SOME EFFICIENT IMPLEMENTATION SCHEMES
FOR IMPLICIT RUNGE-KUTTA METHODS

R. Vigneswaran¹ §, S. Kajanthan²

¹,²Department of Mathematics and Statistics
Faculty of Science
University of Jaffna
SRI LANKA

Abstract: Several iteration schemes have been proposed to solve the non-linear equations arising in the implementation of implicit Runge-Kutta methods. As an alternative to the modified Newton scheme, some iteration schemes with reduced linear algebra costs have been proposed. A scheme of this type proposed in [9] avoids expensive vector transformations and is computationally more efficient. The rate of convergence of this scheme is examined in [9] when it is applied to the scalar test differential equation \(x' = qx \) and the convergence rate depends on the spectral radius of the iteration matrix \(M(z) \), a function of \(z = hq \), where \(h \) is the step-length. In this scheme, we require the spectral radius of \(M(z) \) to be zero at \(z = 0 \) and at \(z = \infty \) in the \(z \)-plane in order to improve the rate of convergence of the scheme. New schemes with parameters are obtained for three-stage and four-stage Gauss methods. Numerical experiments are carried out to confirm the results obtained here.

AMS Subject Classification: 65L04, 65L05
Key Words: implementation, Gauss methods, rate of convergence, stiff systems

1. Background

Let us consider an initial value problem for stiff systems of \(n(\geq 1) \) ordinary
differential equations

\[x' = f(x(t)), \quad x(t_0) = x_0, \quad f : \mathbb{R}^n \rightarrow \mathbb{R}^n, \] (1)

where \(f \) is assumed to be as smooth as necessary. An \(s \)-stage implicit Runge-Kutta method computes an approximation \(x_{r+1} \) to the solution \(x(t_{r+1}) \) at grid point \(t_{r+1} = t_r + h \) by

\[x_{r+1} = x_r + h \sum_{i=1}^{s} b_i f(y_i) \]

where the internal approximations \(y_1, y_2, \cdots, y_s \) satisfy the \(sn \) equations

\[y_i = x_r + h \sum_{j=1}^{s} a_{ij} f(y_j), \quad i = 1, 2, \cdots, s \] (2)

\(A = [a_{ij}] \) is the real coefficient matrix and \(b = (b_1, b_2, \cdots, b_s)^T \) is the column vector of the Runge-Kutta method. Let \(Y = y_1 \oplus y_2 \oplus \cdots \oplus y_s \in \mathbb{R}^{sn} \) and let \(F(Y) = f(y_1) \oplus f(y_2) \oplus \cdots \oplus f(y_s) \in \mathbb{R}^{sn} \). Then equation (2) may be represented by the compact form

\[Y = e \otimes x_r + h(A \otimes I_n)F(Y) \] (3)

where \(e = (1, 1, \cdots, 1)^T \) and \(A \otimes I_n \) is the Kronecker product of the matrix \(A \) with \(n \times n \) identity matrix \(I_n \) and, in general \(A \otimes B = [a_{ij}B] \). This article deals with methods suitable for stiff systems so that the matrix \(A \) is not strictly lower triangular and, in particular, is concerned with Gauss methods since they have highest order and good stability properties.

Equation (3) may be solved by a modified Newton iteration. Let \(J \) be the Jacobian of \(f \) evaluated at some recent point \(x_r \), updated infrequently. The modified Newton scheme evaluates \(Y^1, Y^2, Y^3, \cdots, \) to satisfy

\[(I_{sn} - hA \otimes J)(Y^m - Y^{m-1}) = D(Y^{m-1}), \quad m = 1, 2, \cdots \] (4)

where \(D \) is the approximation defect, \(D(Z) = e \otimes x_r - Z + h(A \otimes I_n)F(Z) \). In each step of this iteration, a set of \(sn \) linear equations has to be solved. Schemes have been developed, to solve equation (4), which use the fact that \(J \) is constant [1], [6], [7]. In other schemes advantage is taken of the special forms of some implicit methods [2], [4], [5], [12].

In another approach, schemes based directly on iterative procedure have been developed [3], [8], [9], [10],[13],[21]. For a singly implicit method, there is a non-singular matrix \(S \) so that \(S^{-1}AS = \lambda(I_s - L)^{-1} \), where \(L \) is zero except
for some ones on the sub-diagonal. On applying this transformation, the scheme (4) becomes

\[
[I_s \otimes (I_n - h\lambda J)]E^m = [(I_s - L)S^{-1} \otimes I_n]D(Y^{m-1}) + (L \otimes I_n)E^m,
\]

\[
Y^m = Y^{m-1} + (S \otimes I_n)E^m, \quad m = 1, 2, 3, \ldots
\]

Cooper and Butcher [8] proposed an iterative scheme, sacrificing superlinear convergence for reduced linear algebra cost, which may be regarded as a generalization of the scheme (5) for singly implicit methods. They considered the scheme

\[
[I_s \otimes (I_n - h\lambda J)]E^m = (B_1S^{-1} \otimes I_n)D(Y^{m-1}) + (L_1 \otimes I_n)E^m,
\]

\[
Y^m = Y^{m-1} + (S \otimes I_n)E^m, \quad m = 1, 2, 3, \ldots
\]

where \(B_1\) and \(S\) are real \(s \times s\) non-singular matrices and \(L_1\) is strictly lower triangular matrix of order \(s\), and \(\lambda\) is a real constant. Cooper and Butcher [8] showed that successive over-relaxation may be applied to improve the rate of convergence for scalar test problem. Peat and Thomas [19], after extensive numerical experiments, concluded that the schemes proposed by Cooper and Butcher are, in general, the most efficient schemes for integration of stiff problems. Gladwell and Thomas [15] recommended this scheme for the two-stage Gauss method. Each step of the scheme (6) requires \(s\) function evaluations and the solution of \(s\) sets of \(n\) linear equations. These \(s\) sub-steps are performed in sequence and it is not possible to compute elements of \(Y^m = y_1^m \oplus y_2^m \oplus \cdots \oplus y_s^m\) until all sub-steps are completed. Cooper and Vignesvaran [9] considered a scheme where these elements are obtained in sequence and the approximation defect is updated after each sub-step completed. Only one vector transformation is needed for each full step so that this scheme is more efficient. Another scheme was proposed by Cooper and Vignesvaran [10] in order to obtain improved rate of convergence, by adding extra sub-steps. Vigneswaran [20] obtained further improvement in the rate of convergence of the iteration scheme proposed in [10]. Gonzalez, Gonzalez and Montijano [16] proposed a scheme for Gauss methods using an iterative procedure of semi-implicit type in which the Jacobian does not appear explicitly. A scheme of this type was proposed in [17] in which convergence and stability properties of the scheme are discussed in detail.
2. Efficient Iteration Scheme

Cooper and Vignesvaran [9] proposed the scheme

\[
[I_s \otimes (I_n - h\lambda J)]E^m = (L \otimes I_n)(e \otimes x_r - Y^m) \\
+ (U \otimes I_n)(e \otimes x_r - Y^{m-1}) \\
+ h(T \otimes I_n)F(Y^m) \\
+ h(R \otimes I_n)F(Y^{m-1}) \\
Y^m = Y^{m-1} + E^m, m = 1, 2, \ldots ,
\]

(7)

where \(B \) is a real non-singular matrix such that \(B = L + U \) and \(BA = T + R \), \(L \) and \(T \) are strictly lower triangular matrices, \(U \) and \(R \) are upper triangular matrices, and \(\lambda \) is a real constant. Cooper and Vignesvaran [9] showed that \(D(Y) = 0 \) if the sequence \(\{Y^m\} \) has a limit \(Y \) and \(f \) is continuous on \(\mathbb{R}^n \). They observed that the scheme can be implemented efficiently by updating \(Y^{m-1} \) and \(F(Y^{m-1}) \) as soon as each element of \(Y^m = y^m_1 \oplus y^m_2 \oplus \cdots \oplus y^m_s \) is computed. The work involved is no more than is needed to carry out an evaluation of \(D(Y^{m-1}) \) followed by a transformation to \((B \otimes I_n)D(Y^{m-1}) \).

Cooper and Vignesvaran [9] tested the rate of convergence of this scheme when it is applied to the scalar test problem \(x' = qx \) with rapid convergence required for all \(z \in \mathbb{C}^- \), where \(\mathbb{C}^- = \{ z \in \mathbb{C} : \text{Re} \leq 0 \} \). For this test problem, the scheme gives (7) gives

\[
Y - Y^m = M(z)(Y - Y^{m-1}), \quad m = 1, 2, \ldots ,
\]

and the rate of convergence depends on the spectral radius \(\rho[M(z)] \) of the iteration matrix

\[
M(z) = I_s - [(I_s + L - z(\lambda I_s + T)]^{-1}B(I_s - zA).
\]

(8)

Cooper and Vignesvaran[9] imposed the condition that the iteration matrix \(M \) has only one non-zero eigenvalue \(\phi \),

\[
\phi(z) = 1 - \beta \frac{\det(I_s - zA)}{(1 - \lambda z)^s},
\]

(9)

so that the spectral radius, \(\rho[M(z)] \), given by \(\rho[M(z)] = |\phi(z)| \) and \(\lambda \) and \(\beta(= \det B) \) can be chosen to solve the problem

\[
\min_{\lambda, \beta} \max_{z \in \mathbb{C}^-} \rho[M(z)].
\]

(10)
To solve the minimization problem (10), when \(\lambda > 0 \) it follows from (9) that \(\phi \) is analytic and bounded on \(\mathbb{C}^- \) and hence \(|\phi| \) attains its maximum on the imaginary axis \(z = iy, y \) real. The polynomial \(p \), defined by

\[
p(\omega) = |\phi(iy)|^2, \quad \omega = \frac{1}{1 + (\lambda y)^2},
\]

is a polynomial of degree \(s \). For a given method, the coefficients of \(p \) depends on \(\lambda \) and \(\beta \) only and Cooper and Vignesvaran[9] obtained these parameters to minimize the maximum of \(p \) on \([0, 1]\) for the Gauss methods of order 4, 6 and 8 respectively.

Consider the three-stage Gauss method with matrix of coefficients

\[
A = \begin{bmatrix}
\frac{5}{36} & \frac{2}{9} - \frac{\sqrt{15}}{15} & \frac{5}{36} - \frac{\sqrt{15}}{30} \\
\frac{5}{36} + \frac{\sqrt{15}}{24} & \frac{2}{9} & \frac{5}{36} - \frac{\sqrt{15}}{24} \\
\frac{5}{36} + \frac{\sqrt{15}}{30} & \frac{2}{9} + \frac{\sqrt{15}}{15} & \frac{5}{36}
\end{bmatrix}
\]

(12)

and \(\det(I-zA) = 1 - \frac{1}{2}z + \frac{1}{10}z^2 - \frac{1}{120}z^3 \).

Cooper and Vignesvaran[9] obtained the optimum values \(\lambda = 0.202740067 \) and \(\beta = 1.159572736 \) when solving the problem (10). For these values of \(\lambda \) and \(\beta \), \(\rho[M(z)] < 0.1599 \) for all \(z \in \mathbb{C}^- \).

Next it remains to choose the elements of \(B = [b_{ij}] \) so that the iteration matrix \(M(z) = [m_{ij}(z)] \) is strictly upper triangular matrix except that \(m_{ss}(z) = \phi \), a non-zero eigenvalue. For the three-stage Gauss method, the condition on \(M(z) \) gives

\[
\begin{align*}
b_{11} &= 1, \\
b_{12}a_{21} + b_{13}a_{31} &= \lambda - a_{11}, \\
b_{12}(a_{22} - \lambda) + b_{13}a_{32} &= -a_{12}, \\
b_{21}b_{12} - b_{22} &= -1, \\
b_{21}(a_{12} - b_{12}a_{11}) + b_{22}(a_{22} - a_{21}b_{12}) + b_{23}(a_{32} - a_{31}b_{12}) &= \lambda, \\
b_{31}b_{12} &= 0, \\
b_{31}a_{11} + b_{32}a_{21} + b_{33}a_{31} &= 0.
\end{align*}
\]

(13)
From (13), it happens that $b_{31} = 0$. Again the equations (13) together with
\[
\det B = \beta \n\]
may be solved by choosing $b_{21} = 0$ and this gives
\[
B = \begin{bmatrix}
1 & 0.151290053 & 0.068750541 \\
0 & 1 & 0.058981649 \\
0 & -0.983175783 & 1.101583408
\end{bmatrix}.
\] (14)

Consider the four-stage Gauss method with matrix of coefficents \(A = [a_{ij}] \) obtained by solving the sets of equations
\[
\sum_{j=1}^{4} a_{ij} c_j^{r-1} = \frac{c_i^r}{r}, \quad r = 1, 2, 3, 4,
\]
for each \(i = 1, 2, 3, 4 \), where \(c_1, c_2, c_3, c_4 \) are the zeros of \(P_4(2x - 1) \), the transformed legendre polynomial of degree 4. For this method,
\[
\det(I - zA) = 1 - \frac{1}{2} z + \frac{3}{28} z^2 - \frac{1}{84} z^3 + \frac{1}{1680} z^4.
\]
The condition on \(M(z) \) with the choices $b_{31} = 0$ and $b_{41} = b_{42} = 0$ give a system of equations which may be ordered as a sequence of sets of linear equations given below:
\[
\begin{align*}
 b_{11} &= 1, \\
b_{12}a_{21} + b_{13}a_{31} + b_{14}a_{41} &= (\lambda - a_{11}), \\
b_{12}(a_{22} - \lambda) + b_{13}a_{32} + b_{14}a_{42} &= -a_{12}, \\
b_{12}a_{23} + b_{13}(a_{33} - \lambda) + b_{14}a_{43} &= -a_{13}, \\
b_{12}b_{21} - b_{22} &= -1, \\
b_{13}b_{21} - b_{23} &= 0, \\
(b_{12}a_{11} - a_{12})b_{21} + (b_{12}a_{21} - a_{22})b_{22} + (b_{12}a_{31} - a_{32})b_{23} + (b_{12}a_{41} - a_{42})b_{24} &= -\lambda, \\
(a_{13} - b_{13}a_{11})b_{21} + (a_{23} - b_{13}a_{21})b_{22} + (a_{33} - b_{13}a_{31})b_{23} + (a_{43} - b_{13}a_{41})b_{24} &= 0,
\end{align*}
\] (15) (16)
SOME EFFICIENT IMPLEMENTATION SCHEMES...

\begin{align*}
 b_{33} &= 1, \\
 b_{32}a_{21} + b_{34}a_{41} &= -a_{31}, \\
 b_{32}a_{23} + b_{34}a_{43} &= \lambda - a_{33}, \\
 b_{43}a_{31} + b_{44}a_{41} &= 0.
\end{align*}

(17)

(18)

Cooper and Vignesvaran[9] showed that these equations can be solved only for one positive value of \(\lambda\), \(\lambda = 0.146840443\) and they obtained the optimum value \(\beta = 1.034\) to solve the problem (10). In this case, \(\rho[M(z)] < 0.3467\) for \(\text{Re}(z) \leq 0\). With these values of \(\lambda\) and \(\beta\), the set of equations (15),(16),(17),(18) and the equation \(\det B = \beta\) give

\[
B = \begin{bmatrix}
1 & 0.265166833 & 0.079402432 & -0.018488567 \\
0.124164683 & 1.032924356 & 0.009858978 & 0.124164683 \\
0 & -0.786754443 & 1 & -0.108118541 \\
0 & 0 & -1.109340683 & 1.045019753
\end{bmatrix}.
\]

(19)

3. Schemes with Improving Rates of Convergence

In this section, additional constraints, which require super-linear convergence at the origin and infinity, are imposed on the spectral radius of the iteration matrix \(M(z)\) in addition to the condition that \(M(z)\) has only one non-zero eigenvalue. The results were obtained for the two-stage Gauss method in [22]. In this paper, new schemes corresponding to the iteration scheme (7) for three-stage and four-stage Gauss methods are obtained respectively.

3.1. The Case \(\rho[M(z)] = 0\) at \(z = 0\)

For the three-stage Gauss method, the additional constraint \(\rho[M(z)] = 0\) at \(z = 0\) gives \(\beta = 1\). Therefore, the other parameter \(\lambda\) has to be chosen to solve
the problem (10). It follows from (11) that the polynomial p is given by
\[p(\omega) = a_0\omega(1 - \omega)^2 + (1 - \omega)[a_1\omega - a_2(1 - \omega)]^2, \]
where $a_0 = 3 - \frac{1}{10}\lambda^2$, $a_1 = 3 - \frac{1}{2}\lambda$, $a_2 = 1 - \frac{1}{120}\lambda^2$.

A simple grid search procedure shows that good approximation to the optimum value of λ to minimize the maximum of p on $[0,1]$ is given by $\lambda = 0.191729022$. Again the condition on $M(z)$ gives the set of equations (13) and these equations together with $\det B = \beta$ may be solved by choosing $b_{21} = 0$. This gives
\[
B = \begin{bmatrix}
1 & 0.115697224 & 0.067542178 \\
0 & 1 & 0.009448755 \\
0 & -0.885047715 & 0.991637400
\end{bmatrix}. \tag{20}
\]

In this case $\rho[M(z)] < 0.2326$ for all $z \in \mathbb{C}^-$.

For the four-stage Gauss method, the additional constraint $\rho[M(z)] = 0$ at $z = 0$ gives $\beta = 1$. Again from (11), the polynomial p is given by
\[p(\omega) = (1 - \omega)^2[a_4(1 - \omega) - a_2\omega]^2 + \omega(1 - \omega)[a_1\omega - a_3(1 - \omega)]^2, \]
where $a_1 = 4 - \frac{1}{2}\lambda$, $a_2 = 6 - \frac{3}{28}\lambda^2$, $a_3 = 4 - \frac{1}{84}\lambda^3$, $a_4 = 1 - \frac{1}{1680}\lambda^4$. Again the system of equations (15),(16),(17) and (18) can be solved only for $\lambda = 0.146840443$ and for these fixed values of λ and β, the equations (15), (16), (17), (18) and $\det B = \beta$ gives
\[
B = \begin{bmatrix}
1 & 0.265166833 & 0.079402432 & -0.018488567 \\
0.124164683 & 1.032924356 & 0.009858978 & 0.124164683 \\
0 & -0.786754443 & 1 & -0.108118541 \\
0 & 0 & -1.072863330 & 1.010657402
\end{bmatrix}. \tag{21}
\]

In this case $\rho[M(z)] < 0.3542$ for all $z \in \mathbb{C}^-$.

The equation $|\phi(z)| = c$ describes a closed curve in the z-plane. Typical curves are plotted for different values of c and sketched in Figures 1 and 2 for three-stage and four-stage Gauss methods respectively. In this case, $\rho[M(z)] \leq c$ on and interior to the curve. Since $\rho[M(0)] = 0$, these schemes are expected to perform well as typical stiff problems have Jacobian with some eigenvalues of small modulus.
3.2. The Case $\rho[M(z)] = 0$ at $z = \infty$

The constraint $\rho[M(\infty)] = 0$ for the three-stage Gauss method gives $\lambda = \frac{3\sqrt{\beta}}{120}$ and the polynomial p, given by (11), is

$$p(\omega) = \omega[a_0 \omega^2 - a_2(1 - \omega)]^2 + a_1^2 \omega^2 (1 - \omega),$$

where $a_0 = 1 - \beta$, $a_1 = 3 - \frac{\beta}{2\lambda}$, $a_2 = 3 - \frac{\beta}{10\lambda^2}$. By search procedure, a good approximation to the optimum value of β is obtained by $\beta = 1.181387098$ and the corresponding λ is given by $\lambda = 0.214323763$. In this case $\rho[M(z)] < 0.2359$ for all $z \in \mathbb{C}^-$. With these values of λ and β, the equations (13) with $\det B = \beta$ may be solved by choosing $b_{21} = 0$. This gives

$$B = \begin{bmatrix} 1 & 0.187138824 & 0.071808998 \\ 0 & 1 & 0.112237507 \\ 0 & -0.958395854 & 1.073819136 \end{bmatrix}.$$ \hspace{1cm} (22)

For the four-stage Gauss method, the additional constraint $\rho[M(\infty)] = 0$ gives $\beta = 1680\lambda^4$. It follows from (11) that the polynomial p is given by

$$p(\omega) = [a_0 \omega^2 - a_2 \omega(1 - \omega)]^2 + \omega(1 - \omega)[a_1 \omega - a_3(1 - \omega)]^2,$$

where $a_0 = 1 - \beta$, $a_1 = 4 - \frac{\beta}{2\lambda}$, $a_2 = 6 - \frac{3\beta}{28\lambda^2}$, $a_3 = 4 - \frac{\beta}{84\lambda^3}$. With the value $\lambda = 0.146840443$, which solves the sets of equations 15),(16),(17),(18), and the corresponding value of β, those sets of equations and $\det B = \beta$ give
In this case $\rho[M(z)] < 0.2189$ for all $z \in \mathbb{C}^{-}$.

As per the plotted curves for $\rho[M(z)] = c$ for different values of c in \(s = 3 \) and \(s = 4 \) for three-stage and four-stage Gauss methods, these schemes are expected to perform well as typical stiff problems have Jacobian with some eigenvalues of large negative real parts and $\rho[M(\infty)] = 0$.

4. Numerical Results

To evaluate the efficiency of the schemes obtained here, a range of numerical experiments was carried out. For each experiment, a single step was carried out, in each case, using the Jacobian evaluated at the initial point. For each scheme tested, the initial iterate Y_{0} is chosen as $Y_{0} = e \otimes x$, where x is the true solution at the initial point.

Problem 1 denotes the non-linear system given by [14]

\[
\begin{align*}
 x_{1}' &= -0.013x_{1} + 1000x_{1}x_{3}, & x_{1}(0) &= 1, \\
 x_{2}' &= 2500x_{2}x_{3}, & x_{2}(0) &= 1, \\
 x_{3}' &= 0.013x_{1} - 1000x_{1}x_{3} - 2500x_{2}x_{3}, & x_{3}(0) &= 0,
\end{align*}
\]

where the eigenvalues of the Jacobian at the initial point are 0, -0.0093 and -3500.
Problem 2 is the elliptic two-body problem, with eccentricity 0.6,

\[
x'_1 = x_3,
\]
\[
x'_2 = x_4,
\]
\[
x'_3 = -x_1 (x_1^2 + x_2^2)^{-3/2},
\]
\[
x'_4 = -x_2 (x_1^2 + x_2^2)^{-3/2},
\]

The eigenvalues of the Jacobian at the initial point are 0 and transient components,

Problem 3 is the HIRES problem given by [18],

\[
x'_1 = -1.71x_1 + 0.43x_2 + 8.32x_3 + 0.0007,
\]
\[
x'_2 = 1.71x_1 - 8.75x_2,
\]
\[
x'_3 = -10.03x_3 + 0.43x_4 + 0.035x_5,
\]
\[
x'_4 = 8.32x_2 + 1.71x_3 - 1.12x_4,
\]
\[
x'_5 = -1.745x_5 + 0.43x_6 + 0.43x_7,
\]
\[
x'_6 = -280x_6x_8 + 0.69x_4 + 1.71x_5) - 0.43x_6 + 0.69x_7,
\]
\[
x'_7 = 280x_8x_8 - 1.81x_7,
\]
\[
x'_8 = -x'_7,
\]

The eigenvalues of the Jacobian at the initial point are ±5.5902 and ±3.9528i.

Problem 4 denotes the system

\[
x'_1 = x_2,
\]
\[
x'_2 = 10^6((1 - x_1^2)x_2) - x_1,
\]

derived from the Van der Pol’s equation and given by [11]. The eigenvalues of the Jacobian at the initial point are close to 0 and −3000000.

Problem 5 denotes the system, with non-linear coupling between smooth and transient components,

\[
x'_1 = -10^5x_1 + 2,
\]
\[
x'_2 = -10^6x_2 + 0.1x_1^2,
\]
\[
x'_3 = -40 \times 10^5x_3 + 0.4 (x_1^2 + x_2^2),
\]
\[
x'_4 = -10^7x_4 + x_1^2 + x_2^2 + x_3^2,
\]

where the Jacobian has constant eigenvalues −10^5, −10^6, −40 \times 10^5 and −10^7.

For each problem, a single step was carried out, in each case, using the Jacobian evaluated at the initial point. For each scheme tested, the initial iterate \(Y^0 \) is chosen as \(Y^0 = e \otimes x \), where \(x \) is the true solution at the initial point.
Method 1 denotes the three-stage Gauss method implemented according to the iteration scheme (7) with \(\lambda = 0.202740067 \) and the matrix \(B \) given by (14). Method 1* is the same method implemented using the scheme (7) with \(\lambda = 0.191729022 \) and \(B \) given by (20) for the case \(\rho[M(z)] = 0 \) at \(z = 0 \). Method 1** is also the same method implemented using the scheme (7) with \(\lambda = 0.214323763 \), \(B \) given by (22) for the case \(\rho[M(z)] = 0 \) at \(z = \infty \).

Method 2 denotes the four-stage Gauss method implemented according to the scheme (7) with \(\lambda = 0.146840443 \) and \(B \) given by (19). Method 2* is the same method implemented using the scheme (7) with \(\lambda = 0.146840443 \) and \(B \) given by (21) for \(\rho[M(0)] = 0 \). Method 2** is also the same method implemented using the scheme (7) with the same value of \(\lambda \) and \(B \) given by (23) for \(\rho[M(\infty)] = 0 \).

For each method and problem, the quantities

\[
e_m = \|E^m\|, \quad m = 1, 2, 3, \ldots
\]

were computed using the maximum norm on \(\mathbb{R}^{n_s} \). The values \(e_m \) for which \(e_m \leq TOL = 10^{-9} \) are tabulated for each problem and method. Similar results are obtained for different values of TOL. The results are given below for each problem for three-stage and four-stage Gauss methods.

<table>
<thead>
<tr>
<th>(e_m)</th>
<th>Method 1</th>
<th>Method 1*</th>
<th>Method 2</th>
<th>Method 2*</th>
</tr>
</thead>
<tbody>
<tr>
<td>(e_1)</td>
<td>0.000956220</td>
<td>0.000824833</td>
<td>0.000895782</td>
<td>0.000866327</td>
</tr>
<tr>
<td>(e_2)</td>
<td>0.000152341</td>
<td>0.000110398</td>
<td>0.000142783</td>
<td>0.000143328</td>
</tr>
<tr>
<td>(e_3)</td>
<td>0.000024273</td>
<td>0.000000910</td>
<td>0.000028768</td>
<td>0.00000033</td>
</tr>
<tr>
<td>(e_4)</td>
<td>0.000003867</td>
<td>0.000000031</td>
<td>0.000001011</td>
<td>0.000000127</td>
</tr>
<tr>
<td>(e_5)</td>
<td>0.000000616</td>
<td>0.000000005</td>
<td>0.000000054</td>
<td>0.000000002</td>
</tr>
<tr>
<td>(e_6)</td>
<td>0.000000098</td>
<td>0.000000001</td>
<td>0.000000016</td>
<td>0.000000008</td>
</tr>
<tr>
<td>(e_7)</td>
<td>0.000000002</td>
<td>0.000000000</td>
<td>0.000000005</td>
<td>0.000000002</td>
</tr>
<tr>
<td>(e_8)</td>
<td>0.000000000</td>
<td>0.000000000</td>
<td>0.0000000001</td>
<td>0.0000000001</td>
</tr>
<tr>
<td>(e_9)</td>
<td>0.000000000</td>
<td>0.000000000</td>
<td>0.0000000000</td>
<td>0.0000000000</td>
</tr>
</tbody>
</table>

Table 1: Values of \(e_m \) for Problem 1 with \(h = 0.1 \)
Table 2: Values of e_m for Problem 2 with $h = 0.01$

<table>
<thead>
<tr>
<th>e_m</th>
<th>Method 1</th>
<th>Method 1*</th>
<th>Method 2</th>
<th>Method 2*</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_1</td>
<td>0.064323263</td>
<td>0.055470109</td>
<td>0.060234720</td>
<td>0.058254081</td>
</tr>
<tr>
<td>e_2</td>
<td>0.010337141</td>
<td>0.007429666</td>
<td>0.009595467</td>
<td>0.009632142</td>
</tr>
<tr>
<td>e_3</td>
<td>0.001670882</td>
<td>0.00067048</td>
<td>0.001945151</td>
<td>0.001918104</td>
</tr>
<tr>
<td>e_4</td>
<td>0.000270379</td>
<td>0.000000270</td>
<td>0.000072013</td>
<td>0.000008450</td>
</tr>
<tr>
<td>e_5</td>
<td>0.000043831</td>
<td>0.000000002</td>
<td>0.000002754</td>
<td>0.000000149</td>
</tr>
<tr>
<td>e_6</td>
<td>0.000001157</td>
<td>0.000000000</td>
<td>0.000000016</td>
<td>0.000000000</td>
</tr>
<tr>
<td>e_7</td>
<td>0.000000189</td>
<td>0.000000000</td>
<td>0.000000000</td>
<td></td>
</tr>
<tr>
<td>e_8</td>
<td>0.000000031</td>
<td>0.000000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e_9</td>
<td>0.000000005</td>
<td>0.000000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e_{10}</td>
<td>0.000000001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e_{11}</td>
<td>0.000000000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Values of e_m for Problem 3 with $h = 0.01$

<table>
<thead>
<tr>
<th>e_m</th>
<th>Method 1</th>
<th>Method 1*</th>
<th>Method 2</th>
<th>Method 2*</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_1</td>
<td>0.017382122</td>
<td>0.015000547</td>
<td>0.016278083</td>
<td>0.015742827</td>
</tr>
<tr>
<td>e_2</td>
<td>0.002728084</td>
<td>0.002012693</td>
<td>0.002608108</td>
<td>0.002618024</td>
</tr>
<tr>
<td>e_3</td>
<td>0.000428244</td>
<td>0.00013213</td>
<td>0.000523517</td>
<td>0.000516215</td>
</tr>
<tr>
<td>e_4</td>
<td>0.000067235</td>
<td>0.000000021</td>
<td>0.000000020</td>
<td>0.000000025</td>
</tr>
<tr>
<td>e_5</td>
<td>0.000010557</td>
<td>0.000000000</td>
<td>0.000000000</td>
<td></td>
</tr>
<tr>
<td>e_6</td>
<td>0.000001658</td>
<td>0.000000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e_7</td>
<td>0.000000260</td>
<td>0.000000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e_8</td>
<td>0.000000041</td>
<td>0.000000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e_9</td>
<td>0.000000006</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e_{10}</td>
<td>0.000000001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e_{11}</td>
<td>0.000000000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. **Concluding Remarks**

According to the numerical results, for three-stage Gauss method, the method 1* performs better than method 1 for the problems whose Jacobian matrices have small eigenvalues and the method 1** performs better than method 1 for the problems whose Jacobian matrices have eigenvalues with large negative real part. For four-stage Gauss method, Method 2* is better than Method 2 for
problems with small eigenvalues and Method 2** is better than Method 2 for problems with eigenvalues which have large negative real parts. In overall, the numerical experiments confirm that the new schemes obtained for the Gauss methods perform well.
References

