POSTULATION OF ZERO-DIMENSIONAL SCHEMES
ON A SMOOTH QUADRIC SURFACE

E. Ballico
Department of Mathematics
University of Trento
38 123 Povo (Trento) - Via Sommarive, 14, ITALY

Abstract: Let Q be a smooth quadric surface and $Z \subset Q$ a zero-dimensional scheme. We study the postulation of a general union of Z and prescribed numbers of fat points with multiplicity 2 and 3.

AMS Subject Classification: 14N05, 14H99
Key Words: postulation, Hilbert function, fat point, smooth quadric surface

1. Introduction

Let $Q \subset \mathbb{P}^3$ be a smooth quadric surface. For each $P \in Q$ and any positive integer m the m-point mP is the closed subscheme of Q with $(\mathcal{I}_P)^m$ as its ideal sheaf. Let $Z \subset Q$ be a zero-dimensional scheme. In this note we collect several results concerning the Hilbert function of $Z \cup A$, A a general union of a prescribed number of 2-points and 3-points.

Theorem 1. Fix non-negative integers c, d, a, b such that $b \geq d + 5$ and $a \geq c + 2$. Set $\alpha := \sum_{i=1}^{\lfloor (b-d-2)/3 \rfloor} 2\lfloor (a+1+3-3i)/4 \rfloor$. Fix non-negative integers e, e', f, f' such that $f \leq \alpha$, $f' \leq \alpha$, $e \leq \lfloor ((a+1)(b+1)-(c+1)(d+1)-6f)/3 \rfloor$ and $e' \geq \lfloor ((a+1)(b+1)-(c+1)(d+1)-6f')/3 \rfloor$. Fix zero-dimensional schemes $Z \subset Q$ and $Z' \subset Q$ such that $h^1(\mathcal{I}_Z(c, d)) = 0$ and $h^0(\mathcal{I}_{Z'}(c, d)) = 0$. Let $A \subset Q$ (resp. $A' \subset Q$) be a general union of e 2-points and f 3-points (resp. e' 2-points and f' 3-points). Then $h^1(\mathcal{I}_{Z \cup A}(a, b)) = 0$ and $h^0(\mathcal{I}_{Z' \cup A'}(a, b)) = 0$.
Theorem 2. Fix non-negative integers c,d,a,b,e,e' such that $a \geq c+2$, $b \geq d+2$, $e \leq \left|\left((a+1)(b+1)-(c+1)(d+1)\right)/3\right|$, and $e' \geq \left|\left((a+1)(b+1)-(c+1)(d+1)\right)/3\right|$. Fix zero-dimensional schemes $Z \subset Q$ and $Z' \subset Q$ such that $h^1(I_Z(c,d)) = 0$ and $h^0(I_{Z'}(c,d)) = 0$. Let $A \subset Q$ (resp. $A' \subset Q$) be a general union of e (resp. e') 2-points. Then $h^1(I_{Z\cup A}(a,b)) = 0$ and $h^0(I_{Z'\cup A'}(a,b)) = 0$.

Theorem 3. Fix integers c,d,a,b such that $a \geq c+2 \geq 0$ and $b \geq d \geq 0$. Let $Z \subset Q$ be a zero-dimensional scheme such that $h^1(I_Z(c,d)) = 0$ and $h^0(I_Z(c,d-1)) = 0$. Set $\gamma := h^0(I_Z(c,d))$. If either c is odd and $\gamma = c$ or c is even and $\gamma \in \{c-1,c\}$, then assume $(a,b) \neq (c,d+2)$. Fix an integer e such that $0 \leq 3e \leq (a+1)(b+1)-(c+1)(d+1)+\gamma$. Let $A \subset Q$ be a general union of e 2-points. Then $h^1(I_{Z\cup A}(a,b)) = 0$.

We work over an algebraically closed field \mathbb{K} with $\text{char}(\mathbb{K}) = 0$. See Remark 2 for the restrictions on $\text{char}(\mathbb{K})$ used in the proofs of some of the statements.

2. Proofs for 2-Points

Remark 1. It is easy to check that a 3-point of any smooth surface X is a flat limit of a family of disjoint unions of pairs of 2-points of X ([6]).

Lemma 1. Fix integers $c \geq 2$ and $d \geq 0$. Let $Z \subset Q$ be a zero-dimensional scheme. Let $A \subset Q$ (resp. $A' \subset Q$) be a general union of $\left\lfloor 2(c+1)/3 \right\rfloor$ (resp. $\left\lfloor 2(c+1)/3 \right\rfloor$) 2-points. Then $h^1(I_{Z\cup A}(c,d+2)) \leq h^1(I_Z(c,d))$ and $h^0(I_{Z'\cup A'}(c,d+2)) \leq h^0(I_{Z'}(c,d))$.

Proof. Set $e := \left\lfloor (c+1)/3 \right\rfloor$. Take a line $L \subset Q$ of type $(0,1)$ such that $Z \cap L = \emptyset$. Fix $S \cup S' \subset L$ such that $S \cap S' = \emptyset$ and $\sharp(S) = \sharp(S') = e$ and general $o,o' \in L \setminus (S \cup S')$. We degenerate e of the 2-points of A and A' to the 2-points of $2S$. We apply e times the Differential Horace Lemma ([1], Lemme 1.3, [3], Lemma 5) with respect to each point of S'. If $2e = \left\lfloor 2(c+1)/3 \right\rfloor$, i.e. if $c+1 \equiv 0,1,2 \pmod{3}$ we get $h^1(I_{Z\cup A}(c,d+2)) \leq h^1(I_Z(c,d))$ and $h^0(I_{Z'\cup A'}(c,d+2)) \leq h^0(I_{Z'}(c,d)) + 2$. Now assume $c+1 \equiv 1 \pmod{3}$. Adding also $2o'$ we get $h^0(I_{Z'\cup A'}(c,d)) \leq h^0(I_{Z'}(c,d))$. Now assume $c \equiv 2 \pmod{3}$, i.e. $c = 3e+1$. We first insert $2o$ and get $h^1(I_{Z\cup A}(c,d+2)) \leq h^1(I_Z(c,d))$, because at the first step in L we get a scheme $(2S \cup S' \cup 2O) \cap L$ of degree $3e+2 = c+1$ and during the second step a scheme $S \cup (2S' \cap L) \cup \{o\}$ of degree $3e+1$. To get $h^0(I_{Z'\cup A'}(c,d)) \leq h^0(I_{Z'}(c,d))$ we add $2o'$ at the second step.

Lemma 2. Fix integers c,d,e,e' such that $c \geq 2$, $d \geq 0$, $0 \leq e \leq c+1$ and $e' \geq c+1$. Fix zero-dimensional schemes $Z \subset Q$ and $Z' \subset Q$ such
that $h^1(I_Z(c,d)) = 0$ and $h^0(I_{Z'}(c,d)) = 0$. Let $A \subset Q$ (resp. $A' \subset Q$) be a general union of e (resp. e') 2-points. Then $h^1(I_{Z\cup A}(c,d+3)) = 0$ and $h^0(I_{Z\cup A'}(c,d+3)) = 0$.

Proof. Since a 3-point is a flat limit of a family of disjoint unions of two 2-points (Remark 1), this lemma is a particular case of Lemma 8. \qed

Lemma 3. Fix integers $e \geq 0$, $d \geq 0$ and $c \geq 2$. Let $Z \subset Q$ be a zero-dimensional scheme such that $h^1(I_Z(c,d)) = 0$ and $h^0(I_Z(c,d-1)) = 0$. Set $\gamma := h^0(I_Z(c,d))$, $u := [(c+1)/2]$, and $\epsilon := c + 1 - 2u$. Let $A \subset Q$ be a general union of e 2-points.

(a) If $e \leq u$, then $h^1(I_{Z\cup A}(c,d+1)) \leq \max\{0, e - \gamma\}$.

(b) If e is even, $e = u + 1$ and either $\operatorname{char}(\mathbb{K}) = 0$ or $\operatorname{char}(\mathbb{K}) > c$, then $h^1(I_{Z\cup A}(c,d+1)) \leq \max\{0, u + 2 - \gamma\}$.

Proof. Since $h^1(I_Z(c,d)) = 0$, we have $\deg(Z) = (c+1)(d+1) - \gamma$. Since $h^0(I_Z(c,d-1)) = 0$, we have $0 \leq \gamma \leq c+1$ and $h^1(I_Z(c,d-1)) = c+1 - \gamma$. Fix a line $L \subset Q$ of type $(0,1)$ such that $L \cap Z = \emptyset$. First assume c even and $e = u+1$. Fix $S \subset Q$ such that $\sharp(S) = u$ and $o \in L \setminus S$. Let $E \subset L$ be the 2-point of L with o as its reduction. Since $\deg(L \cap (2S \cup \{o\})) = c+1$, By the Differential Horace Lemma for double points ([1], Lemme 1.3, [3], Lemma 5) to prove the lemma it is sufficient to prove that $h^1(I_{Z\cup S \cup E}(c,d)) = \max\{0, u + 2 - \gamma\}$. Let $W \subset H^0(O_L(c))$ be the image of the restriction map $\rho : H^0(I_Z(c,d)) \to H^0(O_L(c))$. Since $h^0(I_Z(c,d-1)) = 0$, ρ is injective. Hence $\dim(W) = \gamma$. Hence to prove part (b) it is sufficient to prove that $S \cup E$ imposes $\min\{\gamma, \deg(S \cup E)\}$ independent conditions to the linear system W. In arbitrary characteristic S imposes independent conditions to any linear system V on L with dimension $\geq \sharp(S)$. This is also true for $S \cup E$ if either $\operatorname{char}(\mathbb{K}) = 0$ or $\operatorname{char}(\mathbb{K}) > c$, because E is a general tangent vector of L and our assumption on $\operatorname{char}(\mathbb{K})$ implies that the rational map induced by V is separable.

The case $e \leq u$ is easier. Indeed, we do not use Differential Horace and in the residual we only have $Z \cup S$ with $\sharp(S) = e$, instead of $Z \cup S \cup E$. \qed

Lemma 4. Assume $\operatorname{char}(\mathbb{K}) = 0$. Fix integers $d \geq 0$ and $c \geq 2$. Let $Z \subset Q$ be a zero-dimensional scheme such that $h^1(I_Z(c,d)) = 0$ and $h^0(I_Z(c,d-1)) = 0$. Set $\gamma := h^0(I_Z(c,d))$ and $e' := [(2c + 2 + \gamma)/3]$. If c is odd and $\gamma = c$, then set $e := e' - 1$. If c is even and $\gamma \in \{c-1, c\}$, then set $e := e' - 1$. In all other cases set $e := e'$. Let $U \subset Q$ be a general union of $e - [(c+1)/2]$ 2-points. Then $h^1(I_{Z\cup U}(c,d+2)) = 0$.
Proof. Since $h^0(I_Z(c, d-1)) = 0$, we have $\gamma \leq c + 1$. Moreover, $\gamma = c + 1$ if and only if $h^1(I_Z(c-1, d)) = 0$. Hence the case $\gamma = c+1$ is true by Lemma 2. From now on we assume $\gamma \leq c$. Since each connected component of U contains a general tangent vector of Q at its support and U_{red} is general, it is sufficient to prove that $f := \sharp(U_{\text{red}}) \geq \gamma/2$. Set $f' := f + e' - c$. Let $g \in \{0, 1, 2\}$ the congruence class of $2c+2+\gamma$ modulo 3. First assume that c is odd. In this case we get $f' = (2c+2+\gamma)/3 - g/3 - (c+1)/2$, i.e. $2f' = c/3 + 2\gamma/3 - 2g/3 + 1/3$. We have $2f' \geq \gamma$ if and only if $c/3 - 2g/3 + 1/3 \geq \gamma/3$. The last inequality is obviously true if $\gamma \leq c - 1$. Now assume that c is even. In this case we have $f' = (2c+2+\gamma)/3 - g/3 - c/2 - 1$, i.e. $2f' = c/3 + 2\gamma/3 - 2g/3 - 1/3$. We conclude if $\gamma \leq c - 2$. \hfill \Box

Lemma 5. Fix integers $d \geq 0$ and $c \geq 2$. Let $Z \subset Q$ be a zero-dimensional scheme such that $h^1(I_Z(c, d)) = 0$ and $h^0(I_Z(c, d-1)) = 0$. Set $\gamma := h^0(I_Z(c, d))$. Take an integer e such that $0 \leq 3e \leq 2c + 2 + \gamma$. Let $A \subset Q$ be a general union of e 2-points. If c is odd assume that either $\text{char}(\mathbb{K}) = 0$ or $\text{char}(\mathbb{K}) > c$. Then $h^1(I_{Z\cup A}(c, d+2)) = 0$.

Proof. Since $h^1(I_Z(c, d)) = 0$, we have $\deg(Z) = (c + 1)(d + 1) - \gamma$. Since $h^0(I_Z(c, d-1)) = 0$, we have $0 \leq \gamma \leq c + 1$ and $h^1(I_Z(c, d-1)) = c + 1 - \gamma$. Since the case $\gamma = c + 1$ is true by Lemma 2 applied to the integers $(c, d-1)$, we may assume $\gamma \leq c$. Hence $e \leq c$. It is sufficient to do the case $e = [(2c+2+\gamma)/3]$. In particular we assume $e \geq [(c+1)(2)]$. Fix a line $L \subset Q$ of type $(0, 1)$ such that $L \cap Z = \emptyset$. First assume that c is odd. Let $A' \subset Q$ be a general union of $e - (c + 1)/2$ 2-points. Take $S \subset L$ such that $\sharp(S) = (c + 1)/2$. It is sufficient to prove that $h^1(I_{Z\cup A'\cup S}(c, d+2)) = 0$. Since $\deg(2S \cap L) = c + 1$, it is sufficient to prove that $h^1(I_{Z\cup A'\cup S}(c, d+1)) = 0$. Since $3e \leq 2c + 2 + \gamma$, we have $\deg(A') \leq c + 1 + \gamma$. Lemma 3 gives $h^1(I_{Z\cup A'}(c, d+1)) = 0$. Hence $h^0(I_{Z\cup A'}(c, d+1)) = (c+1)(d+2) - \deg(Z) - \deg(A') - \gamma + c + 1 - 3e + 3(c+1)/2 \geq (c+1)/2$ and to prove the lemma for c odd it is sufficient to prove that S imposes $\sharp(S)$ independent conditions to $H^0(I_{Z\cup A'}(c, d+1))$. Let $W \subset H^0(\mathcal{O}_L(c))$ be the image of the restriction map $\rho : H^0(I_{Z\cup A'}(c, d+1)) \to H^0(\mathcal{O}_L(c))$. Since $h^0(I_{Z\cup A'}(c, d)) = 0$ (Lemma 4), ρ is injective. Hence $\dim(W) \geq (c+1)/2 - \sharp(S)$. Hence it is sufficient to use that S is general in L.

Now assume that c is even. Let $A'' \subset Q$ be a general union of $e - c/2 - 1$ 2-points of Q. Take a general $S' \cup \{o\} \subset L$ such that $\sharp(S') = c/2$ and $o \notin S'$. Let $E \subset L$ be the 2-point of L with o as its support. Since $\deg(2S' \cap L) + \deg(\{o\}) = c + 1$, the Differential Horace Lemma for 2-points shows that to prove that a general union Y of $Z \cup 2S \cup A''$ and a 2-point satisfies $h^1(I_Y(c, d+2)) = 0$ (and hence to prove the lemma in the case c even), it is sufficient to prove
that \(h^1(\mathcal{I}_{Z\cup A'}\cup S\cup E(c, d + 1)) = 0\). Lemma 3 gives \(h^1(\mathcal{I}_{Z\cup A'}(c, d + 1)) = 0\). Let \(V \subset H^0(\mathcal{O}_L(c)) \) be the image of the restriction map \(\rho' : H^0(\mathcal{I}_{Z\cup A'}(c, d + 1)) \to H^0(\mathcal{O}_L(c)) \). Since \(h^0(\mathcal{I}_{Z\cup A'}(c, d)) = 0 \) (Lemma 4), \(\rho \) is injective. Hence \(\dim(V) \geq \#(S) + \deg(E) \). Hence it is sufficient to use that \(S \cup \{o\} \) is general in \(L \) and hence that \(E \) is a general tangent vector of \(L \setminus S \).

Lemma 6. Fix integers \(c \geq 2 \) and \(d \geq 0 \). Let \(Z \subset Q \) be a zero-dimensional scheme. Let \(A \subset Q \) (resp. \(A' \subset Q \)) be a general union of \([4(c + 1)/3] \) (resp. \([4(c + 1)/3] \)) 2-points. Then \(h^1(\mathcal{I}_{Z\cup A}(c, d + 4)) \leq h^1(\mathcal{I}_Z(c, d)) \) and \(h^0(\mathcal{I}_{Z\cup A'}(c, d + 4)) \leq h^0(\mathcal{I}_Z(c, d)) \).

Proof. Adapt either the proof of Lemma 1 or the one of Lemma 5 quoting Lemmas 2 and 1 for the residual with respect to \(L \) instead of Lemmas 4 and 3.

Lemma 7. Fix integers \(c \geq 2 \) and \(d \geq 2 \). Let \(Z \subset Q \) be a zero-dimensional scheme. Set \(\gamma := h^0(\mathcal{I}_Z(c, d)) \). Assume \(\gamma \leq c \), \(h^0(\mathcal{I}_Z(c - 1, d - 2)) = 0 \) and \(h^1(\mathcal{I}_Z(c, d)) = 0 \). Let \(U \subset Q \) be a general union of \([(2c + d + 4 + \gamma)/3] \) 2-points of \(Q \). Then \(h^1(\mathcal{I}_{Z\cup U}(c + 1, d + 2)) = 0 \).

Proof. Let \(C \subset Q \) be a smooth curve of type \((1, 2)\) such that \(C \cap Z = \emptyset \). We have \((c+2)(d+3) - (c+1)(d+1) = 2c + d + 4 \). Since \(\gamma \leq c \), \(c \geq 2 \) and \(d \geq 2 \), we have \([(2c + d + 4 + \gamma)/3] \leq [(2c + d + 1)/2] \). Take a general \(S \subset C \) such that \(\#(S) = [(2c + d + 4 + \gamma)/3] \). It is sufficient to prove that \(h^1(\mathcal{I}_{Z\cup 2S}(c+1, d+2)) = 0 \). Since \(\deg(2S \cap C) \leq 2c + d + 1 \) and \(Z \cap C = \emptyset \), it is sufficient to prove that \(h^1(\mathcal{I}_{Z\cup S}(c, d)) = 0 \). Let \(V \subset H^0(\mathcal{O}_C(c)) \) be the image of the restriction map \(\rho' : H^0(\mathcal{I}_Z(c, d)) \to H^0(\mathcal{O}_C(c, d)) \). Since \(h^0(\mathcal{I}_Z(c - 1, d - 2)) = 0 \) and \(Z \cap C = \emptyset \), \(\rho \) is injective. Since \(\dim(V) = \gamma \) and \(S \) is general in \(C \), \(S \) imposes \(\gamma \) independent conditions to \(V \). Since \(\rho \) is injective, we get \(h^0(\mathcal{I}_{Z\cup S}(c, d)) = 0 \).

Proof of Theorem 3. If \(a = c \) and \(b = d + 2 \), then we quote Lemma 5. Now assume \(a = c \) and \(b \geq d + 3 \). In this case we copy the proof of Lemma 5 and induction on \(d \). If \(a = c + 1 \) and \(b = d + 2 \), then we quote Lemma 7. Then for a fixed \(a \) we get all cases with \(b > d + 2 \) using induction on \(b \) and the Horace Differential lemma for double points with respect to a general \(L \in |\mathcal{O}_Q(1, 0)| \).

Proof of Theorem 2. Taking a union of \(Z \) and \(\gamma := h^0(\mathcal{I}_Z(a, b)) \) general points of \(Q \) we reduce to the case \(\gamma = 0 \). Then we apply Theorem 3.
Proposition 1. Fix integers \(m \geq 3, e > 0, a > m, b > m \) such that \((a, b) \neq (m + 1, m + 1)\). Let \(A \subset Q \) be a general union of two \(m \)-points and \(e \) 2-points. Then either \(h^1(\mathcal{I}_A(a, b)) = 0 \) or \(h^0(\mathcal{I}_A(a, b)) = 0 \).

Proof. Just using Bezout theorem we get

\[h^i(\mathcal{O}_{mP \cup mO}(m, m - 1)) = h^i(\mathcal{O}_{mP \cup mO}(m - 1, m)), \]

\(i = 0, 1 \). Apply Theorem 2. \(\square \)

3. The Proofs for 3-Points

Lemma 8. Fix non-negative integers \(c, d, e, f, e', f' \) such that \(c \geq 2, d \geq 0, f \leq 2[(c + 1)/4], f' \leq 2[(c + 1)/4], e \leq c + 1 - 2f \) and \(e' \geq c + 1 - 2f' \). Fix zero-dimensional schemes \(Z \subset Q \) and \(Z' \subset Q \) such that \(h^1(\mathcal{I}_Z(c, d)) = 0 \) and \(h^0(\mathcal{I}_{Z'}(c, d)) = 0 \). Let \(A \subset Q \) (resp. \(A' \subset Q \)) be a general union of \(e \) 2-points and \(f \) 3-points (resp. \(e' \) 2-points and \(f' \) 3-points). Then \(h^1(\mathcal{I}_{Z \cup A}(c, d + 3)) = 0 \) and \(h^0(\mathcal{I}_{Z' \cup A'}(c, d + 3)) = 0 \).

Proof. Set \(x := \lfloor (c + 1)/4 \rfloor \). Since any 3-point of \(Q \) is a flat limit of a family of disjoint unions of pairs of 2-points of \(Q \) (Remark 1), the semicontinuity theorem for cohomology shows that it is sufficient to do the case \(f = f' = 2x \). Fix a line \(L \subset Q \) of type \((0, 1)\) such that \(L \cap Z = L \cap Z' = \emptyset \). Fix a general \(S \cup S' \subset L \) such that \(S \cap S' = \emptyset \) and \(\sharp(S) = \sharp(S') = x \). Fix general \(o, o', o'' \in L \setminus S \cup S' \). Fix \(o'_1 \in S' \) and set \(S'_1 := S' \setminus \{o'_1\} \).

First assume \(c \equiv 3 \pmod{4} \). In this case we apply 3 times the Horace Differential Method for 3-points to each point of \(S' \) with respect to the integers \(3 > 2 \) so that \((1, 2, 3)\) are the degrees of the intersection with \(L \) of the first, second and third trace ([5], [7], [8], [9]), while we specialize \(x \) of the 3-points of \(A \) and \(A' \) to 3-points with a point of \(S \) as their support. At each step in \(L \) we have a scheme of degree \(c + 1 \).

Now assume \(c \equiv 1 \pmod{4} \). In the first step we also add \(2o \). In this step we have a scheme whose intersection with \(L \) has degree \(c + 1 \), while in the second step the scheme on \(L \) has only degree \(c \), because \(\text{Res}_L(2o) = \{o\} \). Hence at the second step we also use the Horace Differential lemma for double points with respect to \(o' \), so that in \(L \) we have a degree \(c + 1 \) scheme, while at the third step we have a scheme sitting of degree \(c + 1 \) inside \(L \), with no connected component with \(o \) as its reduction and with a degree 2 component with \(o' \) as its reduction.
Now assume $c \equiv 0 \pmod{4}$. We take $3S$ and apply the Differential Horace Method for 3-points with respect to the integers $3 > 2$, i.e. with traces of degrees $(1, 2, 3)$, for each point of S'_1 and with respect to the sequence 2 (i.e. with traces of degrees $(2, 1, 3)$) with respect to o'_1; hence the intersection of L with this virtual scheme has degree $3x + (x - 1) + 2 = c + 1$. (x components of degree 3, $x - 1$ components of degree 1 and one of degree 2). At the second step we also add the scheme $2o$. The new virtual scheme intersects L in a scheme with degree $c + 1$ ($2x + 1$ of its connected components have degree 2, the one supported by o'_1 has degree 1). In the last step, after taking the virtual residual scheme, we get a scheme of degree $c + 1$ ($x + 1$ components of degree 1, x components of degree 3).

Now assume $c \equiv 2 \pmod{4}$. We first add $3S$, apply the Differential Horace lemma for 3-points with respect to the integers $3 > 2$, i.e. with traces of degrees $(1, 2, 3)$, at each point of S'_1, the Differential Horace points for 3-points with intersections with L of degree $(3, 1, 2)$ (it is the example done in the introduction of [5]) at o'_1 and the differential Horace lemma for double points with respect to o'. The intersection of the virtual residual scheme with L has only degree $4x + 1 = c - 1$ ($2x$ connected components of degree 2 and one of degree 1). Therefore in the second step we also apply the Differential Horace lemma for 2-points at o' and o''; in this way the restriction of this scheme to L has degree $c + 1$ ($2x$ components of degree 2 and 3 components of degree 1). The virtual residue scheme with respect to L is contained in L and it has degree $c + 1$ (it has x components of degree 1 with S as the union of their reductions, $x - 1$ components of degree $x - 1$ with S'_1 as the union of their reductions and 3 components of degree 2 with o'_1, o' and o'' as their reduction). \qed

Proof of Theorem 1. We have $h^1(I_Z(a, x)) = 0$ for all $x \geq d$. We apply $\lfloor (d - b - 2)/3 \rfloor$ times Lemma 8, first with respect to the pair $(c, d) := (a, b)$, then with respect to the pairs $(c, d) := (a, b - 3)$, and so on. Then we apply the lemmas for 2-points with respect to the integers $(a, b) := (a, b - 3)(d - b - 2)/3 \rfloor$). \qed

Remark 2. The quoted parts of [8] and [9] and the Differential Horace lemma for double points ([3]) are characteristic free. We only use the condition $\text{char}(K) > \max\{a, b, 2c + d\}$ (the only problem is to check Lemma 4 when $\text{char}(K) > 2c + d$).
Acknowledgements

The author was partially supported by MIUR and GNSAGA of INdAM (Italy).

References

