MAPPING ON GENERALIZED VAGUE SOFT EXPERT SET

Khaleed Alhazaymeh¹, Nasruddin Hassan²

¹,²School of Mathematical Sciences
Universiti Kebangsaan Malaysia
43600 UKM, Bangi Selangor, MALAYSIA

Abstract: We introduce the mapping on generalized vague soft expert set and its operations are studied. The basic operations of mapping on generalized vague soft expert set theory are defined.

AMS Subject Classification: 03B52, 03E72
Key Words: fuzzy soft expert set, generalized fuzzy soft expert set, soft expert set, vague soft set

1. Introduction

The notion of mapping on soft classes are introduced by Kharal and Ahmad [1]. One of the most important new mathematical tools is soft set theory defined by Molodtsov [2]. This is extended to fuzzy soft sets [3], [4], [5], [6], [7] and then to vague soft sets [8], [9], [10], [11], [12] followed by interval valued vague soft sets [13], [14], [15]. Fuzzy sets were applied to genetic algorithms [16], [17] and into multi Q-fuzzy [18]. In this paper we introduce the notion of mapping on generalized vague soft expert classes and study the properties of generalized vague soft expert images and generalized vague soft expert inverse images of generalized vague soft expert sets. Finally, we give some examples of mapping on generalized vague soft expert classes.

Received: November 26, 2013

© 2014 Academic Publications, Ltd.
url: www.acadpubl.eu

§Correspondence author

In this paper, we introduce the notion of a mapping on generalized vague soft expert classes. Generalized vague soft expert classes are collections of generalized vague soft expert sets. We also define and study the properties of generalized vague soft expert images and generalized vague soft expert inverse images of generalized vague soft expert sets, and support them with example and theorems.

Definition 2.1. Let U be a universe and E be a set of parameters, X a set of expert (agents) and $O = \{1 = \text{agree}, 0 = \text{disagree}\}$ a set of opinions. Let $Z = E \times X \times O$. Then the collection of all generalized vague soft expert sets over U with parameters from Z is called a generalized vague soft expert class and is denoted as (U, Z).

Definition 2.2. Let (U, Z) and (Y, \hat{Z}) be a generalized vague soft expert classes. Let $r : U \to Y$ and $s : Z \to \hat{Z}$ be mappings. Then a mapping $f : (U, Z) \to (Y, \hat{Z})$ is defined as follows:

For a generalized vague soft expert set $(\tilde{F}_\mu, A) \in (U, Z)$, $f(\tilde{F}_\mu, A) \in (Y, \hat{Z})$ is a generalized vague soft expert image of the expert vague soft set (\tilde{F}_μ, A).

Definition 2.3. Let (U, Z) and (Y, \hat{Z}) be a generalized vague soft expert classes. Let $f^{-1} : (Y, \hat{Z}) \to (U, Z)$, $r : U \to Y$ and $s : Z \to \hat{Z}$ be mappings. For a generalized vague soft expert set $(\tilde{G}_\delta, B) \in (Y, \hat{Z})$ where $B \subseteq Z'$, $f^{-1}(\tilde{G}_\delta, B) \in (U, Z)$ is a generalized vague soft expert set obtained as follows:

$$f^{-1}(\tilde{G}_\delta, B)(\alpha)(u) = \begin{cases} \{G(s(\alpha))(r(u_j)), \delta(s(\alpha))\}, & \text{if } \alpha \in s^{-1}(B) \\ (\phi, 0), & \text{otherwise} \end{cases}$$

for $\alpha \in s^{-1}(B) \subseteq Z$, and $u_j \in U, j = \{1, 2, ..., m\}$. $f^{-1}(\tilde{G}_\delta, B)$ is called a generalized vague soft expert inverse image of the generalized vague soft expert set (\tilde{G}_δ, B).
Example 2.1. Let $U = \{u_1, u_2, u_3\}$, $Y = \{y_1, y_2, y_3\}$ and let $A \subseteq Z = \{(e_1, p, 1), (e_2, p, 0), (e_3, p, 1)\}$, and $A' \subseteq Z' = \{(e_1', p', 1), (e_2', p', 0), (e_1', q', 1)\}$.

Suppose that (\widetilde{U}, A) and (\widetilde{Y}, A') are generalized vague soft expert classes. Define $r : U \rightarrow Y$ and $s : A \rightarrow A'$ as follows:

$r(u_1) = y_1$, $r(u_2) = y_3$, $r(u_3) = y_1$, $s(e_1, p, 1) = (e_1', p', 0)$, $s(e_2, p, 0) = (e_1', p', 1)$, $s(e_3, p, 1) = (e_1', p', 1)$.

Let (\tilde{F}_μ, A) and (\tilde{G}_δ, B) be two generalized vague soft expert sets over U and Y respectively such that

$(\tilde{F}_\mu, A) = \left\{ \left(e_1, p, 1 \right), \left\{ \frac{u_1}{0.8, 0.8}, \frac{u_2}{0.5, 0.7}, \frac{u_3}{0.4, 0.5} \right\}, 0.5 \right\},$

$(e_2, p, 0), \left\{ \frac{u_1}{0.7, 0.8}, \frac{u_2}{0.1, 0.6}, \frac{u_3}{0.2, 0.5} \right\}, 0.6 \right\},$

$(e_3, p, 1), \left\{ \frac{u_1}{0.6, 0.7}, \frac{u_2}{0.7, 0.8}, \frac{u_3}{0.9, 0.9} \right\}, 0.7 \right\},$

$(\tilde{G}_\delta, A') = \left\{ \left(e_1', p', 1 \right), \left\{ \frac{y_1}{0.7, 0.7}, \frac{y_2}{0.4, 0.6}, \frac{y_3}{0.3, 0.4} \right\}, 0.4 \right\},$

$(e_2', p', 0), \left\{ \frac{y_1}{0.6, 0.7}, \frac{y_2}{0.6, 0.7}, \frac{y_3}{0.8, 0.8} \right\}, 0.5 \right\},$

$(e_1', q', 1), \left\{ \frac{y_1}{0.5, 0.6}, \frac{y_2}{0.6, 0.7}, \frac{y_3}{0.1, 0.4} \right\}, 0.6 \right\}.$

Then we define the mapping from $f : (\widetilde{U}, \widetilde{Z}) \rightarrow (\widetilde{Y}, \widetilde{Z})$ as follows:

For generalized vague soft expert set (\tilde{F}_μ, A) in (X, Z), $f((\tilde{F}_\mu, A), K)$ is a generalized vague soft expert set in $(\widetilde{Y}, \widetilde{E})$ where

$K = s(A) = \{(e_1', p', 1), (e_2', p', 0), (e_1', q', 1)\}$ and is obtained as follows:

$$f((\tilde{F}_\mu, A), (e_1', p', 1)) = \left\{ \bigvee_{u \in \varphi (x, i) = \{1, 2, 3\}} \left(\bigvee_{\alpha \in F(\alpha)} x \right), \bigvee_{\alpha \in \mu(\alpha)} \right\}.$$

Now for $\left(\bigvee_{u \in \varphi (x, i) = \{1, 2, 3\}} \left(\bigvee_{\alpha \in F(\alpha)} x \right), \bigvee_{\alpha \in \mu(\alpha)} \right\}$ and for $i = 1$, we have

$$\bigvee_{u \in \{u_1, u_3\}}^{\alpha \in \{e_2, p, 0\}} F(\alpha) (u) = \bigvee_{u \in \{u_1, u_3\}} F(e_2, p, 0) (u).$$
For a generalized vague soft expert set \(\tilde{\varphi} \), the inverse images are:

\[
\bigvee_{u \in \{x_2\}} \left(\bigvee_{\alpha \in \{e_2, p, 0\}} F(\alpha) \right)(u) = 0 \text{ since } r^{-1}(y_2) = \phi.
\]

For \(i = 3 \),

\[
\bigvee_{u \in \{u_2\}} \left(\bigvee_{\alpha \in \{e_3\}} F(\alpha) \right)(u) = (F(e_1))(u_2)
\]

\[
= \left(\left\{ \frac{u_1}{(0.7,0.8)}, \frac{u_2}{(0.1,0.6)}, \frac{u_3}{(0.2,0.5)} \right\} \right)(u_2)
\]

\[
= \langle 0.1, 0.6 \rangle.
\]

Now for \(\bigvee_{e_3} \mu(\alpha) \), we have

\[
\bigvee_{e_3} \mu(e_3) = \mu(e_3) = 0.7.
\]

Then

\[
f \left(\tilde{F}_\mu, A \right)(e_2', p', 0) = \left\{ (e_2', p', 0), \left\{ \frac{y_1}{(0.7,0.5)}, \frac{y_2}{(0.1,0.6)} \right\}, 0.7 \right\}
\]

By similar calculations, consequently, we get

\[
\left(f \left(\tilde{F}_\mu, A \right), K \right) = \left\{ (e_1', p', 1), \left\{ \frac{y_1}{(0.7,0.5)}, \frac{y_2}{(0.1,0.6)} \right\}, 0.7 \right\}
\]

\[
(e_2', p', 0), \left\{ \frac{y_1}{(0.8,0.8)}, \frac{y_2}{(0.1,0.6)} \right\}, 0.5 \right\},
\]

\[
(e_1', q', 1), \left\{ \left\{ \frac{y_1}{(0.9,0.7)}, \frac{y_2}{(0.7,0.8)} \right\}, 0.6 \right\} \right\}
\]

Next, for the generalized vague soft expert inverse images, we have the following:

For a generalized vague soft expert set \(\tilde{G}_\delta, A' \) in \(\tilde{Y}, \tilde{Z} \),

\(f^{-1}(\tilde{G}_\delta, A'), D \) is a generalized vague soft expert set in \(\tilde{U}, \tilde{Z} \) where

\(D = s^{-1}(A') = \{ (e_1, p, 1), (e_2, p, 0), (e_3, p, 1) \} \) and obtained as follows:

\[
f^{-1} \left(\tilde{G}_\delta, B \right) ((e_1, p, 1))(u_1) = G((e_1', p, 1) (r(u_1)))
\]

\[
= G((e_1', p, 1))(y_1)
\]

\[
= \left\{ \frac{y_1}{(0.6,0.7)}, \frac{y_2}{(0.5)}, \frac{y_3}{(0.1,0.4)} \right\} (y_1) = \langle 0.6, 0.7 \rangle.
\]

For \(j = 2 \), we have \(f^{-1}(G, B)((e_1, p, 1))(u_2) = G((e_1', p, 1))(y_3) \)
and the union and intersection of generalized vague soft expert images

By similar calculations, consequently, we get

\[MAPPING\ ON\ GENERALIZED\ VAGUE\ SOFT\ EXPERT\ SET\ 373 \]

\[f^{-1}(G, B)((e_1, p, 1))(x_3) = G(e_2)(y_1) \]

\[= \left\{ \frac{u_1}{(0.6, 0.7)}, \frac{u_2}{(0.9, 0.5)}, \frac{u_3}{(0.1, 0.4)} \right\} (y_1) = (0.6, 0.7). \]

Now for \(\delta(s(\alpha)) \), we have \(s(e_3') = 0.6 \). Then

\[f^{-1}(\tilde{G}_\delta, B) = ((e_1, p, 1), \left\{ \frac{u_1}{(0.6, 0.7)}, \frac{u_2}{(0.1, 0.4)}, \frac{u_3}{(0.6, 0.7)} \right\}, 0.6) \]

By similar calculations, consequently, we get

\[\left(f^{-1}(\tilde{G}_\delta, A), D \right) = \left\{ (e_1, p, 1), \left\{ \frac{u_1}{(0.5, 0.6)}, \frac{u_2}{(0.8, 0.8)}, \frac{u_3}{(0.5, 0.6)} \right\}, 0.5 \right\}, \]

\[(e_2, p, 0), \left\{ \frac{u_1}{(0.6, 0.7)}, \frac{u_2}{(0.1, 0.4)}, \frac{u_3}{(0.6, 0.7)} \right\}, 0.6 \right\}, \]

\[(e_3, p, 1), \left\{ \frac{u_1}{(0.7, 0.7)}, \frac{u_2}{(0.3, 0.4)}, \frac{u_3}{(0.7, 0.7)} \right\}, 0.4 \right\}. \]

Definition 2.4. Let \(f : (\tilde{U}, \tilde{X}) \rightarrow (\tilde{Y}, \tilde{X}) \) be a mapping and \((\tilde{F}_\mu, A)\) and \((\tilde{G}_\mu, B)\) a generalized vague soft expert sets in \((\tilde{X}, E)\). Then for \(\beta \in \tilde{X} \),

the union and intersection of generalized vague soft expert images \((\tilde{F}_\mu, A)\) and \((\tilde{G}_\delta, B)\) are defined follows:

\[\left(f(\tilde{F}_\mu, A) \bigvee f(\tilde{G}_\delta, B) \right)(\beta)(y) = f(\tilde{F}_\mu, A)(\beta)(y) \bigvee f(\tilde{G}_\delta, B)(\beta)(y). \]

\[\left(f(\tilde{F}_\delta, A) \bigwedge f(\tilde{G}_\delta, B) \right)(\beta)(y) = f(\tilde{F}_\mu, A)(\beta)(y) \bigwedge f(\tilde{G}_\delta, B)(\beta)(y). \]

Definition 2.5. Let \(f : (\tilde{U}, \tilde{X}) \rightarrow (\tilde{Y}, \tilde{X}) \) be a mapping and \((\tilde{F}_\mu, A)\) and \((\tilde{G}_\delta, B)\) a generalized vague soft expert sets in \((\tilde{X}, E)\). Then for \(\beta \in \tilde{X}, \)

the union and intersection of generalized vague soft expert images \((\tilde{F}_\mu, A)\) and \((\tilde{G}_\delta, B)\) are defined follows:

\[\left(f^{-1}(\tilde{F}_\mu, A) \bigvee f^{-1}(\tilde{G}_\delta, B) \right)(\alpha)(u) = f^{-1}(\tilde{F}_\mu, A)(\alpha)(u) \bigvee f^{-1}(\tilde{G}_\delta, B)(\alpha)(u). \]

\[\left(f^{-1}(\tilde{F}_\mu, A) \bigwedge f^{-1}(\tilde{G}_\delta, B) \right)(\alpha)(u) = f^{-1}(\tilde{F}_\mu, A)(\alpha)(u) \bigwedge f^{-1}(\tilde{G}_\delta, B)(\alpha)(u). \]
Proposition 2.1. Let \(f : \widehat{(U, X)} \rightarrow \widehat{(Y, \hat{X})} \) be a mapping. Then for generalized vague soft expert sets \(\widehat{(\tilde{F}_\mu, A)} \) and \(\widehat{(\tilde{G}_\delta, B)} \) in the generalized vague soft expert class \(\widehat{(U, X)} \),

1. \(f(\phi) = \phi \).
2. \(f(X) \subseteq Y \).
3. \(f \left(\left(\tilde{F}_\mu, A \right) \bigvee \left(\tilde{G}_\delta, B \right) \right) = f \left(\tilde{F}_\mu, A \right) \bigvee f \left(\tilde{G}_\delta, B \right) \).
4. \(f \left(\left(\tilde{F}_\mu, A \right) \bigwedge f \left(\tilde{G}_\delta, B \right) \right) \subseteq f \left(\tilde{F}_\mu, A \right) \bigwedge f \left(\tilde{G}_\delta, B \right) \).
5. If \(\left(\tilde{F}_\mu, A \right) \subseteq \left(\tilde{G}_\delta, B \right) \), then \(f \left(\tilde{F}_\mu, A \right) \subseteq f \left(\tilde{G}_\delta, B \right) \).

Proof. The proof is straightforward.

Proposition 2.2. Let \(f : \widehat{(U, X)} \rightarrow \widehat{(Y, \hat{X})} \) be a mapping. Then for generalized vague soft expert sets \(\widehat{(\tilde{F}_\mu, A)}, \left(\tilde{G}_\delta, B \right) \) in the generalized vague soft expert class \(\widehat{(U, \hat{X})} \), we have:

1. \(f^{-1}(\emptyset) = \phi \).
2. \(f^{-1}(Y) = X \).
3. \(f^{-1} \left(\left(\tilde{f}_\mu, A \right) \bigvee \left(\tilde{G}_\delta, B \right) \right) = f^{-1} \left(\tilde{F}_\mu, A \right) \bigvee f^{-1} \left(\tilde{G}_\delta, B \right) \).
4. \(f^{-1} \left(\left(\tilde{f}_\mu, A \right) \bigwedge \left(\tilde{G}_\delta, B \right) \right) = f^{-1} \left(\tilde{F}_\mu, A \right) \bigwedge f \left(\tilde{G}_\delta, B \right) \).
5. If \(\left(\tilde{f}_\mu, A \right) \subseteq \left(\tilde{G}_\delta, B \right) \), then \(f^{-1} \left(\tilde{f}_\mu, A \right) \subseteq f^{-1} \left(\tilde{G}_\delta, B \right) \).

Proof. The proof is straightforward.

3. Conclusion

In this paper, we studied a mapping on generalized vague soft expert classes and its properties. We give some illustrative examples of mapping on generalized vague soft expert set.
Acknowledgments

We are indebted to Universiti Kebangsaan Malaysia for funding this research under the grant BKBP-FST-K005560.

References

