A STUDY OF SAIGO-MAEDA FRACTIONAL OPERATORS
WITH GENERALIZED K-WRIGHT FUNCTION

Kantesh Gupta1,§, Meena Kumari Gurjar2, Jyotindra C. Prajapati3

1,2Department of Mathematics
Malaviya National Institute of Technology
Jaipur, 302017, Rajasthan, INDIA

3Department of Mathematical Sciences
Faculty of Applied Sciences, Charotar
University of Science and Technology
CHARUSAT, Changa, Anand, 388421, Gujarat, INDIA

Abstract: In this paper, we further study the generalized fractional integral and differential operators involving Appell’s function $F_3 (.)$ due to Saigo-Maeda [11]. During the course of our study, we obtain the images of the generalized K-Wright function in our operators. On account of the most general nature of our results, a large number of results obtained earlier by several authors such as Gehlot and Prajapati [3], Purohit et al. [10], Gupta and Gupta [4], Kilbas and Sebastian [7,8,9], Gupta and Gurjar [5], Kilbas [6] follow as special cases of our main findings.

AMS Subject Classification: 26A33, 33B15, 33C10, 33C20
Key Words: Saigo-Maeda fractional operators, Generalized K-Wright function, K-Gamma function, Bessel function

1. Introduction

Generalized K-Gamma function $\Gamma_k (x)$ defined as (Diaz and Pariguan [1])
\[\Gamma_k(x) = \lim_{n \to \infty} \frac{n!}{(x)_{n,k}^k} \left(x^{k-1} - 1 \right), \quad k > 0, \ x \in \mathbb{C} \setminus k\mathbb{Z}^- \]

where \((x)_{n,k} \) is the k-Pochhammer symbol and is given by

\[(x)_{n,k} = x(x+k)(x+2k) \ldots \ldots(x+(n-1)k), \quad x \in \mathbb{C}, \ k \in \mathbb{R}, \ n \in \mathbb{N}^+ \]

For \(\Re(x) > 0 \), \(\Gamma_k(x) \) is defined as the integral

\[\Gamma_k(x) = \int_0^\infty t^{x-1} e^{-\frac{t^k}{x}} dt \]

From equation (3) it follows that

\[\Gamma_k(x) = k^{\frac{x}{k}} \Gamma \left(\frac{x}{k} \right) \]

The generalized Wright function [13] for \(z, \ a_i, \ b_j \in \mathbb{C} \) and \(\alpha_i, \beta_j \in \mathbb{R} \) \((\alpha_i, \beta_j \neq 0; \ i = 1, 2, \ldots, p; \ j = 1, 2, \ldots, q) \) will be represented in the following manner:

\[p^\psi_q(z) = p^\psi_q \left[\frac{(a_i, \alpha_i)_{1,p}}{(b_j, \beta_j)_{1,q}} \bigg| z \right] = \sum_{n=0}^{\infty} \frac{\prod_{i=1}^{p} \Gamma(a_i + \alpha_i n) z^n}{\prod_{j=1}^{q} \Gamma(b_j + \beta_j n) n!} \]

The generalized K-Wright function \(p^\psi_q k^\gamma \mathbb{Z}^- \) is defined by Gehlot and Prajapati [2] for \(a_i, \ b_j, \ z \in \mathbb{C}, \ k \in \mathbb{R}^+, \alpha_i, \beta_j \in \mathbb{R} \) \((\alpha_i, \beta_j \neq 0; \ i = 1, 2, \ldots, p; \ j = 1, 2, \ldots, q) \) and \((a_i + \alpha_i n), (b_j + \beta_j n) \in \mathbb{C} \setminus k\mathbb{Z}^- \)

\[p^\psi_q k^\gamma \mathbb{Z}^- = p^\psi_q \left[\frac{(a_i, \alpha_i)_{1,p}}{(b_j, \beta_j)_{1,q}} \bigg| z \right] = \sum_{n=0}^{\infty} \frac{\prod_{i=1}^{p} \Gamma k(a_i + \alpha_i n) z^n}{\prod_{j=1}^{q} \Gamma k(b_j + \beta_j n) n!} \]

For convergence, we use the following notations

\[\delta = \sum_{j=1}^{q} \left(\frac{\beta_j}{k} \right) - \sum_{i=1}^{p} \left(\frac{\alpha_i}{k} \right); \quad D^{-1} = \prod_{i=1}^{p} \left| \frac{\alpha_i}{k} \right|^{-\frac{x_i}{k}} \prod_{j=1}^{q} \left| \frac{\beta_j}{k} \right|^{-\frac{x_j}{k}} \]

\[\mu = \sum_{j=1}^{q} \left(\frac{b_j}{k} \right) - \sum_{i=1}^{p} \left(\frac{a_i}{k} \right) + \frac{p-q}{2} \]
1. If $\delta > -1$, then the series (6) is absolutely convergent for all $z \in C$ and the generalized K-Wright function $\psi^k_q(z)$ is an entire function of z.

2. If $\delta = -1$, then the series (6) is absolutely convergent for all $|z| < D^{-1}$.

3. If $\delta = -1$, then the series (6) is absolutely convergent for all $|z| = D^{-1}$, $\Re(\mu) > \frac{1}{2}$.

Special case of equation (6) becomes in the form by taking $k = 1, p = 0, q = 1, b_1 = 1 + \nu, \beta_1 = 1$ and $z = -\frac{z^2}{4}$

$$0\psi^1 \left[\frac{-z^2}{4} \right] = \sum_{n=0}^{\infty} \frac{1}{\Gamma(1 + \nu + n)} \frac{(-z^2/4)^n}{n!} = (\frac{z}{2})^{-\nu} J_\nu(z) \quad (7)$$

with complex $z, \nu \in C$ known as Bessel function of first kind [12, p. 245, Eq. (A.29)].

In the present paper, we first study the Saigo-Maeda fractional integral operator [11, p. 393, Eqs. (4.12) and (4.13)] defined and represented in the following manner:

$$\left(I_{0+}^{\alpha,\beta,\gamma} f \right)(x) = \frac{x^{-\alpha}}{\Gamma(\gamma)} \int_0^x (x-t)^{\gamma-1} t^{-\alpha} F_3 \left(\alpha, \alpha', \beta, \beta'; \gamma; 1 - \frac{t}{x}, 1 - \frac{x}{t} \right) f(t) \, dt, \quad (8)$$

$$\left(I_{-\alpha,\beta,\gamma} f \right)(x) = \frac{x^{-\alpha}}{\Gamma(\gamma)} \int_x^\infty (t-x)^{\gamma-1} t^{-\alpha} F_3 \left(\alpha, \alpha', \beta, \beta'; \gamma; 1 - \frac{x}{t}, 1 - \frac{t}{x} \right) f(t) \, dt, \quad (9)$$

where $\alpha, \alpha', \beta, \beta', \gamma \in C, \Re(\gamma) > 0, x > 0$ and Appell function or Horn’s F_3-function is kernel of our study. Also, the corresponding fractional differential operators [11] will be represented in the following manner:

$$\left(D_{0+}^{\alpha,\beta,\gamma} f \right)(x) = \left(I_{0+}^{-\alpha',-\alpha,-\beta,-\gamma} f \right)(x)$$

$$= \left(\frac{d}{dx} \right)^r \left(I_{0+}^{-\alpha',-\alpha,-\beta+r,-\gamma+r} f \right)(x), \Re(\gamma) > 0; r = [\Re(\gamma)] + 1$$
\begin{align*}
\frac{1}{\Gamma(r - \gamma)} \left(\frac{d}{dx}\right)^{r} (x^{\alpha}) \int_{0}^{x} (x - t)^{r-\gamma-1} t^{\alpha} F_{3} (-\alpha', -\alpha, -\beta' + r, -\beta, r - \gamma; 1 - \frac{t}{x}, 1 - \frac{x}{t}) f(t) dt \tag{10}
\end{align*}

\begin{align*}
\left(D^{-\alpha',\beta,\gamma}_{-}\right)(x) &= \left(I_{-\alpha',\beta,\gamma}^{-\alpha,\beta,-\gamma} f\right)(x) \\
&= \left(-\frac{d}{dx}\right)^{r} \left(I_{-\alpha',\beta,-\gamma}^{-\alpha,-\beta,-\gamma+r} f\right)(x), (Re(\gamma) > 0; r = [Re(\gamma)] + 1) \\
&= \frac{1}{\Gamma(r - \gamma)} \left(-\frac{d}{dx}\right)^{r} (x^{\alpha}) \int_{x}^{\infty} (t - x)^{r-\gamma-1} t^{\alpha} F_{3} (-\alpha', -\alpha, -\beta', r - \beta, r - \gamma; 1 - \frac{t}{x}, 1 - \frac{x}{t}) f(t) dt, \tag{11}
\end{align*}

respectively, where \([Re(\gamma)]\) is the integral part of \(Re(\gamma)\).

The left hand sided and right hand sided generalized integration of the type (8) and (9) for power functions are given by Saigo and Maeda [11, p. 394, Eqs. (4.18) and (4.19)] as follows:

\begin{align*}
\left(I_{0+}^{\alpha,\alpha',\beta,\beta',\gamma} t^{\sigma-1} \right)(x) &= \Gamma \left[\frac{\sigma + \gamma - \alpha - \alpha' - \beta, \sigma + \beta' - \alpha'}{\sigma + \beta', \sigma + \gamma - \alpha - \alpha', \sigma + \gamma - \alpha' - \beta} \right] x^{\sigma + \gamma - \alpha - \alpha' - 1} \tag{12}
\end{align*}

where \(Re(\gamma) > 0, Re(\sigma) > \max\{0, Re(\alpha + \alpha' + \beta - \gamma), Re(\alpha' - \beta')\}\) and

\begin{align*}
\left(I_{-}^{\alpha,\alpha',\beta,\beta',\gamma} t^{\sigma-1} \right)(x) &= \Gamma \left[\frac{1 - \sigma - \gamma + \alpha + \alpha', 1 - \sigma + \alpha + \beta' - \gamma, 1 - \sigma - \beta}{1 - \sigma, 1 - \sigma - \gamma + \alpha + \alpha' + \beta', 1 - \sigma + \alpha - \beta} \right] x^{\sigma + \gamma - \alpha - \alpha' - 1} \tag{13}
\end{align*}

where \(Re(\gamma) > 0, Re(\sigma) < 1 + \min\{Re(-\beta), Re(\alpha + \alpha' - \gamma), Re(\alpha + \beta' - \gamma)\}\).

2. Saigo-Maeda Fractional Integral Operators of the Generalized K-Wright Function

First, we consider the generalized left-hand sided fractional integral operator of the generalized K-Wright function.
Theorem 1. Let \(a, \alpha, \alpha', \beta, \beta', \gamma \in C \) such that \(\mu > 0, \Re(\gamma) > 0 \) and \(\Re(\lambda) > \max\{0, \Re(\alpha + \alpha' + \beta - \gamma), \Re(\alpha' - \beta')\} \) then for \(\delta > -1 \) fractional integral operator \(I_{0+}^{\alpha, \alpha', \beta, \beta', \gamma} \) of generalized K-Wright function \(p\psi_k q \) of \(z \) is given by

\[
(I_{0+}^{\alpha, \alpha', \beta, \beta', \gamma} (t^{\frac{k-1}{p}\psi} q \left[\frac{(a_i, \alpha_i)_{1,p} (b_j, \beta_j)_{1,q}}{at^{\frac{k}{p}}} \right])) (x)
\]

\[
= k^{\gamma} x^{\lambda + \gamma - \alpha - \alpha' - 1} \times \psi_k q \[(a_i, \alpha_i)_{1,p} (b_j, \beta_j)_{1,q} \mid a x^{\frac{k}{p}} \].
\]

Proof. Using equation (6) and (8), and then changing the order of integration and summation, which is justified under the conditions stated with Theorem 1, we get

\[
(I_{0+}^{\alpha, \alpha', \beta, \beta', \gamma} (t^{\frac{k-1}{p}\psi} q \left[\frac{(a_i, \alpha_i)_{1,p} (b_j, \beta_j)_{1,q}}{at^{\frac{k}{p}}} \right])) (x)
\]

\[
= \sum_{n=0}^{\infty} \prod_{i=1}^{p} \Gamma_k (a_i + \alpha_i n) \frac{(a)^n}{n!} \left(I_{0+}^{\alpha, \alpha', \beta, \beta', \gamma} (t^{\frac{k-1}{p}\psi} q \left[\frac{(a_i, \alpha_i)_{1,p} (b_j, \beta_j)_{1,q}}{at^{\frac{k}{p}}} \right]) \right) (x).
\]

Now, applying the known result (12) with \(\sigma \) replaced by \(\frac{\lambda}{k} + \frac{\mu n}{k} \), we obtain

\[
k^{\gamma} x^{\lambda + \gamma - \alpha - \alpha' - 1} \sum_{n=0}^{\infty} \prod_{i=1}^{p} \Gamma_k (a_i + \alpha_i n) \Gamma_k (\lambda + \mu n + \beta k)
\]

\[
\times \frac{\prod_{j=1}^{q} \Gamma_k (b_j + \beta j n) \Gamma_k (\lambda + \mu n + \beta' k)}{\prod_{j=1}^{q} \Gamma_k (\lambda + \mu n + (\gamma - \alpha - \alpha') k) \Gamma_k (\lambda + \mu n + (\gamma - \alpha' - \beta) k)} \left(a x^{\mu/k} \right)^n n!.
\]

Finally, interpreting the above equation, in view of the definition (6), we arrive at the result (14).

Corollary 1. If we put \(\alpha = \alpha + \beta, \alpha' = \beta' = 0, \beta = -\eta, \gamma = \alpha \) in equation (14), we get the following new and interesting result concerning Saigo fractional integral operator
\[
\left(I_{0+}^{\alpha,\beta,\eta} \left(t^{-\beta} p \psi_k \frac{k}{q} \left[\begin{array}{c} (a_i, \alpha_i)_{1,p} \\ (b_j, \beta_j)_{1,q} \end{array} \right] \text{at}^\frac{t}{k} \right) \right)(x) \\
= k^{\alpha} x^{\frac{\gamma}{k} - \beta - 1} \left(p+2 \psi_k \frac{k}{q} + 2 \left(a_i, \alpha_i \right)_{1,p}, (\lambda, \mu), (\lambda + (\beta + \eta) k, \mu) \\
\left(b_j, \beta_j \right)_{1,q}, (\lambda - \beta k, \mu), (\lambda + (\alpha + \eta) k, \mu) \right| ax^\frac{t}{k} \right) \text{.} (15)
\]

Corollary 2. If we take \(\beta = -\alpha \) and \(\lambda = \gamma \) in above equation (15), we get the following known result due to Gehlot and Prajapati [3, P. 285, Eq. (13)] concerning Riemann-Liouville fractional integral operator.

\[
\left(I_{0+}^{\alpha} \left(t^{-\beta} p \psi_k \frac{k}{q} \left[\begin{array}{c} (a_i, \alpha_i)_{1,p} \\ (b_j, \beta_j)_{1,q} \end{array} \right] \text{at}^\frac{t}{k} \right) \right)(x) = k^{\alpha} x^{\frac{\gamma}{k} + \alpha - 1} \\
\times p+1 \psi_k \frac{k}{q} + 1 \left(a_i, \alpha_i \right)_{1,p}, (\gamma, \mu) \\
\left(b_j, \beta_j \right)_{1,q}, (\gamma + \alpha k, \mu) \right| ax^\frac{t}{k} \right) \text{.} (16)
\]

Further, taking \(k = 1 \) in equation (16), we get the known result due to Kilbas [6, p. 117, Eq. (11)].

Now, we establish a theorem that gives the generalized right-hand sided fractional integral operator of the generalized K-Wright function.

Theorem 2. Let \(a, \alpha, \alpha', \beta, \beta', \gamma \in C \) such that \(\mu > 0, \text{Re}(\gamma) > 0 \) and \(\text{Re}(\lambda) > \text{max} \left[\text{Re}(\gamma - \alpha - \alpha'), \text{Re}(\gamma - \alpha - \beta'), \text{Re}(\beta) \right] \) then for \(\delta > -1 \) the fractional integral operator \(I_{-}^{\alpha,\alpha',\beta,\beta',\gamma} \) of generalized K-Wright function \(\underbrace{p \psi \frac{k}{q} }_{z} \) is given by

\[
\left(I_{-}^{\alpha,\alpha',\beta,\beta',\gamma} \left(t^{-\beta} p \psi_k \frac{k}{q} \left[\begin{array}{c} (a_i, \alpha_i)_{1,p} \\
(b_j, \beta_j)_{1,q} \end{array} \right] \text{at}^\frac{t}{k} \right) \right)(x) = k^{\gamma} x^{\frac{-\gamma}{k} + \gamma - \alpha - \alpha'} \\
\times p+3 \psi_k \frac{k}{q} + 3 \left(a_i, \alpha_i \right)_{1,p}, (\lambda + (-\gamma + \alpha + \alpha') k, \mu), (\lambda + (\alpha + \beta' - \gamma) k, \mu), (\lambda - \beta k, \mu) \\
\left(b_j, \beta_j \right)_{1,q}, (\lambda + (-\gamma + \alpha + \alpha' + \beta') k, \mu), (\lambda + (\alpha - \beta) k, \mu) \right| ax^\frac{t}{k} \right) \text{.} (17)
\]

Proof. Using equation (6) and (9), and then changing the order of integration and summation, which is justified under the conditions stated with Theorem 2, we get

\[
\left(I_{-}^{\alpha,\alpha',\beta,\beta',\gamma} \left(t^{-\beta} p \psi_k \frac{k}{q} \left[\begin{array}{c} (a_i, \alpha_i)_{1,p} \\
(b_j, \beta_j)_{1,q} \end{array} \right] \text{at}^\frac{t}{k} \right) \right)(x) \\
= \sum_{n=0}^{\infty} \prod_{i=1}^{p} \Gamma_k(a_i + \alpha_i n) \left(a \right)^n \prod_{j=1}^{q} \Gamma_k(b_j + \beta_j n) \left(a \right)^n \left(I_{-}^{\alpha,\alpha',\beta,\beta',\gamma} \left(t^{-\beta} \frac{a^n}{k} \right) \right)(x) \text{.} (18)
\]
sult (13) with σ replaced by $-\frac{\lambda}{k} - \frac{\mu n}{k} + 1$, we obtain

$$= k^{\gamma} x^{-\frac{\lambda}{k}} + \gamma - \alpha - \alpha' \sum_{n=0}^{\infty} \prod_{i=1}^{p} \Gamma_k (a_i + \alpha_i n) \Gamma_k (\lambda + \mu n + (\alpha + \alpha' - \gamma) k)$$

$$\times \frac{\Gamma_k (\lambda + \mu n + (\alpha + \beta' - \gamma) k) \Gamma_k (\lambda - \beta k + \mu n)}{\Gamma_k (\lambda + \mu n + (\alpha + \alpha' + \beta' - \gamma) k) \Gamma_k (\lambda + \mu n + (\alpha - \beta) k)} (ax^{-\mu/k})^n \frac{n!}{n}$$

Finally, interpreting the above equation, in view of the defi nition (6), we arrive at the result (17).

Corollary 1. If we put $\alpha = \alpha + \beta, \alpha' = \beta, \gamma = \alpha$ in equation (17), we get the following new and interesting result concerning Saigo fractional integral operator

$$(I_{\alpha, \beta, \eta}^{\alpha, \beta, \eta} (t^{-\lambda} p_{\psi} k q \left[\left(a_i, \alpha_i \right)_{1, p}, (b_j, \beta_j)_{1, q}, t^{-\mu/k} \right]) (x))$$

$$= k^\alpha x^{-\frac{\lambda - \beta}{k} + 2} q + 2 \left[(a_i, \alpha_i)_{1, p}, (b_j, \beta_j)_{1, q}, (\lambda + (\alpha + \beta + \eta) k, \mu) | ax^{-\mu/k} \right]$$

Corollary 2. If we take $\beta = -\alpha$ and $\lambda = \gamma$ in above equation (18), we get following known result due to Gehlot and Prajapati [3, P. 286, Eq. (14)] concerning Riemann-Liouville fractional integral operator

$$(I_\alpha^{\alpha} (t^{-\gamma} p_{\psi} k q \left[\left(a_i, \alpha_i \right)_{1, p}, (b_j, \beta_j)_{1, q}, t^{-\mu/k} \right]) (x))$$

$$= k^\alpha x^{-\frac{\gamma - \alpha}{k} + 1} q + 1 \left[(a_i, \alpha_i)_{1, p}, (\gamma - \alpha k, \mu) | ax^{-\mu/k} \right]$$

Further, taking $k = 1$ in equation (19), we get known result due to Kilbas [6, p. 118, Eq. (13)].

First, we consider the generalized left-hand sided fractional differential operator of the generalized K-Wright function.
Theorem 3. Let \(a, \alpha, \alpha', \beta, \beta', \gamma \in C \) such that \(\mu > 0, Re(\gamma) > 0 \) and \(Re(\lambda) > -\min[0, Re(\alpha + \alpha' + \beta' - \gamma), Re(\alpha - \beta)] \) then for \(\delta > -1 \) fractional differential operator \(D_{0+}^{\alpha, \alpha', \beta, \beta', \gamma} \) of generalized K-Wright function \(p\psi^k q (z) \) is given by

\[
(D_{0+}^{\alpha, \alpha', \beta, \beta', \gamma} (t_k^{-1} p\psi^k q \left[(a_i, \alpha_i)_{1,p} \left(b_j, \beta_j \right)_{1,q} \right]) (x) = k^{\gamma - \gamma + \alpha + \alpha' - 1} (x)
\]

\[
\times p + 3^k q + 3 \left[(a_i, \alpha_i)_{1,p}, (b_j, \beta_j)_{1,q}, (\lambda, \mu), (\lambda + (\alpha + \alpha' + \beta' - \gamma) k, \mu), (\lambda + (\alpha - \beta) k, \mu), (\lambda - \beta k, \mu), (\lambda + (\alpha + \alpha' - \gamma + r) k, \mu), (\lambda + (\alpha + \beta' - \gamma) k, \mu) \right] \left(x^k \right).
\]

Proof. Let \(r = Re (\gamma) + 1 \). Using (10) and applying (14), with \(\alpha, \alpha', \beta, \beta', \gamma \) replaced by \(-\alpha', -\alpha, -\beta' + r, -\beta, -\gamma + r \), we have

\[
(D_{0+}^{\alpha, \alpha', \beta, \beta', \gamma} (t_k^{-1} p\psi^k q \left[(a_i, \alpha_i)_{1,p} \left(b_j, \beta_j \right)_{1,q} \right]) (x)
\]

\[
= \left(\frac{d}{dx} \right)^r \left\{ L_{r+}^{-\alpha, -\alpha, -\beta + r, -\beta, -\gamma + r} (t_k^{-1} p\psi^k q \left[(a_i, \alpha_i)_{1,p} \left(b_j, \beta_j \right)_{1,q} \right]) (x)
\]

\[
= \left(\frac{d}{dx} \right)^r \left\{ \Gamma_k (\lambda + (\alpha + \alpha' + \beta' - \gamma) k, \mu), (\lambda + (\alpha - \beta) k, \mu), (\lambda - \beta k, \mu), (\lambda + (\alpha + \alpha' - \gamma + r) k, \mu), (\lambda + (\alpha + \beta' - \gamma) k, \mu) \right\} \left(x^k \right).
\]

Now, using equation (6) and changing the order of differentiation and summation, we get

\[
k^{\gamma + r} \sum_{n=0}^{\infty} \prod_{i=1}^{p} \Gamma_k (a_i + \alpha_i n) \Gamma_k (\lambda + \mu n) \Gamma_k (\lambda + \mu n + (-\gamma + \alpha + \alpha' + \beta') k)
\]

\[
\prod_{j=1}^{q} \Gamma_k (b_j + \beta_j n) \Gamma_k (\lambda - \beta k + \mu n) \Gamma_k (\lambda + \mu n + (-\gamma + r + \alpha + \alpha') k)
\]

\[
\frac{\Gamma_k (\lambda + \mu n + (\alpha - \beta) k)}{\Gamma_k (\lambda + \mu n + (-\gamma + \alpha + \beta') k)} \frac{(a)^n}{n!} \left(\frac{d}{dx} \right)^r \left(x^k \right) - \gamma + r + \alpha + \alpha' - 1 + \frac{\mu n}{k}.
\]

Finally, interpreting the above equation, in view of the definition (6), we arrive at the result (20) after a little simplification.
Corollary 1. If we put $\alpha = \alpha + \beta, \alpha' = \beta' = 0, \beta = -\eta, \gamma = \alpha$ in equation (20), we get the following new and interesting result concerning Saigo fractional differential operator

$$\left(D_{0+}^{\alpha,\beta,\eta} \left(t^{\frac{\lambda}{k}} - p \psi_q^k \left(\begin{array}{c} (a_i, \alpha)_{1,p} \mathcal{at}^\frac{\mu}{\lambda} \\ \frac{b_j, \beta}{1,q} \end{array} \right) \right) \right)(x)$$

$$= k^{-\alpha} x^{\frac{\lambda}{k} + \beta - 1} p + 2 \psi_q^k \left[\begin{array}{c} (a_i, \alpha)_{1,p}, (\lambda, \mu), (\lambda + (\alpha + \beta + \eta) k, \mu) \\ (b_j, \beta)_{1,q}, (\lambda + \eta k, \mu), (\lambda + \beta k, \mu) \end{array} \right] a x^\frac{\mu}{\lambda}.$$

(21)

Further, taking $k = 1$ in equation (21), we get known result due to Gupta and Gupta [4, p. 52, Eq. (25)].

Corollary 2. If we take $\beta = -\alpha$ and $\lambda = \gamma$ in equation (21), we get following known result due to Gehlot and Prajapati [3, p. 286, Eq. (15)] concerning Riemann-Liouville fractional differential operator

$$\left(D_{0+}^\alpha \left(t^{\frac{\lambda}{k}} - p \psi_q^k \left(\begin{array}{c} (a_i, \alpha)_{1,p} \mathcal{at}^\frac{\mu}{\lambda} \\ \frac{b_j, \beta}{1,q} \end{array} \right) \right) \right)(x) = k^{-\alpha} x^{\frac{\lambda}{k} - \alpha - 1}$$

$$\times p + 1 \psi_q^k \left[\begin{array}{c} (a_i, \alpha)_{1,p}, (\gamma, \mu) \\ (b_j, \beta)_{1,q}, (\gamma - \alpha k, \mu) \end{array} \right] a x^\frac{\mu}{\lambda}.$$

(22)

Further, taking $k = 1$ in equation (22), we get known result due to Kilbas [6, p. 119, Eq. (14)].

Now, we establish a theorem that gives the generalized right-hand sided fractional differential operator of the generalized K-Wright function.

Theorem 4. Let $a, \alpha, \alpha', \beta, \beta', \gamma \in C$ such that $\mu > 0, Re(\gamma) > 0$ and $Re(\lambda) > -\min \{Re(\gamma - \alpha - \alpha' - r), Re(\gamma - \alpha' - \beta), Re(\beta')\}$ then for $\delta > -1$ fractional differential operator $D_{-}^{\alpha,\beta,\gamma}$ of generalized K-Wright function $p \psi_q^k (z)$ is given by

$$\left(D_{-}^{\alpha,\alpha',\beta,\gamma} \left(t^{-\frac{\lambda}{k}} p \psi_q^k \left(\begin{array}{c} (a_i, \alpha)_{1,p} \mathcal{at}^\frac{\mu}{\lambda} \\ \frac{b_j, \beta}{1,q} \end{array} \right) \right) \right)(x) = k^{-\gamma} x^{\alpha + \alpha' - \gamma - \frac{\lambda}{\delta}}$$

$$\times p + 3 \psi_q^k \left[\begin{array}{c} (a_i, \alpha)_{1,p}, (\lambda + (-\alpha - \beta + \gamma) k, \mu), (\lambda + \beta k, \mu), (\lambda + (\gamma - \alpha - \beta) k, \mu) \end{array} \right] a x^\frac{\mu}{\lambda}.$$

(23)
Proof. Let \(r = \text{Re} [(\gamma)] + 1 \). Using (11) and applying (17), with \(\alpha, \alpha', \beta, \beta', \gamma \) replaced by \(-\alpha', -\alpha, -\beta', -\beta + r, -\gamma + r, \) we have

\[
\left(D_{-\alpha, \alpha', \beta, \beta', \gamma} (t^{-\frac{\lambda}{k} p_\psi} k q \left[(a_i, \alpha_i)_{1,p} \mid at^{-\frac{\lambda}{k}} \right]) \right) (x) = \left(-\frac{d}{dx} \right)^r \left\{ \Lambda_{-\alpha, -\beta, -\beta + r, -\gamma + r} (t^{-\frac{\lambda}{k} p_\psi} k q \left[(a_i, \alpha_i)_{1,p} \mid at^{-\frac{\lambda}{k}} \right]) \right\} (x)
\]

Now, using equation (6) and changing the order of differentiation and summation, we get

\[
k^{-\gamma + r} \sum_{n=0}^{\infty} \prod_{i=1}^{p} \Gamma_k (a_i + \alpha n) \prod_{j=1}^{q} \Gamma_k (b_j + \beta n) \Gamma_k (\lambda + \mu n + (\gamma - \alpha - \alpha' - r) k) \Gamma_k (\lambda + \mu n + (\gamma - \alpha' - \beta) k) \times \frac{\Gamma_k (\lambda + \mu n + \beta k)}{\Gamma_k (\lambda + \mu n + (-\alpha' - \beta) k)} (a)^n (\frac{\lambda}{k}) (x) = k^{-\alpha} x^{-\frac{\lambda}{k} + \beta + p + 2} \psi q + 2 \left[(a_i, \alpha_i)_{1,p} (\lambda + (\alpha + \eta) k, \mu), (\lambda + \beta k, \mu), (\lambda, \mu), (\lambda + (\beta' - \alpha') k, \mu) \mid ax^{-\frac{\lambda}{k}} \right]
\]

Finally, interpreting the above equation, in view of the definition (6), we arrive at the result (23) after a little simplification.

Corollary 1. If we put \(\alpha = \alpha + \beta, \alpha' = \beta' = 0, \beta = -\eta, \gamma = \alpha \) in equation (23), we get the following new and interesting result concerning Saigo fractional differential operator

\[
\left(D_{-\alpha, \alpha, \beta, \beta, \gamma} (t^{-\frac{\lambda}{k} p_\psi} k q \left[(a_i, \alpha_i)_{1,p} \mid at^{-\frac{\lambda}{k}} \right]) \right) (x) = k^{-\alpha} x^{-\frac{\lambda}{k} - \frac{\mu}{k}} \psi q + 2 \left[(a_i, \alpha_i)_{1,p} (\lambda + (\alpha + \eta) k, \mu), (\lambda + \beta k, \mu), (\lambda, \mu), (\lambda + (\beta' - \alpha') k, \mu) \mid ax^{-\frac{\lambda}{k}} \right]
\]

Corollary 2. If we take \(\beta = -\alpha \) and \(\lambda = \gamma \) in equation (24), we get following known result due to Gehlot and Prajapati [3, P. 287, Eq. (16)] concerning Riemann-Liouville fractional differential operator

\[
\left(D_{-\alpha} (t^{-\frac{\lambda}{k} p_\psi} k q \left[(a_i, \alpha_i)_{1,p} \mid at^{-\frac{\lambda}{k}} \right]) \right) (x) = k^{-\alpha} x^{-\alpha - \frac{\lambda}{k}}
\]
Further, taking \(k = 1 \) in equation (25), we get known result due to Kilbas [6, p. 120, Eq. (16)].

4. Special Cases

(i) If we reduce the generalized K-Wright function to the Bessel function of first kind [12] by taking \(k = 1, p = 0, q = 1, b_1 = 1 + v, \beta_1 = 1, a = -z^2/4 \) and \(\mu = 2 \) in equation (14), we get an interesting result

\[
\times_{p+1} p^k q + 1 \left[(a_i, \alpha_i)_{1,p}, (\gamma + \alpha_k, \mu) \bigg| ax - \mu \right] \cdot (25)
\]

Further, setting \(\lambda - v = \rho \) and \(z = 1 \) in (26), we get known result due to Purohit et al. [10, p. 24, Eq. (10)].

Again, setting \(\lambda - v = \sigma, z = 1 \) and \(\alpha = \alpha + \beta, \alpha' = \beta' = 0, \beta = -\eta, \gamma = \alpha \) in (26), we get known result due to Kilbas and Sebestian [8, p. 873, Eq. (26)].

(ii) On reducing the generalized Wright function in R.H.S. of equation (26) to the generalized hypergeometric function and taking \(\lambda - v = \sigma, z = 1 \) and \(\alpha = \alpha + \beta \alpha' = \beta' = 0, \beta = -\eta, \gamma = \alpha \) in (26), we get known result due to Kilbas and Sebestian [8, p. 875, Eq. (37); see also 7, p. 166, Eq. (2.9)].

(iii) If we reduce the generalized K-Wright function to the Bessel function of first kind [12] by taking \(k = 1, p = 0, q = 1, b_1 = 1 + v, \beta_1 = 1, a = -z^2/4 \) and \(\mu = 2 \) in equation (17), we get an interesting result

\[
\times_{3} \psi_4 \left[\frac{I_0^{\alpha, \alpha', \beta, \gamma} (t^{\lambda - v - 1} J_v (zt))}{(\lambda, \lambda + \gamma - \alpha' - \beta, 2, (\lambda + \beta - \gamma, 2), (\lambda + \gamma - \alpha' - \beta, 2), (\lambda + \gamma - \beta, 2)} \right] \cdot (27)
\]

Further, setting \(v - \lambda = \rho - 1 \) and \(z = 1 \) in (27), we get known result due to Purohit et al. [10, p.24, Eq. (12)].

Again, taking \(v - \lambda = \sigma - 1, z = 1, \alpha = \alpha + \beta, \alpha' = \beta' = 0, \beta = -\eta \) and \(\gamma = \alpha \) in (27), we get known result due to Kilbas and Sebestian [8, p.874, Eq. (31)].
(iv) On reducing the generalized Wright function in R.H.S. of equation (27) to the generalized hypergeometric function and taking \(v - \lambda = \sigma - 1, z = 1, \alpha = \alpha + \beta, \alpha' = \beta' = 0, \beta = -\eta \) and \(\gamma = \alpha \) in (27), we get known result due to Kilbas and Sebestian [8, p. 876-877, Eq. (41); see also 7, p. 170, Eq. (3.6)].

(v) If we reduce the generalized K-Wright function to the Bessel function of first kind [12] by taking \(k = 1, p = 0, q = 1, b_1 = 1 + v, \beta_1 = 1, a = -\frac{z^2}{4} \) and \(\mu = 2 \) in equation (20), we get an interesting result

\[
\begin{align*}
\left\{ D_{0+}^{\alpha, \alpha', \beta, \beta'} \left(t^{\lambda - v - 1} J_v \left(zt \right) \right) \right\}(x) &= \left(\frac{z}{2} \right)^v x^{\lambda - \gamma + \alpha + \alpha' - 1} \\
\times 3\psi_4 \left[\begin{array}{c}
(\lambda, 2), (\lambda + \alpha + \alpha' + \beta' - \gamma, 2), (\lambda + \alpha - \beta, 2) \\
(1 + v, 1), (\lambda - \beta, 2), (\lambda + \alpha + \alpha' - \gamma, 2), (\lambda + \alpha + \beta' - \gamma, 2)
\end{array} \right] - \left(\frac{zx^2}{2} \right)^2 \end{align*}
\]

Further, setting \(\lambda - v = \sigma \) and \(z = 1 \) in (28), we get known result due to Gupta and Gurjar [5].

Again, taking \(\lambda - v = \sigma, z = \lambda \) and \(\alpha = \alpha + \beta, \alpha' = \beta' = 0, \beta = -\eta, \gamma = \alpha \) in (28), we get known result due to Kilbas and Sebestian [9, p.330, Eq. (32)].

(vi) If we reduce the generalized K-Wright function to the Bessel function of first kind [12] by taking \(k = 1, p = 0, q = 1, b_1 = 1 + v, \beta_1 = 1, a = -\frac{z^2}{4} \) and \(\mu = 2 \) in equation (23), we get an interesting result

\[
\begin{align*}
\left\{ D_{-}^{\alpha, \alpha', \beta, \beta'} \left(t^{-\lambda + v} J_v \left(\frac{z}{t} \right) \right) \right\}(x) &= \left(\frac{z}{2} \right)^v x^{-\lambda - \gamma + \alpha + \alpha'} \\
\times 3\psi_4 \left[\begin{array}{c}
(\lambda - \alpha' - \beta + \gamma, 2), (\lambda + \beta', 2), (\lambda + \gamma - \alpha - \alpha', 2) \\
(1 + v, 1), (\lambda, 2), (\lambda + \gamma - \alpha - \alpha' - \beta, 2), (\lambda + \beta' - \alpha', 2)
\end{array} \right] - \left(\frac{zx^2}{2x} \right)^2 \end{align*}
\]

Further, setting \(v - \lambda = \sigma - 1, z = \lambda, \alpha = \alpha + \beta, \alpha' = \beta' = 0, \beta = -\eta \) and \(\gamma = \alpha \) in (29), we get known result due to Kilbas and Sebestian [9, p.331, Eq. (37)].

5. Acknowledgments

The authors are highly thankful to Prof. S. L. Kalla for his valuable comments and suggestions to improve the quality of this paper.
References

