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Abstract: Let X ⊂ Pr be an integral and non-degenerate variety. For each
P ∈ Pr the X-rank rX(P ) is the minimal cardinality of a set of X whose linear
span contains P . For each O ∈ Xreg let α(X,O) be the maximal integer rX(P )
for some P in the tangent space of X at O. Let α(X)gen be the integer α(X,O)
for a general O ∈ X. Let β(X) be the maximum of all α(X,O), O ∈ Xreg.
The integer α(X)gen is useful to get an upper bound for the integers rX(P ),
P ∈ Pr. We prove that α(X)gen = β(X) when X is the degree d ≥ 4 Veronese
embedding of a cubic hypersurface.
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1. Introduction

Let X ⊂ Pr be an integral and non-degenerate variety. For each O ∈ Xreg let
TOX ⊂ Pr be the Zariski tangent space of X at O (it is a linear subspace of
dimension dim(X)). Let τ(X) ⊆ Pr denote the closure of the union of all TOX,
O ∈ Xreg. The variety τ(X) is the tangent developable of X. For each P ∈ Pr

the X-rank rX(P ) of P is the minimal cardinality of a subset S ⊂ X such that
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P ∈ 〈S〉. For each O ∈ Xreg let α(X,O) be the the maximum of all integers
rX(P ) for some P ∈ TOX. The function α(X,O) is constant in a non-empty
open subset of Xreg and we will call the generic tangent rank of X this value.
Let αgen(X) denote the generic tangent rank of X. As essentially shown in
[1] and [2] we have rX(P ) ≤ kαgen(X) for all P ∈ Pr, where k is the minimal
integer such that the k-secant variety of X fill in Pr. This is our motivation
for the study this concept in specific examples. In summary: we fix a general
O ∈ Xreg, but then we look at the worst points of TOX, i.e. the ones with higher
X-rank. The integer α(X)gen is at least the X-rank of the general point of the
tangent developable of X, but it may be higher in some cases. Let β(X) be the
maximum of all integers α(X,O), O ∈ Xreg. If X is smooth, then β(X) is the
maximal X-rank of a point of the tangent developable of X. The game is now
to handle low cardinality sets A ⊂ X such that h1(Iv∪A(1)) > h1(I{O}∪A(1)),
where O is a general point of X and v is an arbitrary degree two connected
subscheme of X with vred = {O} (a tangent vector of X at its smooth point O).
This is rather easy because the zero-dimensional scheme v∪A is almost reduced:
it has a unique non-reduced connected component and this component has only
degree two. Moreover, it is sufficient to check general O. It is easy to do this
game for several embeddings of several surfaces (Hirzebruch surfaces, the plane
blown up in a few points and so on). Here we study cubic hypersurfaces and
prove the following result.

Theorem 1. Let X ⊂ Pn, n ≥ 3, be a smooth cubic hypersurface. Fix an
integer d ≥ 4 and see X embedded in Pr, r :=

(

d+n
3

)

−
(

d+n−3
3

)

, by the complete
linear system |OX(d)|. Then α(X)gen = β(X) = 3d− 2 for all O ∈ X.

We work over an algebraically closed base field with characteristic zero.

2. The Proofs

For any projective variety X, any effective Cartier divisor D of X and any
closed subscheme Z ⊂ X let ResD(Z) be the closed subscheme of X with
IZ : ID as its ideal sheaf. We have ResD(Z) ⊆ Z. If Z is zero-dimensional,
then deg(Z) = deg(Z ∩D) + deg(ResD(Z)). For each line bundle L on X we
have an exact sequence of coherent sheaves

0 → IResD(Z) ⊗ L → IZ ⊗L → IZ∩D,D ⊗ L|D → 0 (1)

(usually called the residual exact sequence).
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Lemma 1. Let v ⊂ P3 be a connected degree two zero-dimensional scheme.
Set {O} := vred. Let E ⊂ P3 be a finite subset such that ♯(E) ≤ 3d − 3,
h1(I{O}∪E(d)) = 0 and h1(Iv∪E(d)) > 0. Then either there is a line J ⊂ P3

such that v ⊂ J and deg(J ∩ (v∪E)) ≥ d+2 or there is a reduced conic T such
that v ⊂ T and deg(T ∩ (v ∪ E)) ≥ 2d+ 2.

Proof. Set F0 := v ∪E. Let H1 ⊂ P3 be a plane such that a1 := deg(H1 ∩
F0) is maximal and set F1 := ResH1

(F0). Define recursively for all integers
i ≥ 2 the plane Hi, the integer ai and the scheme Fi in the following way.
Let Hi be a plane such that ai := deg(Hi ∩ Fi−1) is maximal and set Fi :=
ResHi

(Fi−1). Since Fi ⊆ Fi−1 for all i, the sequence {ai}i≥1 is non-increasing.
Since h0(OP3(1)) = 4, if ai ≤ 2, then Fi = ∅. Since

∑

i≥1 deg(v ∪ E) ≤ 3d − 1,
we get ad+1 = 0 and Fd+1 = ∅. For all i ≥ 1 we have the residual exact sequence

0 → IFi
(d− i) → IFi−1

(d− i+ 1) → IHi∩Fi−1,Hi
(d− i+ 1) → 0 (2)

Since h1(Iv∪E(d)) > 0, (3) gives the existence of an integer i ≥ 1 such that
h1(Hi,IHi∩Fi−1,Hi

(d − i + 1)) > 0. Call e the minimal such an integer. Since
Fd+1 = ∅, we have e ≤ d.

(a) Assume e = 1. Since deg(v ∪ E) ≤ 3d − 1, either there is an integer
i ∈ {1, 2} and a degree i curve C ⊂ H1 such that deg(C ∩ (v∪E)) ≥ id+2 ([6],
Remarques at page 116). Since h0(C,OC (d)) = id+1, we get h1(IC∩(v∪E)(d)) >
0. Since h1(I{O}∪E(d)) = 0, we get v ⊂ C. Assume i = 2 and that there is no
line J ⊂ H1 with deg(J ∩ (v ⊂ E)) ≥ d+ 2. Since E is a finite set, we get that
C is reduced. Hence Lemma 1 is true in this case.

(b) Assume e ≥ 2. Since h1(Hi,IHi∩Fi−1,Hi
(d − i + 1)) > 0, we have ae ≥

d−i+3 ([5], Lemma 34). Since ai ≥ ae for all i ≥ e, we get e(d−e+3) ≥ 3d−1.
Set ψ(t) = t(d+3− t). Since the function ψ(t) is increasing if t ≤ (d+3)/2 and
decreasing t > (d + 3)/2 and ψ(3) = ψ(d) = 3d, we get e = 2. Since a1 ≥ a2,
a1 + a2 ≤ 3d − 1, we get a2 ≤ 2(d− 1) + 1. Hence there is a line L ⊂ H2 such
that deg(L ∩ F1) ≥ d + 1. If deg(L ∩ (v ∪ E)) ≥ d+ 2, then we conclude as in
step (a). Hence we may assume deg(L ∩ (v ∪ E)) = d + 1. Set G0 := F0. Let
M1 ⊂ P3 be a plane such that b1 := deg(M1∩F0) is maximal among the planes
containing L and set G1 := ResM1

(G0). Define recursively for all integers i ≥ 2
the plane Mi, the integer bi and the scheme Gi in the following way. Let Mi be
a plane such that bi := deg(Mi ∩Gi−1) is maximal and set Gi := ResMi

(Gi−1).
We have bi ≥ bi+1 for all i ≥ 2. Since h0(OP3(1)) = 4, we have b1 ≥ d+ 2 and
if bi ≤ 2, then Gi = ∅. Since

∑

i≥1 bi = deg(v ∪E) ≤ 3d− 1, we get bd = 0 and
Gd = ∅. For all i ≥ 1 we have the residual exact sequence

0 → IGi
(d− i) → IGi−1

(d− i+ 1) → IMi∩Gi−1,Hi
(d− i+ 1) → 0 (3)



364 E. Ballico

Since h1(Iv∪E(d)) > 0, (3) gives the existence of an integer i ≥ 1 such that
h1(Mi,IMi∩Gi−1,Hi

(d− i+1)) > 0. Call c the minimal such an integer. If c = 1
we conclude as in step (a). Since b1 ≥ d+2, as above we exclude the case c > 2.
Now assume c = 2. Since b1 ≥ d+ 2, we have b2 ≤ 2(d− 1) + 1. Hence there is
a line R ⊂M2 such that deg(R ∩G1) ≥ d+ 1. If deg(R ∩ F0) ≥ d+ 2, then we
are done as in step (a). Assume deg(R∩F0) = d+1. We have R 6= L, because
ResM1

(E) ∩ L = ∅. Since deg((R ∪ L) ∩ F0) = 2d + 2, we are done as in step
(a) if R ∩ L 6= ∅. Assume R ∩ L = ∅. Let Q ⊂ P3 be a general quadric surface
containing R ∪ L. Since deg(ResQ(F0)) ≤ 3d − 1 − 2d − 2 ≤ (d − 2) + 1, we
have h1(IResQ(F0)

(d − 2) = 0. Since R ∪ L is the scheme-theoretic base locus

of |IL∪R(2)|, Q is general and F0 is curvilinear, we get Q ∩ F0 = (R ∪ L) ∩ F0

as schemes. Therefore h1(Q,IQ∩F0
(d)) = 0. The residual exact sequence

0 → IResQ(F0)
(d− 2) → IF0

(d) → IQ∩F0,Q(d) → 0

gives a contradiction.

Lemma 2. Fix an integer d ≥ 4. LetX ⊂ P3 be a smooth degree 3 surface.
Let v ⊂ X be a degree 2 connected subscheme of X. Set O := vred. Let ρ be
the minimal cardinality of a finite subset A of X such that h1(Iv∪A(d)) >
h1(I{O}∪A(d)).

(i) If there is a line L ⊂ X such that v ⊂ L, then ρ = d.

(ii) If v is not contained in a line of X, but v is contained in a reduced conic
D ⊂ X, then ρ = 2d.

(iii) If v is contained neither in a line L ⊂ X nor in a reduced conic D ⊂ X,
then ρ = 3d− 2.

Proof. Since h1(Iv(d)) = 0, the minimality of the integer ρ gives
h1(I{O}∪A(d)) = 0 and h1(Iv∪A(d)) = 1. Take any A ⊂ X evincing ρ. Since
X ⊂ P3 we have v∪A ⊂ P3 and h1(P3,Iv∪A(d)) > 0. Either deg(v∪A) = ρ+2
(case O /∈ A) or deg(v∪A) = ρ+1 (case O ∈ A). Let Θ be the set of all smooth
conics contained in X. Let C ⊂ X be any smooth conic. Since ωX

∼= OX(−1),
the adjunction formula −2 = 2pa(C)− 2 = ωX · C + C2 gives that the normal
bundle OC(C) of C in X has degree zero. Since C ∼= P1, we get h1(OC(C)) = 0
and h0(OC(C)) = 1. Therefore Θ is smooth and of dimension 1 and the union
of all C ∈ Θ coves a non-empty open subset of X. Since a flat limit of a family
of C ∈ Θ must be a conic, we get that for each P ∈ X \ Γ the set ΘP of all
C ∈ Θ containing P is finite and non-empty. There are only finitely line bun-
dles OX(C), C ∈ Θ, up to isomorphisms. If OX(C) ∼= OX(C ′) and C ∩C ′ 6= ∅,
then C = C ′. Therefore for each P ∈ X the set ΘP is finite.
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(i) Assume v ⊂ L for some line L. For each B ⊂ L \ {O} we have
h1(Iv∪B(d)) = 0 if ♯(B) ≤ b − 1 and h1(Iv∪B(d)) = 1 + h1(I{O}∪B(d)) if
♯(B) ≥ d. Hence ρ ≤ d. Fix any E ⊂ P3 such that ♯(E) ≤ d − 1. Since
deg(v ∪E) ≤ d+ 1, we have h1(P3,Iv∪E(d)) = 0. Hence ρ ≥ d. Assume ρ < d.
Since ρ+2 ≤ d+1, [5], Lemma 34, gives h1(P3,Iv∪A(d)) = 0, a contradiction.

(ii) Assume v * L for any line L, but that O is contained in two different
lines, L and R. Since L and R are not tangent at O and X is a smooth surface,
we have v ⊂ L∪R. Since h0(L∪R,OL∪R(d)) = 2d+1 and deg(v) = 2, we have
ρ ≤ 2d. Assume ρ < 2d. Since deg(v ∪A) ≤ 2d+ 1, there is a line J ⊂ P3 such
that ♯(J ∩ (v ∪ A) ≥ d + 2. Since v ∪ A ⊂ X and d + 2 > 3, Bezout theorem
gives J ⊂ X. As in [4], Lemma 5.1, we also get h1(Iv∪A(d)) = h1(IJ∩(v∪A)(d)).
Since h1(I{O}∪A(d)) = 0, we get v ⊂ J , a contradiction.

(iii) Assume v * L for any line L, but the existence of C ∈ Θ such that
v ⊂ C. For each set B ⊂ C \ {O}) with ♯(B) = 2d we have h1(C,Iv∪B(d)) > 0.
Hence ρ ≤ 2d. Assume ρ < 2d. Since deg(v∪A) ≤ 2d+1, there is a line J ⊂ P3

such that ♯(J ∩ (v ∪ A) ≥ d+ 2. Since v ∪A ⊂ X and d+ 2 > 3, Bezout gives
J ⊂ X. As in step (ii) we get a contradiction.

(iv) Assume that v is not as in one of the cases (i), (ii), (iii), i.e. assume
that v is neither contained in a line nor in a reduced conic. Let H ⊂ P3 be a
general hyperplane containing the line 〈v〉. Set C := X ∩H. Bertini’s theorem
implies that C is smooth outside 〈v〉∩X. Since 〈v〉 * X by our first assumption
on v we have deg(〈v〉 ∩ X) = 3 < deg(v) + 2. Hence C is smooth outside O.
Since H is general, we have H 6= TOX. Hence C is smooth at O. Hence C
is smooth. Since C is connected, C is a smooth elliptic curve. Since v is a
Cartier divisor of C. In this case OC(d)(−v) is a degree 3d−2 line bundle on C
which is very ample. Hence there is E ∈ |OC(3d − 2)| which is reduced. Since
h1(C,OC (d)(−v − E)) = h1(OC) > 0, we get ρ ≤ 3d− 2.

Assume ρ ≤ 3d − 3. Hence deg(v ∪A) ≤ 3d− 1. By Lemma 1 either there
is a line J ⊂ P3 such that deg(J ∩ (v ∪ A)) ∩ d+ 2 or there is a reduced conic
T ⊂ P3 such that deg(T ∩ (v ∪A)) ≥ 2d+2. Since 2d+2 > 6, Bezout theorem
gives that the line or the conic are contained in X. Call J ′ the line J or the
conic T . Since h1(IJ ′∩(v∪A)(d)) > 0 and h1(I{O}∪A(d)) = 0, we get v ⊂ J ′, a
contradiction.

Proposition 1. Fix an integer d ≥ 4. Let X ⊂ P3 be a smooth degree 3
surface. Let φ : X → Pr, r =

(

d+3
3

)

−
(

d
3

)

, be the embedding associated to the
linear system |OX(d)|. Fix P ∈ τ(φ(X)) \ φ(X) and let v ⊂ X the only degree
two connected zero-dimensional scheme such that P ∈ 〈φ(v)〉. Set {O} := vred
and ρ := rφ(X)(P ).
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(i) If there is a line L ⊂ X such that v ⊂ L, then ρ = d.

(ii) If v is not contained in a line of X, but v is contained in a reduced conic
D ⊂ X, then ρ = 2d.

(iii) If v is contained neither in a line L ⊂ X nor in a reduced conic D ⊂ X,
then ρ = 3d− 2.

Proof. Fix A ⊂ X such that φ(A) evinces rφ(X)(P ). Since P /∈ φ(X), P
has scheme rank 2. Since d ≥ 4, each degree 3 zero-dimensional subscheme of
φ(X) is linearly independent. Hence deg(L ∩ φ(X)) ≤ 2 for each line L ⊂ Pr.
Therefore v is unique. The same observation gives ρ > 1. Since A is reduced,v 6=
A. Hence h1(X,Iv∪A(d)) = 0 ([3], Lemma 1), i.e. h1(P3,Iv∪A(d)) > 0. Lemma
1 gives that in each case ρ is at least as claimed in cases (ii), (iii) and (iii).
Assume that v is contained in a degree i reduced and connected curve D,
i.e. either in a line or in a reduced conic. We have dim(〈φ(D)〉) = id and
P ∈ 〈φ(D)〉. Hence it is sufficient to notice that the proof of [7], Proposition
4.1, works verbatim for a connected curve, not just an irreducible one. Now
take v as in case (iv) and let H be a general plane containing 〈v〉. We saw
that the curve C := X ∩H is a smooth curve. Hence φ(C) is a linearly normal
elliptic curve of degree 3d. Apply, for instance, [5], Theorem 28.

Proof of Theorem 1. Let νd : Pn → PN , be the order d Veronese embedding.
The case n = 3 is true by Proposition 1. Hence we may assume n ≥ 4 and
that Theorem 1 is true for the smooth cubic hypersurfaces of Pn−1. We are
computing rank with respect to the variety νd(X). Fix O ∈ X. Let v ⊆ TOX∩X
be any degree 2 connected zero-dimensional scheme. If X contains the line 〈v〉,
then rX(P ) = 1 for all P ∈ 〈v〉. Hence to get an upper bound for the integer
α(X,O) it is sufficient to test the schemes v such that 〈v〉 * X. Let H ⊂ Pn

be a general hyperplane containing 〈v〉. Set Y := X ∩ H (scheme-theoretic
intersection). Since 〈v〉 * X, the scheme 〈v〉 ∩ X is a degree 3 scheme with
a connected component of degree at least 2. Since there are infinitely many
hyperplanes containing 〈v〉, while 〈v〉 ∩ X contains finitely many points, the
generality of H means that Y is smooth at each of these points. Since these
points are the base points of |Iv(1)|, Bertini’s theorem gives that Y is a smooth
hypersurface. Taking φd|Y as the embedding of Y the inductive assumption
gives α(Y ) = β(Y ) = 3d− 2. Since α(X,P ) ≤ α(Y, P ), we get β(X) ≤ 3d− 2.
Now assume that O is general, so that it is contained in no line contained in v.
Take as v a general degree 2 zero-dimensional subscheme of X with vred = {O}.
The line 〈v〉 intersects in at most two points, For general v there is no smooth
conic D ⊂ X such that D ⊂ X. It is sufficient to prove that rνd(X)(P ) ≥ 3d− 2
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for all P ∈ 〈νd(v)〉 \νd(X ∩〈v〉). By [3], Lemma 1, this is done almost verbatim
as in step (iv) of the proof of Lemma 1 with the following differences. Now Hi

and Mi are hyperplanes of Pn and we quote induction on n for the cases e = 1
and c = 1 instead of [6]. We work directly in Pn, not in X, and hence we didn’t
need to worry if H1 ∩X is singular.
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