_n\}\) be a sequence such that \(Au_n \to z\) and \(Su_n \to z\) for some \(z \in X\) as \(n \to \infty\). Since \(S\) is continuous, we have \(SAu_n \to Sz\) and \(SSu_n \to Sz\) as \(n \to \infty\) and since \((A, S)\) is compatible, we have

\[
\lim_{n \to \infty} M(ASu_n, SAu_n, t) = 1 \quad \text{and} \quad \lim_{n \to \infty} N(ASu_n, SAu_n, t) = 0,
\]

which implies that

\[
\lim_{n \to \infty} M(ASu_n, Sz, t) = 1 \quad \text{and} \quad \lim_{n \to \infty} N(ASu_n, Sz, t) = 0
\]

for all \(t > 0\), that is \(ASu_n \to Sz\) as \(n \to \infty\). By (C1), for each \(n\), there exists \(v_n \in X\) such that \(ASu_n = Tv_n\). Thus, we have \(SSu_n \to Sz, SAu_n \to Sz, ASu_n \to Sz\) and \(Tv_n \to Sz\) as \(n \to \infty\), whenever \(ASu_n = Tv_n\).
Now we claim that $Bv_n \to Sz$ as $n \to \infty$. By (C2), take $\alpha = 1$,

$$[1 + aM(SSu_n, Tv_n, kt)] \ast M(ASu_n, Bv_n, kt)$$

$$\geq a[M(ASu_n, SSu_n, kt) \ast M(Bv_n, Tv_n, kt) \ast M(Bv_n, SSu_n, kt)]$$

$$+ M(Tv_n, SSu_n, t) \ast M(ASu_n, SSu_n, t) \ast M(Bv_n, Tv_n, t)$$

$$\ast M(Bv_n, SSu_n, t) \ast M(ASu_n, Tv_n, t)$$

and

$$[1 + aN(SSu_n, Tv_n, kt)] \circ N(ASu_n, Bv_n, kt)$$

$$\leq a[N(ASu_n, SSu_n, kt) \circ N(Bv_n, Tv_n, kt) \circ N(Bv_n, SSu_n, kt)]$$

$$+ N(Tv_n, SSu_n, t) \circ N(ASu_n, SSu_n, t) \circ N(Bv_n, Tv_n, t)$$

$$\circ N(Bv_n, SSu_n, t) \circ N(ASu_n, Tv_n, t).$$

Taking $n \to \infty$,

$$[1 + aM(Sz, Sz, kt)] \ast M(Sz, Bv_n, kt)$$

$$\geq a[M(Sz, Sz, kt) \ast M(Bv_n, Sz, kt) \ast M(Bv_n, Sz, kt)]$$

$$+ M(Sz, Sz, t) \ast M(Sz, Sz, t) \ast M(Bv_n, Sz, t)$$

$$\ast M(Bv_n, Sz, t) \ast M(Sz, Sz, t)$$

and

$$[1 + aN(Sz, Sz, kt)] \circ N(Sz, Bv_n, kt)$$

$$\leq a[N(Sz, Sz, kt) \circ N(Bv_n, Sz, kt) \circ N(Bv_n, Sz, kt)]$$

$$+ N(Sz, Sz, t) \circ N(Sz, Sz, t) \circ N(Bv_n, Sz, t)$$

$$\circ N(Bv_n, Sz, t) \circ N(Sz, Sz, t),$$

which implies that

$$M(Sz, Bv_n, kt) \geq M(Bv_n, Sz, t)$$

and

$$N(Sz, Bv_n, kt) \geq N(Bv_n, Sz, t).$$

By Lemma 2.14, we have $Bv_n \to Sz$ as $n \to \infty$. Again by (C2), take $\alpha = 1$,

$$[1 + aM(Sz, Tv_n, kt)] \ast M(Az, Bv_n, kt)$$

$$\geq a[M(Az, Sz, kt) \ast M(Bv_n, Tv_n, kt) \ast M(Bv_n, Sz, kt)]$$

$$+ M(Tv_n, Sz, t) \ast M(Az, Sz, t) \ast M(Bv_n, Tv_n, t)$$

$$\ast M(Bv_n, Sz, t) \ast M(Az, Tv_n, t)$$
and

\[[1 + aN(Sz, Tv_n, kt)] \odot N(Az, Bv_n, kt) \leq a[N(Az, Sz, kt) \odot N(Bv_n, Tv_n, kt) \odot N(Bv_n, Sz, kt)] \]

\[+ N(Tv_n, Sz, t) \odot N(Az, Sz, t) \odot N(Bv_n, Tv_n, t) \]

\[\odot N(Bv_n, Sz, t) \odot N(Az, Tv_n, t). \]

Taking \(n \to \infty \),

\[[1 + aM(Sz, Sz, kt)] \ast M(Az, Sz, kt) \geq a[M(Az, Sz, kt) \ast M(Sz, Sz, kt) \ast M(Sz, Sz, kt)] \]

\[+ M(Sz, Sz, t) \ast M(Az, Sz, t) \ast M(Sz, Sz, t) \]

\[\ast M(Sz, Sz, t) \ast M(Az, Tv_n, t) \]

and

\[[1 + aN(Sz, Sz, kt)] \odot N(Az, Sz, kt) \leq a[N(Az, Sz, kt) \odot N(Sz, Sz, kt) \odot N(Sz, Sz, kt)] \]

\[+ N(Sz, Sz, t) \odot N(Az, Sz, t) \odot N(Sz, Sz, t) \]

\[\odot N(Sz, Sz, t) \odot N(Az, Sz, t), \]

which implies that

\[M(Az, Sz, kt) \geq M(Az, Sz, t) \quad \text{and} \quad N(Az, Sz, kt) \geq N(Az, Sz, t). \]

By Lemma 2.14, \(Az = Sz \). Therefore, \(SAu_n \to Sz \) and \(ASu_n \to Sz = Az \) as \(n \to \infty \). Hence, \(A \) and \(S \) are reciprocally continuous on \(X \).

Similarly, if the pair \((B,T)\) is compatible and \(T \) is continuous, then the proof is similar. This completes the proof. \(\square \)

Now, we prove main theorem.

Theorem 3.2. Let \((X, M, N, *, \odot)\) be a complete intuitionistic fuzzy metric space with \(t \ast t \geq t \) and \((1 - t) \odot (1 - t) \leq (1 - t) \) for all \(t \in [0,1] \). Further, let \(A, B, S \) and \(T \) be four self-mappings of \(X \) satisfying \((C1) \) and \((C2) \). If the pairs \((A,S)\) and \((B,T)\) are pointwise R-weakly commuting and one of the mappings in compatible pair \((A,S)\) or \((B,T)\) is continuous, then \(A, B, S \) and \(T \) have a unique common fixed point.

Proof. By \((C1)\) since \(A(X) \subset T(X) \), for any point \(x_0 \in X \), there exists a point \(x_1 \in X \) such that \(Ax_0 = Tx_1 \). Since \(B(X) \subset S(X) \), for this point \(x_1 \in X \), we can choose a point \(x_2 \) in \(X \) such that \(Bx_1 = Sx_2 \) and so on. Inductively, we can define a sequence \(\{y_n\} \) in \(X \) such that for \(n = 0, 1, 2, \ldots \)

\[y_{2n} = Ax_{2n} = Tx_{2n+1} \quad \text{and} \quad y_{2n+1} = Bx_{2n+1} = Sx_{2n+2}. \]
By (C2), for all \(t > 0 \) and \(\alpha = 1 - q \) with \(q \in (0, 1) \), we have

\[
\begin{align*}
[1 + aM(y_{2n}, y_{2n+1}, kt) &\ast M(y_{2n+1}, y_{2n+2}, kt) \\
&\geq a[M(y_{2n+2}, y_{2n+1}, kt) \ast M(y_{2n+1}, y_{2n}, kt) \\
&\ast M(y_{2n+1}, y_{2n+1}, (1 - q)t) \ast M(y_{2n+2}, y_{2n}, (1 + q)t) \\
&\geq a[M(y_{2n+2}, y_{2n+1}, kt) \ast M(y_{2n+1}, y_{2n}, kt) \\
&\ast M(y_{2n+1}, y_{2n+1}, t) \ast M(y_{2n+2}, y_{2n+1}, t) \ast M(y_{2n}, y_{2n+1}, qt)
\end{align*}
\]

and

\[
\begin{align*}
[1 + aN(y_{2n}, y_{2n+1}, qt) &\circ N(y_{2n+1}, y_{2n+2}, qt) \\
&\leq a[N(y_{2n+2}, y_{2n+1}, qt) \circ N(y_{2n+1}, y_{2n}, qt) \circ N(y_{2n+1}, y_{2n+1}, qt) \\
&\circ N(y_{2n+1}, y_{2n+1}, (1 - q)t) \circ N(y_{2n+2}, y_{2n}, (1 + q)t) \\
&\leq a[M(y_{2n+2}, y_{2n+1}, qt) \circ M(y_{2n+1}, y_{2n}, qt) \\
&\circ M(y_{2n+1}, y_{2n+1}, t) \circ M(y_{2n+2}, y_{2n+1}, t) \circ M(y_{2n}, y_{2n+1}, qt)
\end{align*}
\]

Thus it follows that

\[
M(y_{2n+1}, y_{2n+2}, qt) \geq M(y_{2n}, y_{2n+1}, t) \ast M(y_{2n+1}, y_{2n+2}, t) \\
\ast M(y_{2n}, y_{2n+1}, qt)
\] (3.1)

and

\[
N(y_{2n+1}, y_{2n+2}, qt) \leq N(y_{2n}, y_{2n+1}, t) \circ N(y_{2n+1}, y_{2n+2}, t) \\
\circ N(y_{2n}, y_{2n+1}, qt)
\] (3.2)

Since the \(t \)-norm and the \(t \)-conorm are continuous and \(M(x, y, \cdot) \) is left continuous and \(N(x, y, \cdot) \) is right continuous. Letting \(q \to 1 \) in (3.1) and (3.2), we have

\[
M(y_{2n+1}, y_{2n+2}, kt) \geq M(y_{2n}, y_{2n+1}, t) \ast M(y_{2n+1}, y_{2n+2}, t)
\]

and

\[
N(y_{2n+1}, y_{2n+2}, kt) \leq N(y_{2n}, y_{2n+1}, t) \circ N(y_{2n+1}, y_{2n+2}, t)
\]

Similarly, we also have

\[
M(y_{2n+2}, y_{2n+3}, kt) \geq M(y_{2n+1}, y_{2n+2}, t) \ast M(y_{2n+2}, y_{2n+3}, t)
\]

and

\[
N(y_{2n+2}, y_{2n+3}, kt) \leq N(y_{2n+1}, y_{2n+2}, t) \circ N(y_{2n+2}, y_{2n+3}, t).
\]
In general, for \(m = 1, 2, 3, \ldots \)

\[
M(y_{m+1}, y_{m+2}, kt) \geq M(y_{m}, y_{m+1}, t) \ast M(y_{m+1}, y_{m+2}, t)
\]

and

\[
N(y_{m+1}, y_{m+2}, kt) \leq N(y_{m}, y_{m+1}, t) \diamond N(y_{m+1}, y_{m+3}, t).
\]

Consequently, it follows that for \(m = 1, 2, 3, \ldots \) and \(p = 1, 2, 3, \ldots \)

\[
M(y_{m+1}, y_{m+2}, kt) \geq M(y_{m}, y_{m+1}, t) \ast M(y_{m+1}, y_{m+2}, t/k^p)
\]

and

\[
N(y_{m+1}, y_{m+2}, kt) \leq N(y_{m}, y_{m+1}, t) \diamond N(y_{m+1}, y_{m+3}, t/k^p).
\]

As \(p \to \infty \),

\[
M(y_{m+1}, y_{m+2}, kt) \geq M(y_{m}, y_{m+1}, t)
\]

and

\[
N(y_{m+1}, y_{m+2}, kt) \leq N(y_{m}, y_{m+1}, t).
\]

Hence by Lemma 2.13, \(\{y_n\} \) is a Cauchy sequence in \(X \). Since \(X \) is complete, \(\{y_n\} \) converges to \(z \in X \). Its subsequences \(\{Ax_{2n}\} \), \(\{Tx_{2n+1}\} \), \(\{Bx_{2n+1}\} \) and \(\{Sx_{2n+2}\} \) also converges to \(z \).

Now, suppose that \((A, S)\) is a compatible pair and \(S \) is continuous. Then by Lemma 3.1, \(A \) and \(S \) are reciprocally continuous, thus \(SAx_n \to Sz \) and \(ASx_n \to Az \) as \(n \to \infty \). As \((A, S)\) is a compatible pair, we have

\[
\lim_{n \to \infty} M(ASx_n, SAx_n, t) = 1 \quad \text{and} \quad \lim_{n \to \infty} N(ASx_n, SAx_n, t) = 0,
\]

that is,

\[
M(Az, Sz, t) = 1 \quad \text{and} \quad N(Az, Sz, t) = 0.
\]

Hence \(Az = Sz \). Since \(A(X) \subset T(X) \), there exists a point \(p \in X \) such that \(Az = Tp = Sz \). By \((C2)\), take \(\alpha = 1 \),

\[
[1 + aM(Sz, Tp, kt)] \ast M(Az, Bp, kt) \\
\geq a[M(Az, Sz, kt) \ast M(Bp, Tp, kt) \ast M(Bp, Sz, kt)] \\
+ M(Tp, Sz, t) \ast M(Az, Sz, t) \ast M(Bp, Tp, t) \\
\ast M(Bp, Sz, t) \ast M(Az, Tp, t)
\]

and

\[
[1 + aN(Sz, Tp, kt)] \diamond N(Az, Bp, kt) \\
\leq a[N(Az, Sz, kt) \diamond N(Bp, Tp, kt) \diamond N(Bp, Sz, kt)] \\
+ N(Tp, Sz, t) \diamond N(Az, Sz, t) \diamond N(Bp, Tp, t) \\
\diamond N(Bp, Sz, t) \diamond N(Az, Tp, t),
\]
which implies that

\[M(Az, Bp, kt) \leq M(Az, Bp, t) \quad \text{and} \quad N(Az, Bp, kt) \geq N(Az, Bp, t) \]

for all \(t > 0 \). By Lemma 2.14, we have \(Az = Bp \). Thus, \(Az = Bp = Sz = Tp \). Since \(A \) and \(S \) are pointwise \(R \)-weakly commuting mappings, there exists \(R > 0 \) such that

\[M(ASz, SAz, t) \geq M(Az, Sz, t/R) = 1 \]

and

\[N(ASz, SAz, t) \leq N(Az, Sz, t/R) = 0. \]

Therefore, \(ASz = SAz \) and \(AAz = ASz = SAz = SSz \).

Similarly, \(B \) and \(T \) are pointwise \(R \)-weakly commuting mappings, we have \(BBp = BTp = TBp = TTp \). Again by \((C2)\), take \(\alpha = 1 \),

\[
[1 + aM(SAz, Tp, kt)] \ast M(AAz, Bp, kt) \\
\geq a[M(AAz, SAz, kt) \ast M(Bp, Tp, kt) \ast M(Bp, SAz, kt)] \\
+ M(Tp, SAz, t) \ast M(AAz, SAz, t) \ast M(Bp, Tp, t) \\
\ast M(Bp, SAz, t) \ast M(AAz, Tp, t)
\]

and

\[
[1 + aN(SAz, Tp, kt)] \odot N(AAz, Bp, kt) \\
\leq a[N(AAz, SAz, kt) \odot N(Bp, Tp, kt) \odot N(Bp, SAz, kt)] \\
+ N(Tp, SAz, t) \odot N(AAz, SAz, t) \odot N(Bp, Tp, t) \\
\odot N(Bp, SAz, t) \odot N(AAz, Tp, t),
\]

which implies that

\[M(AAz, Az, kt) \leq M(AAz, Az, t) \]

and

\[N(AAz, Az, kt) \geq N(AAz, Az, t). \]

Hence by Lemma 2.14, \(AAz = Az = SAz \). Hence \(Az \) is common fixed point of \(A \) and \(S \). Similarly by \((C2)\), \(Bp = Az \) is a common fixed point of \(B \) and \(T \). Hence, \(Az \) is a common fixed point of \(A, B, S \) and \(T \).

Finally, suppose that \(Ap \neq Az \) is another common fixed point of \(A, B, S \) and \(T \). Again by \((C2)\), take \(\alpha = 1 \),

\[
[1 + aM(SAz, TAp, kt)] \ast M(AAz, BAp, kt) \\
\geq a[M(AAz, SAz, kt) \ast M(BAp, TAp, kt) \ast M(BAp, SAz, kt)] \\
+ M(TAp, SAz, t) \ast M(AAz, SAz, t) \ast M(BAp, TAp, t) \\
\ast M(BAp, SAz, t) \ast M(AAz, TAp, t)
\]
and
\[
[1 + aN(SAz, TAp, kt)] \odot N(AAz, BAp, kt)
\]
\[
\leq a[N(AAz, SAz, kt) \odot N(Bp, TAp, kt) \odot N(BAp, SAz, kt)]
\]
\[
+ N(TAp, SAz, t) \odot N(AAz, SAz, t) \odot N(BAp, TAp, t)
\]
\[
\odot N(BAp, SAz, t) \odot N(AAz, TAp, t),
\]
which implies that
\[
M(Az, Ap, kt) \geq M(Az, Ap, t) \quad \text{and} \quad N(Az, Ap, kt) \leq N(Az, Ap, t).
\]
Hence by using Lemma 2.14, \(Az = Ap\). Thus uniqueness follows. This completes the proof. \(\square\)

If \(S\) and \(T\) are identity mappings in Theorem 3.2, we get following result.

Corollary 3.3. Let \((X, M, N, *, \odot)\) be a complete intuitionistic fuzzy metric space with \(t \ast t \geq t\) and \((1 - t) \ast (1 - t) \leq (1 - t)\) for all \(t \in [0, 1]\). Further, let \(A\) and \(B\) be reciprocally continuous mappings on \(X\) satisfying
\((C3)\) there exists a constant \(k \in (0, 1)\) such that
\[
[1 + aM(x, y, kt)] \ast M(Ax, By, kt)
\]
\[
\geq a[M(Ax, x, kt) \ast M(By, y, kt) \ast M(By, x, kt)]
\]
\[
+ M(y, x, t) \ast M(Ax, x, t) \ast M(By, y, t)
\]
\[
\ast M(By, x, \alpha t) \ast M(Ax, y, (2 - \alpha)t)
\]
and
\[
[1 + aN(x, y, kt)] \odot N(Ax, By, kt)
\]
\[
\leq a[N(Ax, x, kt) \odot N(By, y, kt) \odot N(By, x, kt)]
\]
\[
+ N(y, x, t) \odot N(Ax, x, t) \odot N(By, y, t)
\]
\[
\odot N(By, x, \alpha t) \odot N(Ax, y, (2 - \alpha)t)
\]
for all \(x, y \in X\), \(a \geq 0\), \(\alpha \in (0, 2)\) and \(t > 0\).

Then \(A\) and \(B\) has a unique common fixed point.

References

