COMMON FIXED POINT THEOREMS FOR
WEAKLY COMPATIBLE MAPPINGS IN
COMPLEX VALUED METRIC SPACES

Sanjay Kumar¹, Manoj Kumar², Pankaj Kumar³, Shin Min Kang⁴§

¹Department of Mathematics
Deenbandhu Chhotu Ram University of Science and Technology
Murthal, Sonepat, Haryana, INDIA
²Department of Mathematics
Delhi Institute of Technology and Management
Gannaur, Sonipat, Haryana, INDIA
²,³Guru Jambheshwar University of Science and Technology
Hisar, Haryana, INDIA
⁴Department of Mathematics and RINS
Gyeongsang National University
Jinju, 660-701, KOREA

Abstract: In this paper, we prove a common fixed point theorem for weakly compatible mappings in complex valued metric space. Also, we prove common fixed point theorems for weakly compatible mappings with E.A. property and CLR property.

AMS Subject Classification: 47H10, 54H25
Key Words: complex valued metric space, weakly compatible mapping, E.A. property, CLR property

1. Introduction

In 2011, Azam et al. [3] introduced the notion of complex valued metric space...
which is a generalization of the classical metric space and established some fixed point results for mappings satisfying a rational inequality.

A complex number \(z \in \mathbb{C} \) is an ordered pair of real numbers, whose first coordinate is called \(\text{Re}(z) \) and second coordinate is called \(\text{Im}(z) \).

Let \(\mathbb{C} \) be the set of complex numbers and \(z_1, z_2 \in \mathbb{C} \). Define a partial order \(\preceq \) on \(\mathbb{C} \) as follows:

\[
z_1 \preceq z_2 \quad \text{if and only if} \quad \text{Re}(z_1) \leq \text{Re}(z_2) \text{ and } \text{Im}(z_1) \leq \text{Im}(z_2).
\]

It follows that \(z_1 \preceq z_2 \), if one of the following holds

(i) \(\text{Re}(z_1) = \text{Re}(z_2) \) and \(\text{Im}(z_1) = \text{Im}(z_2) \);
(ii) \(\text{Re}(z_1) < \text{Re}(z_2) \) and \(\text{Im}(z_1) = \text{Im}(z_2) \);
(iii) \(\text{Re}(z_1) = \text{Re}(z_2) \) and \(\text{Im}(z_1) < \text{Im}(z_2) \);
(iv) \(\text{Re}(z_1) < \text{Re}(z_2) \) and \(\text{Im}(z_1) < \text{Im}(z_2) \).

In particular, we will write \(z_1 \succ z_2 \) if \(z_1 \neq z_2 \) and one of (ii), (iii) and (iv) is satisfied and we will write \(z_1 \prec z_2 \) if only (iv) is satisfied.

Remark 1.1. We obtained that the following statements hold:
1. If \(a, b \in \mathbb{R} \) with \(a \leq b \), then \(az \preceq bz \) for all \(z \in \mathbb{C} \).
2. If \(0 \preceq z_1 \preceq z_2 \), then \(|z_1| < |z_2| \).
3. If \(z_1 \preceq z_2 \) and \(z_2 \prec z_3 \), then \(z_1 \prec z_3 \).

Definition 1.2. Let \(X \) be a nonempty set. Suppose that the mapping \(d : X \times X \to \mathbb{C} \) satisfies

(1) \(0 \preceq d(x, y) \) for all \(x, y \in X \) and \(d(x, y) = 0 \) if and only if \(x = y \);
(2) \(d(x, y) = d(y, x) \) for all \(x, y \in X \);
(3) \(d(x, y) \preceq d(x, z) + d(z, y) \) for all \(x, y, z \in X \).

Then \(d \) is called a *complex valued metric* on \(X \) and \((X, d) \) is called a *complex valued metric space*.

Example 1.3. Let \(X = \mathbb{C} \). Define the mapping \(d : X \times X \to \mathbb{C} \) by

\[
d(z_1, z_2) = 2i|z_1 - z_2|
\]

for all \(z_1, z_2 \in X \). Then \((X, d) \) is a complex valued metric space.

Definition 1.4. Let \((X, d) \) be a complex valued metric space and \(\{x_n\} \) be a sequence in \(X \).

(1) If for every \(c \in \mathbb{C} \) with \(0 \prec c \), there exists \(N \in \mathbb{N} \) such that \(d(x_n, x) \prec c \) for all \(n \geq N \), then \(\{x_n\} \) is said to be *convergent* to \(x \in X \), and we denote this by \(x_n \to x \) as \(n \to \infty \) or \(\lim_{n \to \infty} x_n = x \).

(2) If for every \(c \in \mathbb{C} \) with \(0 \prec c \), there exists \(N \in \mathbb{N} \) such that \(d(x_n, x_{n+m}) \prec c \) for all \(n \geq N \), where \(m \in \mathbb{N} \), then \(\{x_n\} \) is said to be *Cauchy sequence*.

(3) If every Cauchy sequence in \(X \) is convergent, then \((X, d) \) is said to be a *complete complex valued metric space*.
Lemma 1.5. Let \((X, d)\) be a complex valued metric space and \(\{x_n\}\) be a sequence in \(X\). Then \(\{x_n\}\) converges to \(x\) if and only if \(|d(x_n, x)| \to 0\) as \(n \to \infty\).

Lemma 1.6. Let \((X, d)\) be a complex valued metric space and \(\{x_n\}\) be a sequence in \(X\). Then \(\{x_n\}\) is a Cauchy sequence if and only if \(|d(x_n, x_{n+m})| \to 0\) as \(n \to \infty\), where \(m \in \mathbb{N}\).

Definition 1.7. Let \(f\) and \(g\) be two self-mappings of a metric space \((X, d)\). Then a pair \((f, g)\) is said to be weakly compatible if they commute at coincidence points.

In 2002, Aamri and Moutawakil [1] introduced the notion of E.A. property as follows.

Definition 1.8. Let \(f\) and \(g\) be two self-mappings of a metric space \((X, d)\). Then a pair \((f, g)\) is said to satisfy E.A. property if there exists a sequence \(\{x_n\}\) in \(X\) such that \(\lim_{n \to \infty} fx_n = \lim_{n \to \infty} gx_n = t\) for some \(t \in X\).

In 2011, Sintunavarat and Kumam [5] introduced the notion of CLR property as follows.

Definition 1.9. Let \(f\) and \(g\) be two self-mappings of a metric space \((X, d)\). Then a pair \((f, g)\) is said to satisfy CLR\(_f\) property if there exists a sequence \(\{x_n\}\) in \(X\) such that \(\lim_{n \to \infty} fx_n = \lim_{n \to \infty} gx_n = fx\) for some \(x \in X\).

In the same way, we can introduce these notions in complex valued metric space (see [2] and [6]).

Example 1.10. Let \(X = \mathbb{C}\). Define the mapping \(d : X \times X \to \mathbb{C}\) by \(d(z_1, z_2) = 2i|z_1 - z_2|\) for all \(z_1, z_2 \in X\). Then \((X, d)\) is a complex valued metric space. Define \(S\) and \(T : X \to X\) by \(Sz = z + i\) and \(Tz = 2z\) for all \(z \in X\), respectively. Consider a sequence \(\{z_n\}\) = \(\{i - \frac{1}{n}\}\) \((n \in \mathbb{N})\) in \(X\). Then
\[
\lim_{n \to \infty} Sz_n = \lim_{n \to \infty} (z_n + i) = 2i \quad \text{and} \quad \lim_{n \to \infty} Tz_n = \lim_{n \to \infty} 2z_n = 2i,
\]
where \(2i \in X\). Thus, \(S\) and \(T\) satisfy E.A. property. Also, we have
\[
\lim_{n \to \infty} Sz_n = \lim_{n \to \infty} Tz_n = 2i = Si,
\]
where \(2i \in X\). Thus, \(S\) and \(T\) satisfy CLR\(_S\) property.

In 2013, Verma and Pathak [6] defined the ‘max’ function for partial order relation \(\preceq\).
Definition 1.11. Define the ‘max’ function for the partial order relation \(\preceq \) by

1. \(\max\{z_1, z_2\} = z_2 \) if and only if \(z_1 \preceq z_2 \).
2. If \(z_1 \preceq \max\{z_2, z_3\} \), then \(z_1 \preceq z_2 \) or \(z_1 \preceq z_3 \).
3. \(\max\{z_1, z_2\} = z_2 \) if and only if \(z_1 \preceq z_2 \) or \(|z_1| \leq |z_2| \).

Using Definition 1.11, we have the following lemma.

Lemma 1.12. Let \(z_1, z_2, z_3, \cdots \in \mathbb{C} \) and the partial order relation \(\preceq \) is defined on \(\mathbb{C} \). Then following statements are easy to prove.

(i) If \(z_1 \preceq \max\{z_2, z_3\} \), then \(z_1 \preceq z_2 \) if \(z_3 \preceq z_2 \);

(ii) If \(z_1 \preceq \max\{z_2, z_3, z_4\} \), then \(z_1 \preceq z_2 \) if \(\max\{z_3, z_4\} \preceq z_2 \);

(iii) If \(z_1 \preceq \max\{z_2, z_3, z_4, z_5\} \), then \(z_1 \preceq z_2 \) if \(\max\{z_3, z_4, z_5\} \preceq z_2 \), and so on.

2. **Fixed Point Theorems for Weakly Compatible Mappings**

Now, we prove common fixed point theorems for weakly compatible mappings in complex valued metric spaces.

Theorem 2.1. Let \(A, B, S \) and \(T \) be four self-mappings of a complex valued metric space \((X, d)\) satisfying

(C1) \(SX \subset BX \) and \(TX \subset AX \),

(C2) \(d(Sx, Ty) \preceq \alpha m(x, y) + \beta M(x, y) \),

where

\[
m(x, y) = d(By, Ty) \frac{1 + d(Ax, Sx)}{1 + d(Ax, By)}
\]

and

\[
M(x, y) = \max\{d(Ax, By), d(Ax, Sx), d(By, Ty)\}
\]

for each \(x, y \in X \), where \(\alpha \) and \(\beta \) are non-negative real numbers with \(\alpha + \beta < 1 \),

(C3) the pairs \((A, S)\) and \((B, T)\) are weakly compatible.

Suppose that one of \(AX \), \(BX \), \(SX \) and \(TX \) is a complete subspace of \(X \). Then \(A, B, S \) and \(T \) have a unique common fixed point.

Proof. Let \(x_0 \in X \). Since \(SX \subset BX \) and \(TX \subset AX \), define for each \(n \geq 0 \), the sequence \(\{y_n\} \) in \(X \) by

\[
y_{2n+1} = Sx_{2n} = Bx_{2n+1} \quad \text{and} \quad y_{2n+2} = Tx_{2n+1} = Ax_{2n+2}.
\]
Suppose that $y_{2n} = y_{2n+1}$ for some n. Then by (C2), we have $y_{2n+1} = y_{2n+2}$, and so, $y_m = y_{2n}$ for every $m > 2n$. Thus, the sequence $\{y_n\}$ is a Cauchy sequence. The same conclusion holds if $y_{2n+1} = y_{2n+2}$ for some n.

Assume that $y_n \neq y_{n+1}$ for all n. Putting $x = x_{2n}$ and $y = x_{2n-1}$ in (C2), we have

$$d(Sx_{2n}, Tx_{2n-1}) \prec \alpha m(x_{2n}, x_{2n-1}) + \beta M(x_{2n}, x_{2n-1}),$$

where

$$m(x_{2n}, x_{2n-1}) = d(Bx_{2n-1}, Tx_{2n-1}) \frac{1 + d(Ax_{2n}, Sx_{2n})}{1 + d(Ax_{2n}, Bx_{2n-1})} = d(y_{2n-1}, y_{2n}) \frac{1 + d(y_{2n}, y_{2n+1})}{1 + d(y_{2n}, y_{2n-1})}$$

and

$$M(x_{2n}, x_{2n-1}) = \max\{d(Ax_{2n}, Bx_{2n-1}), d(Ax_{2n}, Sx_{2n}), d(Bx_{2n-1}, Tx_{2n-1})\} = \max\{d(y_{2n-1}, y_{2n}), d(y_{2n}, y_{2n+1}), d(y_{2n-1}, y_{2n})\}.$$

Now, if $M(x_{2n}, x_{2n-1}) = d(y_{2n}, y_{2n+1})$, it follows that

$$d(y_{2n-1}, y_{2n})(1 + d(y_{2n}, y_{2n+1})) \prec d(y_{2n}, y_{2n+1})(1 + d(y_{2n}, y_{2n-1})).$$

Thus, we have

$$m(x_{2n}, x_{2n-1}) = d(y_{2n-1}, y_{2n}) \frac{1 + d(y_{2n}, y_{2n+1})}{1 + d(y_{2n}, y_{2n-1})} \prec d(y_{2n}, y_{2n+1}).$$

So, we obtain

$$d(y_{2n}, y_{2n+1}) \prec \alpha d(y_{2n}, y_{2n+1}) + \beta d(y_{2n}, y_{2n+1}).$$

Thus, we have

$$|d(y_{2n}, y_{2n+1})| \leq (\alpha + \beta)|d(y_{2n}, y_{2n+1})|,$$

which is a contradiction to $\alpha + \beta < 1$. Consequently, we must have

$$M(x_{2n}, x_{2n-1}) = d(y_{2n-1}, y_{2n})$$

and

$$m(x_{2n}, x_{2n-1}) \leq d(y_{2n-1}, y_{2n}).$$
Thus, we have

\[d(y_{2n}, y_{2n+1}) \preceq (\alpha + \beta) d(y_{2n-1}, y_{2n}). \]

On putting \(x = x_{2n-2} \) and \(y = x_{2n-1} \) in (C2), we have

\[d(Sx_{2n-2}, Tx_{2n-1}) \preceq \alpha m(x_{2n-2}, x_{2n-1}) + \beta M(x_{2n-2}, x_{2n-1}), \]

where

\[m(x_{2n-2}, x_{2n-1}) = d(Bx_{2n-1}, Tx_{2n-1}) \frac{1 + d(Ax_{2n-2}, Sx_{2n-2})}{1 + d(Ax_{2n-2}, Bx_{2n-1})} = d(y_{2n-1}, y_{2n}) \]

and

\[M(x_{2n-2}, x_{2n-1}) \]

\[= \max\{d(Ax_{2n-2}, Bx_{2n-1}), d(Ax_{2n-2}, Sx_{2n-2}), d(Bx_{2n-1}, Tx_{2n-1})\} \]

\[= \max\{d(y_{2n-2}, y_{2n-1}), d(y_{2n-2}, y_{2n-1}), d(y_{2n-1}, y_{2n})\}. \]

Now, if \(M(x_{2n-2}, x_{2n-1}) = d(y_{2n-1}, y_{2n}) \), it follows that

\[d(y_{2n-1}, y_{2n}) \preceq \alpha d(y_{2n-1}, y_{2n}) + \beta d(y_{2n-1}, y_{2n}). \]

Thus, we have

\[|d(y_{2n-1}, y_{2n})| \leq (\alpha + \beta)|d(y_{2n-1}, y_{2n}), \]

which is a contradiction to \(\alpha + \beta < 1 \). Then we have \(M(x_{2n-2}, x_{2n-1}) = d(y_{2n-2}, y_{2n-1}) \) and hence

\[d(y_{2n-1}, y_{2n}) \preceq \alpha d(y_{2n-1}, y_{2n}) + \beta d(y_{2n-2}, y_{2n-1}). \]

Thus, we have

\[|d(y_{2n-1}, y_{2n})| \leq \frac{\beta}{1 - \alpha} |d(y_{2n-2}, y_{2n-1})|. \]

Define \(k = \max\{\alpha + \beta, \frac{\beta}{1 - \alpha}\} \). Consequently, it can be concluded that

\[d(y_n, y_{n+1}) \preceq kd(y_{n-1}, y_n) \]

\[\preceq k^2 d(y_{n-2}, y_{n-1}) \]

\[\cdots \]

\[\preceq k^n d(y_0, y_1). \]
Now, for all $m > n$, we have
\[
d(y_m, y_n) \preceq d(y_n, y_{n+1}) + d(y_{n+1}, y_{n+2}) + \cdots + d(y_{m-1}, y_m) \\
\preceq k^n d(y_0, y_1) + k^{n+1} d(y_0, y_1) + \cdots + k^{m-1} d(y_0, y_1)
\]
Therefore, we have
\[
|d(y_m, y_n)| \leq \frac{k^n}{1 - k} |d(y_0, y_1)|.
\]
Hence, we obtain
\[
\lim_{n \to \infty} |d(y_m, y_n)| = 0.
\]
Hence, $\{y_n\}$ is a Cauchy sequence.

Now, suppose that AX is complete. Note that $\{y_{2n}\}$ is contained in AX and has a limit in AX, say u, that is, $\lim_{n \to \infty} y_{2n} = u$. Since $u \in AX$, there exists $v \in X$ such that $Av = u$.

Now, we shall prove that $Sv = u$. Let $Sv \neq u$. Putting $x = v$ and $y = x_{2n-1}$ in (C2), we have
\[
d(Sv, Tx_{2n-1}) \preceq \alpha m(v, x_{2n-1}) + \beta M(v, x_{2n-1}), \quad (2.1)
\]
where
\[
m(v, x_{2n-1}) = d(y_{2n-1}, y_{2n}) \frac{1 + d(u, Sv)}{1 + d(u, y_{2n-1})}
\]
and
\[
M(v, x_{2n-1}) = \max\{d(u, y_{2n-1}), d(u, Sv), d(y_{2n-1}, y_{2n})\}.
\]
As the sequence $\{y_{2n-1}\}$ is convergent to u, therefore
\[
\lim_{n \to \infty} d(u, y_{2n-1}) = \lim_{n \to \infty} d(y_{2n}, y_{2n-1}) = 0.
\]
Thus, letting $n \to \infty$ in (2.1), we have
\[
d(Sv, u) \preceq \beta d(Sv, u),
\]
that is,
\[
|d(Sv, u)| \leq \beta |d(Sv, u)|,
\]
which is a contradiction to $\beta < 1$. Hence $Sv = u = Av$. Now, since $SX \subset BX$, $Sv = u \in BX$. There exists $w \in X$ such that $Bw = u$. By using the same arguments as above, one can easily verify that $Tw = u = Bw$, that is, w is the coincidence point of the pair (B, T).

The same result holds if we assume that BX is complete.
Now, if TX is complete, then by (2.1), $u \in TX \subset AX$. Similarly, if SX is complete, then $u \in SX \subset BX$.

Now, since the pairs (A, S) and (B, T) are weakly compatible, so $u = Sv = Av = Tw = Bw$ and hence $Au = ASu = SAv = Su$ and $Bu = BTw = TBw = Tu$.

Now, we claim that $Tu = u$. Let $Tu \neq u$. From (C2), we have

$$d(u, Tu) = d(Sv, Tu) \preceq \alpha m(v, u) + \beta M(v, u),$$

(2.2)

where

$$m(v, u) = d(Bu, Tu)^{1 + d(Av, Sv)} + d(Av, Bu) = 0$$

and

$$M(v, u) = \max\{d(Av, Bu), d(Av, Sv), d(Bu, Tu)\} = d(u, Tu).$$

Thus, from (2.2), we have

$$d(u, Tu) \preceq \beta d(u, Tu),$$

that is,

$$|d(u, Tu)| \leq \beta |d(u, Tu)|,$$

which is a contradiction to $\beta < 1$. Therefore, $Tu = u$.

Similarly, one can prove that $Su = u$ and hence u is a common fixed point of A, B, S and T.

Finally, for the uniqueness, let $z (z \neq u)$ be another common fixed point of A, B, S and T. From (C2), we have

$$d(u, z) = d(Su, Tz) \preceq \alpha m(u, z) + \beta M(u, z),$$

(2.3)

where

$$m(u, z) = d(Bz, Tz)^{1 + d(Au, Su)} + d(Au, Bz) = 0$$

and

$$M(u, z) = \max\{d(Au, Bz), d(Au, Su), d(Bz, Tz)\} = d(u, z).$$

Thus, from (2.3), we have

$$|d(u, z)| \leq \beta |d(u, z)|,$$

which is a contradiction to $\beta < 1$. Hence $u = z$. Therefore A, B, S and T have a unique common fixed point. This completes the proof. \hfill \Box
From Theorem 2.1, if \(A = B \) and \(S = T \), we get the following.

Corollary 2.2. Let \(A \) and \(S \) be two self-mappings of a complex valued metric space \((X,d)\) satisfying

\[
\begin{align}
& (C4) \quad SX \subset AX, \\
& (C5) \quad d(Sx, Sy) \preceq \alpha m(x, y) + \beta M(x, y),
\end{align}
\]

where
\[
m(x, y) = d(Ay, Sy) \frac{1 + d(Ax, Sx)}{1 + d(Ax, Ay)}
\]

and
\[
M(x, y) = \max\{d(Ax, Ay), d(Ax, Sx), d(Ay, Sy)\}
\]

for each \(x, y \) in \(X \), where \(\alpha \) and \(\beta \) are non-negative real numbers with \(\alpha + \beta < 1 \), \((C6) \) the pair \((A, S)\) is weakly compatible.

Suppose that one of \(AX \) or \(SX \) is complete subspace of \(X \). Then \(A \) and \(S \) have a unique common fixed point.

3. Fixed Point Theorems for Weakly Compatible Mappings with E.A. Property

Now, we shall prove common fixed point theorems for weakly compatible mappings with E.A. property.

Theorem 3.1. Let \(A, B, S \) and \(T \) be four self-mappings of a complex valued metric space \((X,d)\) satisfying \((C1)-(C3)\) and

\[
\text{with \((C7) \) the pairs \((A, S)\) or \((B, T)\) satisfy the E.A. property.}
\]

Suppose that any one of \(AX, BX, SX \) and \(TX \) is a closed subspace of \(X \). Then \(A, B, S \) and \(T \) have a unique common fixed point.

Proof. Suppose that \((A, S)\) satisfies the E.A. property. Then there exists a sequence \(\{x_n\} \) in \(X \) such that \(Ax_n = Sx_n = z \) for some \(z \in X \). Since \(SX \subset BX \), there exists a sequence \(\{y_n\} \) in \(X \) such that \(Sx_n = By_n \). Hence \(\lim_{n \to \infty} By_n = z \).

We shall show that \(\lim_{n \to \infty} Ty_n = z \). Let \(\lim_{n \to \infty} Ty_n = t \neq z \). From \((C2)\), we have
\[
d(Sx_n, Ty_n) \preceq \alpha m(x_n, y_n) + \beta M(x_n, y_n).
\]
Letting $n \to \infty$, we have

\[d(z, t) \preceq \alpha \lim_{n \to \infty} m(x_n, y_n) + \beta \lim_{n \to \infty} M(x_n, y_n), \tag{3.1} \]

where

\[\lim_{n \to \infty} m(x_n, y_n) = \lim_{n \to \infty} d(By_n, T y_n) \frac{1 + d(x_n, S x_n)}{1 + d(A x_n, B y_n)} = d(z, t) \]

and

\[\lim_{n \to \infty} M(x_n, y_n) = \lim_{n \to \infty} \max \{d(A x_n, B y_n), d(A x_n, S x_n), d(B y_n, T y_n)\} = d(z, t). \]

Thus, from (3.1), we have

\[d(z, t) \preceq \alpha d(z, t) + \beta d(z, t), \]

that is,

\[|d(z, t)| \leq (\alpha + \beta)|d(z, t)|, \]

which is a contradiction to $\alpha + \beta < 1$. Therefore, $t = z$, that is, $\lim_{n \to \infty} T y_n = z$. Suppose that $B X$ is a closed space of X. Then there exists $u \in X$ such that $z = Bu$. Subsequently, we have

\[\lim_{n \to \infty} T y_n = \lim_{n \to \infty} S x_n = \lim_{n \to \infty} A x_n = \lim_{n \to \infty} B y_n = z = Bu. \]

Now, we shall show that $T u = Bu$. Let $T u \neq Bu$. From (C2), we have

\[d(S x_n, T u) \preceq \alpha m(x_n, u) + \beta M(x_n, u). \]

Letting $n \to \infty$, we have

\[d(z, T u) \preceq \alpha \lim_{n \to \infty} m(x_n, u) + \beta \lim_{n \to \infty} M(x_n, u), \tag{3.2} \]

where

\[\lim_{n \to \infty} m(x_n, u) = \lim_{n \to \infty} d(B u, T u) \frac{1 + d(A x_n, S x_n)}{1 + d(A x_n, B u)} = d(z, T u) \]

and

\[\lim_{n \to \infty} M(x_n, u) = \lim_{n \to \infty} \max \{d(A x_n, B u), d(A x_n, S x_n), d(B u, T u)\} = \max \{0, 0, d(B u, T u)\} = d(z, T u). \]
Thus, from (3.2), we have
\[d(z, Tu) \preceq \alpha d(z, Tu) + \beta d(z, Tu), \]
that is,
\[|d(z, Tu)| \leq (\alpha + \beta)|d(z, Tu)|, \]
which is a contradiction to \(\alpha + \beta < 1 \). Therefore, \(Tu = z = Bu \). Since \(B \) and \(T \) are weakly compatible, we have \(BTu = TBu \) and hence \(TTu = TBu = BTu = BBu \). Since \(TX \subset AX \), there exists \(v \in X \) such that \(Tu = Av \).

Now, we claim that \(Av = Sv \). Let \(Av \neq Sv \). From (C2), we have
\[d(Sv, Tu) \preceq \alpha m(v, u) + \beta M(v, u), \]
where
\[m(v, u) = d(Bu, Tu) \frac{1 + d(Av, Sv)}{1 + d(Av, Bu)} = 0 \]
and
\[M(v, u) = \max\{d(Av, Bu), d(Av, Sv), d(Bu, Tu)\} = \max\{0, d(Av, Sv), 0\} = d(Tu, Sv). \]
Thus, from (3.3), we have
\[d(Sv, Tu) \preceq \beta d(Sv, Tu), \]
that is,
\[|d(Sv, Tu)| \leq \beta|d(Sv, Tu)|, \]
which is a contradiction to \(\beta < 1 \). Therefore, \(Sv = Tu = Av \). Thus, we have \(Tu = Bu = Sv = Av \). The weak compatibility of \(A \) and \(S \) implies that \(ASv = SAv = SSv = AAv \).

Now, we claim that \(Tu \) is the common fixed point of \(A, B, S \) and \(T \). Suppose that \(TTu \neq Tu \). From (C2), we have
\[d(Tu, TTu) = d(Sv, TTu) \preceq \alpha m(v, Tu) + \beta M(v, Tu), \]
where
\[m(v, Tu) = d(BTu, TTu) \frac{1 + d(Av, Sv)}{1 + d(Av, BTu)} = 0 \]
and
\[M(v, Tu) = \max\{d(Av, BTu), d(Av, Sv), d(BTu, TTu)\} = d(Av, BTu) = d(Tu, TTu). \]
Thus, from (3.4), we have

\[|d(Tu, TTu)| \leq \beta |d(Tu, TTu)|, \]

which is a contradiction to \(\beta < 1 \). Therefore, \(Tu = TTu = BTu \). Hence \(Tu \) is the common fixed point of \(B \) and \(T \). Similarly, we prove that \(Sv \) is the common fixed point of \(A \) and \(S \). Since \(Tu = Sv, Tu \) is the common fixed point of \(A, B, S \) and \(T \).

The proof is similar when \(AX \) is assumed to be a closed subspace of \(X \).

The cases in which \(TX \) or \(SX \) is a complete subspace of \(X \) are similar to the cases in which \(AX \) or \(BX \), respectively is complete subspace of \(X \) since \(TX \subset AX \) and \(SX \subset BX \).

Finally, for uniqueness, let \(p \) and \(q \) \((p \neq q)\) be two common fixed points of \(A, B, S \) and \(T \). From (C2), we have

\[d(p, q) = d(Sp, Tq) \leq \alpha m(p, q) + \beta M(p, q), \quad (3.5) \]

where

\[m(p, q) = d(Bq, Tq) \frac{1 + d(Ap, Sp)}{1 + d(Ap, Bq)} = 0 \]

and

\[M(p, q) = \max\{d(Ap, Bq), d(Ap, Sp), d(Bq, Tq)\} = d(p, q). \]

Thus, from (3.5), we have

\[|d(p, q)| \leq \beta |d(p, q)|, \]

which is a contradiction to \(\beta < 1 \). Therefore, \(p = q \). Hence \(A, B, S \) and \(T \) have a unique common fixed point. This completes the proof.

From Theorem 3.1, if \(A = B \) and \(S = T \) in Theorem 2.1, we get the following.

Corollary 3.2. Let \(A \) and \(S \) be two self-mappings of a complex valued metric space \((X, d)\) satisfying (C4)-(C6).

(C8) the pair \((A, S)\) satisfies the E.A. property.

If one of \(AX \) or \(SX \) is closed subspace of \(X \), then \(A \) and \(S \) have a unique common fixed point.
4. Fixed Point Theorems for Weakly Compatible Mappings with CLR Property

Now, we prove common fixed point theorems for weakly compatible mappings with CLR property.

Theorem 4.1. Let A, B, S and T be four self-mappings of a complex valued metric space (X, d) satisfying (C2), (C3) and

(C9) $SX \subset BX$ and the pair (A, S) satisfies CLR$_A$ property or $TX \subset AX$ and the pair (B, T) satisfies CLR$_B$ property.

Then A, B, S and T have a unique common fixed point.

Proof. Without loss of generality, assume that $SX \subset BX$ and the pair (A, S) satisfies CLR$_A$ property. Then there exists a sequence $\{x_n\}$ in X such that $\lim_{n \to \infty} Ax_n = \lim_{n \to \infty} Sx_n = Ax$ for some $x \in X$. Since $SX \subset BX$, there exists a sequence $\{y_n\}$ in X such that $Sx_n = By_n$. Hence $\lim_{n \to \infty} By_n = Ax$.

We shall show that $\lim_{n \to \infty} Ty_n = Ax$. Let $\lim_{n \to \infty} Ty_n = z \neq Ax$. From (C2), we have

$$d(Sx_n, Ty_n) \preceq \alpha m(x_n, y_n) + \beta M(x_n, y_n).$$

Letting $n \to \infty$, we have

$$d(Ax, z) \preceq \alpha \lim_{n \to \infty} m(x_n, y_n) + \beta \lim_{n \to \infty} M(x_n, y_n),$$

where

$$\lim_{n \to \infty} m(x_n, y_n) = \lim_{n \to \infty} d(By_n, Ty_n) \frac{1 + d(Ax_n, Sx_n)}{1 + d(Ax_n, By_n)} = d(Ax, z)$$

and

$$\lim_{n \to \infty} M(x_n, y_n) = \lim_{n \to \infty} \max\{d(Ax_n, By_n), d(Ax_n, Sx_n), d(By_n, Ty_n)\} = d(Ax, z).$$

Thus, from (4.1), we have

$$d(Ax, z) \preceq \alpha d(Ax, z) + \beta d(Ax, z),$$

that is,

$$|d(Ax, z)| \leq (\alpha + \beta)|d(Ax, z)|,$$

which is a contradiction to $\alpha + \beta < 1$. Therefore, $Ax = z$ and hence $\lim_{n \to \infty} Ty_n = Ax$. Subsequently, we have

$$\lim_{n \to \infty} Ax_n = \lim_{n \to \infty} Sx_n = \lim_{n \to \infty} By_n = \lim_{n \to \infty} Ty_n = Ax = z.$$
Now, we shall show that $Sx = z$. Let $Sx \neq z$. From (C2), we have
\[d(Sx, Ty) \preceq \alpha m(x, y) + \beta M(x, y). \]
Letting $n \to \infty$, we have
\[d(Sx, z) \preceq \alpha \lim_{n \to \infty} m(x, y_n) + \beta \lim_{n \to \infty} M(x, y_n), \quad (4.2) \]
where
\[\lim_{n \to \infty} m(x, y_n) = \lim_{n \to \infty} d(By_n, Ty_n) \frac{1 + d(Ax, Sx)}{1 + d(Ax, By_n)} = 0 \]
and
\[\lim_{n \to \infty} M(x, y_n) = \lim_{n \to \infty} \max\{d(Ax, By_n), d(Ax, Sx), d(By_n, Ty_n)\} \]
\[= d(z, Sx). \]
Thus, from (4.2), we have
\[d(Sx, z) \preceq \beta d(Sx, z), \]
that is,
\[|d(Sx, z)| \leq \beta |d(Sx, z)|, \]
which is a contradiction to $\beta < 1$. Therefore, $Sx = z = Ax$. Since the pair (A, S) is weakly compatible, it follows that $Az = Sz$. Also, since $SX \subset BX$, there exists $y \in X$ such that $z = Sx = By$.

Now, we show that $Ty = z$. Let $Ty \neq z$. From (C2), we have
\[d(Sx, Ty) \preceq \alpha m(x, y) + \beta M(x, y). \]
Letting $n \to \infty$, we have
\[d(Ax, z) \preceq \alpha \lim_{n \to \infty} m(x, y_n) + \beta \lim_{n \to \infty} M(x, y_n), \quad (4.3) \]
where
\[\lim_{n \to \infty} m(x, y_n) = \lim_{n \to \infty} d(By, Ty) \frac{1 + d(Ax_n, Sx_n)}{1 + d(Ax_n, By)} = d(z, Ty) \]
and
\[\lim_{n \to \infty} M(x, y_n) = \lim_{n \to \infty} \max\{d(Ax_n, By), d(Ax_n, Sx_n), d(By_n, Ty_n)\} \]
\[= d(z, Ty). \]
Thus, from (4.3), we have
\[d(z, Ty) \preceq \alpha d(z, Ty) + \beta d(z, Ty), \]
that is,
\[|d(z, Ty)| \leq (\alpha + \beta)|d(z, Ty)|, \]
which is a contradiction to \(\alpha + \beta < 1 \). Thus, \(z = Ty = By \). Since the pair \((B, T)\) is weakly compatible, it follows that \(Tz = Bz \). Now, we claim that \(Sz = Tz \).

Let \(Sz \neq Tz \). From (C2), we have
\[d(Sz, Tz) \preceq \alpha m(z, z) + \beta M(z, z), \] (4.4)
where
\[m(z, z) = d(Bz, Tz) \frac{1 + d(Az, Sz)}{1 + d(Az, Bz)} = 0 \]
and
\[M(z, z) = \max\{d(Az, Bz), d(Az, Sz), d(Bz, Tz)\} = d(Sz, Tz). \]
Thus, from (4.4), we have
\[d(Sz, Tz) \preceq \beta d(Sz, Tz), \]
that is,
\[|d(Sz, Tz)| \leq \beta|d(Sz, Tz)|, \]
which is a contradiction to \(\beta < 1 \). Therefore, \(Sz = Tz \), that is, \(Az = Sz = Tz = Bz \).

Now, we shall show that \(z = Tz \). Let \(z \neq Tz \). From (C2), we have
\[d(z, Tz) = d(Sz, Tz) \preceq \alpha m(z, z) + \beta M(z, z), \] (4.5)
where
\[m(z, z) = d(Bz, Tz) \frac{1 + d(Az, Sz)}{1 + d(Az, Bz)} = 0 \]
and
\[M(z, z) = \max\{d(Az, Bz), d(Az, Sz), d(Bz, Tz)\} = d(z, Tz). \]
Thus, from (4.5), we have
\[|d(z, Tz)| \leq \beta|d(z, Tz)|, \]
which is a contradiction to \(\beta < 1 \). Therefore, \(z = Tz = Bz = Az = Sz \). Hence \(z \) is the common fixed point of \(A, B, S \) and \(T \).
Finally, for uniqueness, let $u (u \neq z)$ be another common fixed point of A, B, S and T.

$$d(u, z) = d(Su, Tz) \preceq \alpha m(u, z) + \beta M(u, z), \quad (4.6)$$

where

$$m(u, z) = d(Bz, Tz) \frac{1 + d(Au, Su)}{1 + d(Au, Bz)} = 0$$

and

$$M(u, z) = \max\{d(Au, Bz), d(Au, Su), d(Bz, Tz)\} = d(u, z).$$

Thus, from (4.6), we have

$$|d(u, z)| \leq \beta |d(u, z)|,$$

which is a contradiction to $\beta < 1$. Therefore, $u = z$. Hence A, B, S and T have a unique common fixed point. This completes the proof.

From Theorem 4.1, if $A = B$ and $S = T$, we get the following.

Corollary 4.2. Let A and S be two self-mappings of a complex valued metric space (X, d) satisfying (C4)-(C6).

(C10) the pair (A, S) satisfies CLR$_A$ property.

Then A and S have a unique common fixed point.

Acknowledgments

One of authors (Sanjay Kumar) is thankful to University Grants Commission for providing Major Research Project under Ref. No. 39-41/2010(SR).

References

