STARLIKE AND UNIFORMLY CONVEX FUNCTIONS INVOLVING GENERALIZED HYPERGEOMETRIC FUNCTION

C. Ramachandran1, L. Vanitha2, G. Murugusundaramoorthy3§

1,2Department of Mathematics
University College of Engineering Villupurum
Anna University
Villupuram, 605 602, Tamilnadu, INDIA

3School of Advanced Sciences
VIT University
Vellore, 632014, INDIA

Abstract: In this paper, we obtained some conditions on the parameters of generalized hypergeometric function and also deals with mapping properties of various subclasses of starlike and uniformly convex functions defined through a generalized hypergeometric function.

AMS Subject Classification: 30C45
Key Words: generalized hypergeometric function, starlike function, uniformly convex function

1. Introduction

Let \mathcal{A} denotes the class of functions of the form:

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

which are analytic in the unit disk $\mathbb{U} = \{z : |z| < 1\}$. As usual, we denote by \mathcal{S} the subclass of \mathcal{A} consisting of functions which are normalized by $f(0) = 0 = f'(0) - 1$ and also univalent in \mathbb{U}. Denote by \mathcal{T} [13] the subclass of \mathcal{A} consisting

Received: February 26, 2014
§Correspondence author
of functions of the form
\[f(z) = z - \sum_{n=2}^{\infty} a_n z^n, \quad a_n \geq 0, \quad n = 2, 3, \ldots \] \hspace{1cm} (2)

Also, for functions \(f \in A \) given by (1) and \(g \in A \) given by \(g(z) = z + \sum_{n=2}^{\infty} b_n z^n \),
we define the Hadamard product (or convolution) of \(f \) and \(g \) by
\[(f \ast g)(z) = z + \sum_{n=2}^{\infty} a_n b_n z^n, \quad z \in \mathbb{U}. \] \hspace{1cm} (3)

A function \(f \in A \) is said to be starlike of order \(\alpha \) (\(0 \leq \alpha < 1 \)), if and only if \(\Re \left(\frac{zf'(z)}{f(z)} \right) > \alpha \) (\(z \in \mathbb{U} \)). This function class is denoted by \(S^*(\alpha) \). We also write \(S^*(0) \equiv S^* \), where \(S^* \) denotes the class of functions \(f \in A \) that \(f(\mathbb{U}) \) is starlike with respect to the origin. A function \(f \in A \) is said to be convex of order \(\alpha \) (\(0 \leq \alpha < 1 \)) if and only if \(\Re \left(1 + \frac{zf''(z)}{f'(z)} \right) > \alpha \) (\(z \in \mathbb{U} \)). This class is denoted by \(K(\alpha) \). Further, \(K(0) = K \), the well-known standard class of convex functions. It is an established fact that \(f \in K(\alpha) \iff zf \in S^*(\alpha) \).

We recall the definitions of the class of uniformly convex functions denoted by \(UCV \), introduced by Goodman [5, 6], studied extensively by Rønning [11, 12], and independently by Ma and Minda [7].

Definition 1.1. A function \(f \) of the form (1) is said to be uniformly convex in \(\mathbb{U} \), if and only if
\[\Re \left(1 + \frac{zf''(z)}{f'(z)} \right) \geq \left| \frac{zf''(z)}{f'(z)} - 1 \right|, \quad (z \in \mathbb{U}). \]

Further the class \(\alpha - S_P \) related to the class \(\alpha - UCV \) by means of the well-known Alexander equivalence between the usual classes of convex \(K \) and starlike \(S^* \) functions are defined and the analytic criterion for functions in these classes are given as below:

Definition 1.2. A function \(f \) of the form (1) is said to be in the class \(S_p(\alpha) \) if
\[\Re \left(\frac{zf'(z)}{f(z)} \right) \geq \alpha \left| \frac{zf''(z)}{f'(z)} - 1 \right|, \quad (z \in \mathbb{U}) \]
and \(f \in UCV(\alpha), \alpha \geq 0 \) if
\[\Re \left(1 + \frac{zf''(z)}{f'(z)} \right) \geq \alpha \left| \frac{zf''(z)}{f'(z)} \right|, \quad (z \in \mathbb{U}) \]
Also, $\mathcal{UCT}(\alpha) = \mathcal{UCV}(\alpha) \cap \mathcal{T}$ and $\mathcal{T}S_p(\alpha) = S_p(\alpha) \cap \mathcal{T}$. It is of interest to note that $\mathcal{UCV}(1) \equiv \mathcal{UCV}$ and $\equiv \mathcal{UCV}(0) \equiv \mathcal{K}$; $S_p(0) \equiv S^*$ and $S_p(1) \equiv S_p$.

(see [16]) we recall the following results due to Subramanian et al., [16].

Lemma 1.3. A function $f(z)$ of the form (2) is in the class $\mathcal{T}S_p(\alpha)$ if and only if

$$
\sum_{n=2}^{n=\infty} [(\alpha + 1)n - \alpha] a_n \leq 1
$$

and

(ii) $\mathcal{UCT}(\alpha)$ if and only if

$$
\sum_{n=2}^{n=\infty} n [(\alpha + 1)n - \alpha] a_n \leq 1.
$$

For, $a_1, a_2, ..., a_p$ and $b_1, b_2, ..., b_q$ be complex numbers with $b_j \neq 0, -1, ..., j = 1, 2, ..., q$, then the generalized hypergeometric functions $\mathcal{pFq}(z)$ is defined by

$$
\mathcal{pFq}(z) = \mathcal{pFq}(a_1, a_2, ..., a_p; b_1, b_2, ..., b_q, z) = \sum_{n=0}^{\infty} \frac{(a_1)_n(a_2)_n...(a_p)_n z^n}{(b_1)_n(b_2)_n...(b_p)_n(1)_n},
$$

(4) $p \leq q + 1$ where $(\lambda)_n$ is the Pochhammer symbol defined by

$$
(\lambda)_n = \begin{cases}
1 & \text{if } n = 0 \\
\lambda(\lambda + 1) \ldots (\lambda + n - 1) & \text{if } n = 1, 2, \ldots.
\end{cases}
$$

(5)

We note that the function in the series in (4) converges absolutely in the entire complex plane for $p < q + 1$, and for $p = q + 1$ in the unit disc, the condition $p \leq q + 1$ stated with the definition (3) will be hold true throughout this paper. We note that the function $\mathcal{pFq}(1)$ converges whenever $\Re \left(\sum_{j=1}^{q} b_j - \sum_{i=1}^{p} a_j \right) > 0$.

Merkes and Scott [8] used continued fractions to find sufficient conditions for the function $z_2F_1(z)$ to be in the class $S^*(\alpha), 0 \leq \alpha < 1$. Silverman [14] and Dixit and Pathak [2] determined sufficient conditions for the function $z_2F_1(z)$ to be in the class $S^*(\alpha)$ and $\mathcal{UCV}(\alpha)$ respectively and various geometric properties of this function was discussed in [3, 4, 9, 14, 15]. In this paper, we obtain sufficient condition for function $h(z)$, given by

$$
h(z) = (1 - \mu) \tau(z) + \mu z \tau'(z)
$$

(6) where $\mu \geq 0$ and $\tau(z) = \mathcal{pFq}(z)$ belonging to the classes $S_p(\alpha)$ and $\mathcal{UCT}(\alpha)$.
2. Main Results

Theorem 2.1. If \(a_i > 0, (i = 1, 2, \ldots, p)\) and \(\sum_{j=1}^{q} b_j > \sum_{i=1}^{p} a_i + 2\), then a sufficient condition for the function \(h(z)\) to be in the class \(T S_p(\alpha), 0 \leq \alpha < 1\), is that

\[
\mu(\alpha + 1) \left(\frac{(a_1)^2(a_2)\ldots(a_p)^2}{(b_1)^2(b_2)\ldots(b_p)^2}\right) \, _pF_q(a_1 + 2; b_1 + 2, 1) \\
+ (\mu(\alpha + 2) + \alpha + 1) \left(\frac{(a_1)(a_2)\ldots(a_p)}{(b_1)(b_2)\ldots(b_p)}\right) \, _pF_q(a_1 + 1; b_1 + 1, 1) + \, _pF_q(1) \leq 2.
\]

(7)

The condition (7) is necessary and sufficient for the function \(h_1(z)\), defined by \(h_1(z) = z \left(2 - \frac{h(z)}{z}\right)\) to be in the class \(T S_p(\alpha)\).

Proof. Since

\[
h(z) = z + \sum_{n=2}^{\infty} (1 - \mu + \mu n) \frac{(a_1)_{n-1}(a_2)_{n-1}\ldots(a_p)_{n-1} z^n}{(b_1)_{n-1}(b_2)_{n-1}\ldots(b_p)_{n-1}(1)_{n-1}}.
\]

According to Lemma 1.3 we need only to show that

\[
\sum_{n=2}^{\infty} [n(\alpha + 1) - \alpha] (1 - \mu + \mu n) \frac{(a_1)_{n-1}(a_2)_{n-1}\ldots(a_p)_{n-1}}{(b_1)_{n-1}(b_2)_{n-1}\ldots(b_p)_{n-1}(1)_{n-1}} \leq 1.
\]

(8)

Now from (8)

\[
\sum_{n=1}^{\infty} [(n + 1)(\alpha + 1) - \alpha] (1 - \mu + \mu(n + 1)) \frac{(a_1)_{n}(a_2)_{n}\ldots(a_p)_{n}}{(b_1)_{n}(b_2)_{n}\ldots(b_p)_{n}(1)_{n}} \\
= \sum_{n=1}^{\infty} [\mu(\alpha + 1)n^2 + (\mu + \alpha + 1)n + 1] \frac{(a_1)_{n}(a_2)_{n}\ldots(a_p)_{n}}{(b_1)_{n}(b_2)_{n}\ldots(b_p)_{n}(1)_{n}}.
\]
Using the fact that \((\lambda)_n = \lambda(\lambda + 1)_n^{-1}\) yields

\[
= \mu(\alpha + 1) \sum_{n=1}^{\infty} \frac{(a_1n_1)(a_2n_2)...(a_pn_p)}{(b_1n_1)(b_2n_2)...(b_pn_p)(1)n^{-2}}
\]

\[
+ (\mu \alpha + 2\mu + \alpha + 1) \sum_{n=1}^{\infty} \frac{(a_1n_1)(a_2n_2)...(a_pn_p)}{(b_1n_1)(b_2n_2)...(b_pn_p)(1)n^{-1}}
\]

\[
+ \sum_{n=1}^{\infty} \frac{(a_1n_1)(a_2n_2)...(a_pn_p)}{(b_1n_1)(b_2n_2)...(b_pn_p)(1)n}
\]

\[
= \mu(\alpha + 1) \left[\frac{(a_12)(a_22)...(a_p2)}{(b_12)(b_22)...(b_p2)} \right] pF_q(a_1 + 2; b_1 + 2, 1)
\]

\[
+ (\mu(\alpha + 2) + \alpha + 1) \left[\frac{(a_1)(a_2)...(a_p)}{(b_1)(b_2)...(b_p)} \right] pF_q(a_1 + 1; b_1 + 1, 1) + p F_q(1) - 1.
\]

But this last expression is bounded by 1 if and only if \((7)\) holds.

Since

\[
h_1(z) = z - \sum_{n=2}^{\infty} (1 - \mu + \mu n) \frac{(a_1n_1-1)(a_2n_1-1)...(a_pn_1-1)z^n}{(b_1n_1-1)(b_2n_1-1)...(b_pn_1-1)(1)n^{-1}}.
\]

\[
(9)
\]

The condition \((7)\) is also necessary for \(h_1(z)\) to be in the class \(\mathcal{T}S_p(\alpha), 0 \leq \alpha < 1\) from the Lemma 1.3

Theorem 2.2. If \(a_i > -1, (i = 1, 2, ..., p), b_j > 0, (j = 1, 2, ..., q), \prod_{i=1}^{n} a_i < 0\)

and \(\sum_{j=1}^{q} b_j > \sum_{i=1}^{p} a_i + 2\), then a necessary and sufficient condition for the function \(h(z)\) to be in the class \(\mathcal{T}S_p(\alpha), 0 \leq \alpha < 1\), is that

\[
\mu(\alpha + 1) \left[\frac{(a_1+1)(a_2+1)...(a_p+1)}{(b_1+1)(b_2+1)...(b_p+1)} \right] pF_q(a_1 + 2; b_1 + 2, 1)
\]

\[
+ (\mu(\alpha + 2) + \alpha + 1) pF_q(a_1 + 1; b_1 + 1, 1) + \frac{b_1b_2...b_q}{a_1a_2...a_p} pF_q(1) \geq 0.
\]

The condition \(\sum_{j=1}^{q} b_j > \sum_{i=1}^{p} a_i + 1 - \prod_{i=1}^{n} a_i\) is necessary and sufficient for the function \(h(z)\) to be in the class \(\mathcal{T}S_0 = S^*\), a class of starlike function with negative coefficients.
Proof. Since,

\[h(z) = z - \left| \frac{a_1a_2...a_p}{b_1b_2...b_q} \right| \sum_{n=2}^{\infty} (1 - \mu + \mu n) \frac{(a_1 + 1)_{n-2}(a_2 + 1)_{n-2}...(a_p + 1)_{n-2}z^n}{(b_1 + 1)_{n-2}(b_2 + 1)_{n-2}...(b_p + 1)_{n-2}(1)_{n-1}}. \] \tag{11}

If we show the inequality

\[\sum_{n=2}^{\infty} [n(\alpha + 1) - \alpha] (1 - \mu + \mu n) \frac{(a_1 + 1)_{n-2}(a_2 + 1)_{n-2}...(a_p + 1)_{n-2}}{(b_1 + 1)_{n-2}(b_2 + 1)_{n-2}...(b_p + 1)_{n-2}(1)_{n-1}} \leq \left| \frac{b_1b_2...b_q}{a_1a_2...a_p} \right| \] \tag{12}

then by Lemma 1.3, Theorem 2.2 is obtained. The left hand side of the equation (12) converges if \(\sum_{j=1}^{q} b_j > \sum_{i=1}^{p} a_i + 2. \) From (12)

\[\sum_{n=0}^{\infty} [(n + 2)(\alpha + 1) - \alpha] [1 - \mu + \mu(n + 2)] \frac{(a_1 + 1)_n(a_2 + 1)_n...(a_p + 1)_n}{(b_1 + 1)_n(b_2 + 1)_n...(b_p + 1)_n(1)_{n+1}} \]

\[= \mu(\alpha + 1) \left[\frac{(a_1 + 1)(a_2 + 1)...(a_p + 1)}{(b_1 + 1)(b_2 + 1)...(b_p + 1)} \right] \sum_{n=0}^{\infty} \frac{(a_1 + 2)_n(a_2 + 2)_n...(a_p + 2)_n}{(b_1 + 2)_n(b_2 + 2)_n...(b_p + 2)_n(1)_n} \]

\[+ (\mu(\alpha + 2) + \alpha + 1) \sum_{n=0}^{\infty} \frac{(a_1 + 1)_n(a_2 + 1)_n...(a_p + 1)_n}{(b_1 + 1)_n(b_2 + 1)_n...(b_p + 1)_n(1)_n} \]

\[+ \sum_{n=1}^{\infty} \frac{(a_1 + 1)_{n-1}(a_2 + 1)_{n-1}...(a_p + 1)_{n-1}}{(b_1 + 1)_{n-1}(b_2 + 1)_{n-1}...(b_p + 1)_{n-1}(1)_{n-1}} \]

\[= \mu(\alpha + 1) \left[\frac{(a_1 + 1)(a_2 + 1)...(a_p + 1)}{(b_1 + 1)(b_2 + 1)...(b_p + 1)} \right] _{pF_q}(a_1 + 2; b_1 + 2, 1) \]

\[+ (\mu(\alpha + 2) + \alpha + 1) _{pF_q}(a_1 + 1; b_1 + 1, 1) + \frac{b_1b_2...b_q}{a_1a_2...a_p} \{ _{pF_q}(1) - 1 \}. \]
Hence (12) is equivalent to
\[
\mu(\alpha + 1) \left[\frac{(a_1 + 1)(a_2 + 1)...(a_p + 1)}{(b_1 + 1)(b_2 + 1)...(b_p + 1)} \right] pF_q(a_1 + 2; b_1 + 2, 1) \\
+ (\mu(\alpha + 2) + \alpha + 1) pF_q(a_1 + 1; b_1 + 1, 1) \\
+ \frac{b_1 b_2...b_q}{a_1 a_2...a_p} pF_q(1) \leq \left| \frac{b_1 b_2...b_q}{a_1 a_2...a_p} \right| + \frac{b_1 b_2...b_q}{a_1 a_2...a_p} = 0. \tag{13}
\]
Thus (13) is valid if and only if
\[
\mu(\alpha + 1) \left[\frac{(a_1 + 1)(a_2 + 1)...(a_p + 1)}{(b_1 + 1)(b_2 + 1)...(b_p + 1)} \right] pF_q(a_1 + 2; b_1 + 2, 1) \\
+ (\mu(\alpha + 2) + \alpha + 1) pF_q(a_1 + 1; b_1 + 1, 1) + \frac{b_1 b_2...b_q}{a_1 a_2...a_p} pF_q(1) \geq 0.
\]
This is equivalent to (10). This completes the proof of the Theorem 2.2. \hfill \square

Theorem 2.3. If \(a_i > 0, i = 1, 2, ..., p, \) and \(\sum_{j=1}^{q} b_j > \sum_{i=1}^{p} a_i + 3, \) then a sufficient condition for the function \(h(z) \) to be in the class \(\mathcal{UCT}(\alpha), 0 \leq \alpha < 1, \) is that
\[
\mu(\alpha + 1) \left[\frac{(a_1 + 1)(a_2 + 1)...(a_p + 1)}{(b_1 + 1)(b_2 + 1)...(b_p + 1)} \right] pF_q(a_1 + 3; b_1 + 3, 1) \\
+ (4\mu\alpha + 5\mu + \alpha + 1) \left[\frac{(a_1 + 1)(a_2 + 1)...(a_p + 1)}{(b_1 + 1)(b_2 + 1)...(b_p + 1)} \right] pF_q(a_1 + 2; b_1 + 2, 1) \\
+ (2\mu\alpha + 4\mu + \alpha + 3) \frac{a_1 a_2...a_p}{b_1 b_2...b_q} pF_q(a_1 + 1; b_1 + 1, 1) + pF_q(1) \leq 2. \tag{14}
\]
The condition (14) is a necessary and sufficient condition for the function \(h_1(z) \) defined by (9) to be in the class \(\mathcal{UCT}(\alpha). \)

Proof. Taking \(h(z) \) defined by (6), in view of (ii) of Lemma 1.3, we need only to show that
\[
\sum_{n=2}^{\infty} n [n(\alpha + 1) - \alpha] (1 - \mu + \mu n) \frac{(a_1 + 1)(a_2 + 1)...(a_p + 1)}{(b_1 + 1)(b_2 + 1)...(b_p + 1)} \leq 1. \tag{15}
\]
The left hand side of (15) converges if \(\sum_{j=1}^{q} b_j > \sum_{i=1}^{p} a_i + 3\). From (15)

\[
\sum_{n=0}^{\infty} (n + 2)[(n + 2)(\alpha + 1) - \alpha] (1 - \mu + \mu(n + 2)) \frac{(a_1)_{n+1}(a_2)_{n+1} \ldots (a_p)_{n+1}}{(b_1)_{n+1}(b_2)_{n+1} \ldots (b_p)_{n+1}(1)_{n+1}}
\]

\[
= \mu(\alpha + 1) \sum_{n=0}^{\infty} \frac{(a_1)_{n+3}(a_2)_{n+3} \ldots (a_p)_{n+3}}{(b_1)_{n+3}(b_2)_{n+3} \ldots (b_p)_{n+3}(1)_{n+1}}
\]

\[
+ (4\mu\alpha + 5\mu + \alpha + 1) \sum_{n=0}^{\infty} \frac{(a_1)_{n+2}(a_2)_{n+2} \ldots (a_p)_{n+2}}{(b_1)_{n+2}(b_2)_{n+2} \ldots (b_p)_{n+2}(1)_{n+1}}
\]

\[
+ (2\mu\alpha + 4\mu + \alpha + 3) \sum_{n=0}^{\infty} \frac{(a_1)_{n+1}(a_2)_{n+1} \ldots (a_p)_{n+1}}{(b_1)_{n+1}(b_2)_{n+1} \ldots (b_p)_{n+1}(1)_{n+1}} + \sum_{n=1}^{\infty} \frac{(a_1)_{n}(a_2)_{n} \ldots (a_p)_{n}}{(b_1)_{n}(b_2)_{n} \ldots (b_p)_{n}(1)_{n}}.
\]

Since \((a)_{n+k} = (a)_k(a+k)_n\), we may write (16) as

\[
= \mu(\alpha + 1) \left[\frac{(a_1)_3(a_2)_3 \ldots (a_p)_3}{(b_1)_3(b_2)_3 \ldots (b_q)_3} \right] \sum_{n=0}^{\infty} \frac{(a_1 + 3)_n(a_2 + 3)_n \ldots (a_p + 3)_n}{(b_1 + 3)_n(b_2 + 3)_n \ldots (b_p + 3)_n(1)_n}
\]

\[
+ (4\mu\alpha + 5\mu + \alpha + 1) \left[\frac{(a_1)_2(a_2)_2 \ldots (a_p)_2}{(b_1)_2(b_2)_2 \ldots (b_q)_2} \right] \sum_{n=0}^{\infty} \frac{(a_1 + 2)_n(a_2 + 2)_n \ldots (a_p + 2)_n}{(b_1 + 2)_n(b_2 + 2)_n \ldots (b_p + 2)_n(1)_n}
\]

\[
+ (2\mu\alpha + 4\mu + \alpha + 3) \frac{a_1a_2 \ldots a_p}{b_1b_2 \ldots b_q} \sum_{n=0}^{\infty} \frac{(a_1 + 1)_n(a_2 + 1)_n \ldots (a_p + 1)_n}{(b_1 + 1)_n(b_2 + 1)_n \ldots (b_p + 1)_n(1)_n}
\]

\[
+ \sum_{n=0}^{\infty} \frac{(a_1)_n(a_2)_n \ldots (a_p)_n}{(b_1)_n(b_2)_n \ldots (b_p)_n(1)_n} - 1.
\]

The last expression is bounded by 1 if and only if (14) holds, hence the proof of the Theorem 2.3.

\[\square\]

Theorem 2.4. If \(a_i > -1, (i = 1, 2, \ldots, p)\), \(\prod_{i=1}^{n} a_i < 0\) and \(\sum_{j=1}^{q} b_j > \sum_{i=1}^{p} a_i + 3\), then a necessary and sufficient condition for the function \(h(z)\) to be in the class...
\(\mathcal{UCT}(\alpha), 0 \leq \alpha < 1, \) is that

\[
\mu(\alpha + 1) \left[\frac{(a_1 + 1)(a_2 + 1)\ldots(a_p + 1)}{(b_1 + 1)(b_2 + 1)\ldots(b_p + 1)} \right] pF_q(a_1 + 3; b_1 + 3, 1) \\
+ (4\mu \alpha + 5\mu + \alpha + 1) \left[\frac{(a_1 + 1)(a_2 + 1)\ldots(a_p + 1)}{(b_1 + 1)(b_2 + 1)(b_p + 1)} \right] pF_q(a_1 + 2; b_1 + 2, 1) \\
+ (2\mu \alpha + 4\mu + \alpha + 3) pF_q(a_1 + 1; b_1 + 1, 1) + \left[\frac{b_1 b_2 \ldots b_q}{a_1 a_2 \ldots a_p} \right] pF_q(1) \geq 0.
\]

(17)

Proof. Taking \(h(z) \) defined by (11), in view of (ii) of Lemma 1.3, we must show that

\[
\sum_{n=2}^{\infty} n [n(\alpha + 1) - \alpha] (1 - \mu + \mu n) \frac{(a_1 + 1)(a_2 + 1)\ldots(a_p + 1)}{(b_1 + 1)(b_2 + 1)\ldots(b_p + 1)} \geq \left| \frac{b_1 b_2 \ldots b_q}{a_1 a_2 \ldots a_p} \right|.
\]

(18)

The left side of (18) converges if \(\sum_{j=1}^{q} b_j > \sum_{i=1}^{p} a_i + 3 \). Now from (18)

\[
\sum_{n=0}^{\infty} (n + 2) [(n + 2)(\alpha + 1) - \alpha] (1 - \mu + \mu(n + 2)) \frac{(a_1 + 1)(a_2 + 1)\ldots(a_p + 1)}{(b_1 + 1)(b_2 + 1)\ldots(b_p + 1)} \\
= \mu(\alpha + 1) \sum_{n=0}^{\infty} \frac{(a_1 + 1)(a_2 + 1)\ldots(a_p + 1)}{(b_1 + 1)(b_2 + 1)\ldots(b_p + 1)} \\
+ (4\mu \alpha + 5\mu + \alpha + 1) \sum_{n=0}^{\infty} \frac{(a_1 + 1)(a_2 + 1)\ldots(a_p + 1)}{(b_1 + 1)(b_2 + 1)\ldots(b_p + 1)} \\
+ (2\mu \alpha + 4\mu + \alpha + 3) \sum_{n=0}^{\infty} \frac{(a_1 + 1)(a_2 + 1)\ldots(a_p + 1)}{(b_1 + 1)(b_2 + 1)\ldots(b_p + 1)} \\
+ \left[\frac{b_1 b_2 \ldots b_q}{a_1 a_2 \ldots a_p} \right] \sum_{n=0}^{\infty} \frac{(a_1 + 1)(a_2 + 1)\ldots(a_p + 1)}{(b_1 + 1)(b_2 + 1)\ldots(b_p + 1)}
\]
\begin{align*}
&= \mu(\alpha + 1) \left[\frac{(a_1 + 1)(a_2 + 1)...(a_p + 1)}{(b_1 + 1)(b_2 + 1)...(b_p + 1)} \right] \sum_{n=0}^{\infty} \frac{(a_1 + 3)_n(a_2 + 3)_n...(a_p + 3)_n}{(b_1 + 3)_n(b_2 + 3)_n...(b_p + 3)_n(1)_n} \\
&+ (4\mu\alpha + 5\mu + \alpha + 1) \left[\frac{(a_1 + 1)(a_2 + 1)...(a_p + 1)}{(b_1 + 1)(b_2 + 1)...(b_p + 1)} \right] \sum_{n=0}^{\infty} \frac{(a_1 + 2)_n(a_2 + 2)_n...(a_p + 2)_n}{(b_1 + 2)_n(b_2 + 2)_n...(b_p + 2)_n(1)_n} \\
&+ (2\mu\alpha + 4\mu + \alpha + 3) \sum_{n=0}^{\infty} \frac{(a_1 + 1)_n(a_2 + 1)_n...(a_p + 1)_n}{(b_1 + 1)_n(b_2 + 1)_n...(b_p + 1)_n(1)_n} \\
&+ \left[\frac{b_1 b_2...b_q}{a_1 a_2...a_p} \right] \sum_{n=0}^{\infty} \frac{(a_1)_n(a_2)_n...(a_p)_n}{(b_1)_n(b_2)_n...(b_p)_n(1)_n} - \left[\frac{b_1 b_2...b_q}{a_1 a_2...a_p} \right].
\end{align*}

This last expression is bounded by \(\left| \frac{b_1 b_2...b_q}{a_1 a_2...a_p} \right| \) if and only if (17) holds. Thus the proof of the Theorem 2.4 is completed.

\textbf{Concluding Remak:} If \(p = 2, q = 1 \), the results reduces to Dixit and Pathak[4] result.

\section*{References}

