VECTOR SPACE BASES FOR THE HOMOGENEOUS PARTS IN HOMOGENEOUS IDEALS AND GRADED MODULES OVER A POLYNOMIAL RING

Natalia Dück¹§, Karl-Heinz Zimmermann²
¹,²Hamburg University of Technology
21071, Hamburg, GERMANY

Abstract: In this paper, vector space bases for the homogeneous parts of homogeneous ideals and graded modules over a commutative polynomial ring are given using Gröbner bases.

AMS Subject Classification: 13F20, 13A02
Key Words: graded ring, polynomial ring, homogeneous ideal, vector space basis

1. Introduction

Gröbner bases have originally been introduced by Buchberger for the algorithmic solution of some fundamental problems in commutative algebra [3]. Since then Gröbner bases evolved into a crucial concept in symbolic computations providing a uniform approach to solving a wide range of problems such as effective computations in residue class rings modulo polynomial ideals and in modules over polynomial rings, and calculating syzygies and graded resolutions for homogeneous ideals [2, 4, 6].

In this paper, we provide bases for the vector spaces corresponding to the homogeneous parts of homogeneous ideals or graded modules over a polynomial ring. Moreover, we show that the vector space basis for the homogenous part
of a homogeneous ideal is also a Gröbner basis for the ideal generated by the homogeneous part if the degree of the homogeneous part is large enough. The required notions and definitions are introduced in Section 2 and the results are provided in the Sections 3 and 4.

2. Graded Rings and Gröbner Bases for Modules

Let \(R = \mathbb{K}[x_0, x_1, \ldots, x_n] \) denote the commutative polynomial ring in \(n + 1 \) indeterminates over a field \(\mathbb{K} \). The monomials in \(R \) are denoted by \(x^u = x_0^{u_0} \cdots x_n^{u_n} \), where \(u = (u_0, \ldots, u_n) \in \mathbb{N}_0^{n+1} \). The total degree of a monomial \(x^u \) is the sum \(|u| = u_1 + \ldots + u_n \). The ring \(R \) has a natural grading in the sense that it admits a direct sum decomposition

\[
R = \bigoplus_{s \geq 0} R_s, \tag{1}
\]

where for each integer \(s \geq 0 \) the set \(R_s \) is the additive subgroup of \(R \) that consists of all homogeneous polynomials of degree \(s \) plus the zero polynomial, and the complex product \(R_sR_t = \{rr' \mid r \in R_s, r' \in R_t \} \) is contained in \(R_{s+t} \) for all \(s, t \geq 0 \). Note that \(R_0 = \mathbb{K} \) and \(R_0R_s \subseteq R_s \). Thus the subgroups \(R_s \) are also \(\mathbb{K} \)-vector spaces.

A module \(M \) over \(R \) (or any graded ring) is a graded module over \(R \) if it can be decomposed as

\[
M = \bigoplus_{t \in \mathbb{Z}} M_t, \tag{2}
\]

where each \(M_t \) is an additive subgroup of the additive group of \(M \) with the property that the complex product \(R_sM_t = \{rm \mid r \in R_s, m \in M_t \} \) lies in \(M_{s+t} \) for all \(s \geq 0 \) and all \(t \in \mathbb{Z} \). Each additive subgroup \(M_t \) is a module over \(R_0 = \mathbb{K} \) since \(R_0M_t \subseteq M_t \). Thus the subgroups \(M_t \) are also \(\mathbb{K} \)-vector spaces.

Let \(m \geq 1 \) be an integer. The free \(R \)-module \(R^m \) has the standard basis consisting of the canonical unit vectors \(e_1, \ldots, e_m \). The module \(R^m \) is graded over \(R \) with the (standard) grading

\[
(R^m)_t = (R_t)^m, \quad t \in \mathbb{Z}.
\]

Note that \((R^m)_t = \{0\} \) if \(t \leq 0 \).

A monomial in \(R^m \) is an element of the form \(x^u e_i \) for some \(1 \leq i \leq m \) and \(u \in \mathbb{N}_0^{n+1} \). Each element in \(R^m \) can be uniquely written as a \(\mathbb{K} \)-linear
combination of monomials. For instance, let $R = \mathbb{K}[x, y]$ and take the following element in R^2:

$$
\left(\frac{3x^2y + xy^2 + 1}{x^3y^2 + 2xy^5 - 3y} \right) = 3x^2ye_1 + xy^2e_1 + e_1 + x^3y^2e_2 + 2xy^5e_2 - 3ye_2.
$$

A monomial order on R^m is a relation \succ on the set of monomials in R^m satisfying the following conditions: (1) \succ is a total order, (2) \succ is well-ordering, and (3) for any monomials $m, m' \in R^m$, $m \succ m'$ implies $x^u m \succ x^u m'$ for each monomial $x^u \in R$.

Any monomial order on R can be extended to a monomial order on R^m. For this, an ordering of the standard basis vectors needs to fixed, say by downward ordering $e_1 > \cdots > e_m$. Then the TOP (term over position) extension of a monomial order \succ on R, denoted by \succ_{TOP}, is defined as

$$
x^u e_i \succ_{TOP} x^v e_j :\iff x^u > x^v \lor (x^u = x^v \land i < j)
$$

and the POT (position over term) extension of \succ, denoted by \succ_{POT}, is given by

$$
x^u e_i \succ_{POT} x^v e_j :\iff i < j \lor (i = j \land x^u \succ x^v).
$$

For instance, if the lex order on $R = \mathbb{K}[x, y]$ with $x > y$ is extended to a TOP order on R^2, then

$$x^3y^2e_2 \succ_{TOP} 3x^2ye_1 \succ_{TOP} 2xy^5e_2 \succ_{TOP} xy^2e_1 \succ_{TOP} -3ye_2 \succ_{TOP} e_1.$$

However, if the lex order on R is extended to a POT order on R^2, then

$$3x^2ye_1 \succ_{POT} -2xy^2e_1 \succ_{POT} e_1 \succ_{POT} x^3y^2e_2 \succ_{POT} 2xy^5e_2 \succ_{POT} -3ye_2.$$

Given a monomial order \succ on R^m, each non-zero polynomial $f \in R^m$ has a unique leading term given by the largest involved term and denoted by $\text{Lt}_{\succ}(f)$; the corresponding leading monomial is referred to as $\text{lm}_{\succ}(f)$. Each submodule M of R^m has a leading submodule generated as a module by the leading terms of its elements,

$$\langle \text{lt}_{\succ}(M) \rangle = \langle \{\text{lt}_{\succ}(f) \mid f \in M\} \rangle.$$

A Gröbner basis for a submodule M of R^m w.r.t. a monomial order \succ on R^m is a finite subset \mathcal{G} of M with the property that the leading terms of the elements in \mathcal{G} generate the leading submodule of M, i.e.,

$$\langle \text{lt}_{\succ}(M) \rangle = \langle \{\text{lt}_{\succ}(g) \mid g \in \mathcal{G}\} \rangle.$$
Each submodule of R^m has a Gröbner basis which is generally not uniquely determined. However, a unique Gröbner basis G called reduced Gröbner basis can be obtained, where the leading terms of the elements in G are monic and for two distinct elements g and g' in G no term involved in g is divisible by the leading term of g'. Gröbner bases can be computed by Buchberger’s algorithm for submodules which is available by almost every computer algebra system. More details on Gröbner bases and modules can be found in [1, 5].

3. Vector Space Bases for the Homogeneous Parts in Homogeneous Ideals

An ideal I in R is homogeneous if for any element $f \in I$ the homogeneous components of f are also in I. A homogeneous ideal I in R is a graded submodule of R with the direct sum decomposition

$$I = \bigoplus_{t \in \mathbb{Z}} I_t,$$

where the homogeneous parts are given by $I_t = I \cap R_t$ for all $t \in \mathbb{Z}$. Note that $I_t = \{0\}$ if $t \leq 0$.

A \mathbb{K}-basis for the homogeneous part R_t is given by all monomials of total degree t and so we have

$$\dim_{\mathbb{K}} R_t = \binom{t + n - 1}{n - 1}, \quad t \in \mathbb{N}_0.$$

Thus the homogeneous part I_t is a finite-dimensional vector space for each $t \in \mathbb{Z}$. The quotient module R/I has also a graded module structure defined by

$$(R/I)_t = R_t/I_t = R_t/(I \cap R_t), \quad t \in \mathbb{Z}.$$

By the dimension formula,

$$\dim_{\mathbb{K}} R_t = \dim_{\mathbb{K}} I_t + \dim_{\mathbb{K}} (R/I)_t, \quad t \in \mathbb{N}_0,$$

and thus the quotient spaces $(R/I)_t$ are also finite dimensional. Moreover, the ideal of leading terms of I fulfills

$$\dim_{\mathbb{K}} R_t/I_t = \dim_{\mathbb{K}} R_t/\langle \text{lt}_\succ (I) \rangle_t, \quad t \in \mathbb{N}_0,$$

where $\langle \text{lt}_\succ (I) \rangle_t = \langle \text{lt}_\succ (I) \rangle \cap R_t$.

Note that the additive subgroups I_t are not ideals. Nonetheless, we can consider the ideal $\langle I_t \rangle$ generated by the elements in I_t.
Proposition 1. Let I be a homogeneous ideal in R. Let \mathcal{G} be the reduced Gröbner basis for I w.r.t. any monomial order \succ on R and let

$$\text{lm}_<(I_t) = \{\text{lm}_<(f) \mid f \in I_t\} = \{x^{a_1}, \ldots, x^{a_s}\}, \quad t \in \mathbb{N}_0.$$

Then a \mathbb{K}-basis for the vector space I_t is given by the set of binomials

$$B_t = \{x^{a_1} - r_1, \ldots, x^{a_s} - r_s\},$$

where r_i is the remainder of x^{a_i} on division by \mathcal{G} for $1 \leq i \leq s$.

The vector space I_t is non-trivial if and only if $t \geq \min\{\deg(\text{lt}_<(g)) \mid g \in \mathcal{G}\}$. If $t \geq \max\{\deg(\text{lt}_<(g)) \mid g \in \mathcal{G}\}$, then the set $\text{lm}_<(I_t)$ consists of all monomial multiples of the elements in $\{\text{lt}_<(g) \mid g \in \mathcal{G}\}$ which are of total degree t, and B_t is the reduced Gröbner basis for the homogeneous ideal $\langle I_t \rangle$.

Proof. Note that the reduced Gröbner basis \mathcal{G} for a homogeneous ideal always consists of homogeneous polynomials and the remainder of a homogeneous polynomial f divided by a set of homogeneous polynomials is either zero or homogeneous of the same total degree as f. It follows that if a monomial x^{a_i} of total degree t is divided by the Gröbner basis \mathcal{G} giving the remainder r_i, then the difference $x^{a_i} - r_i$ will be a polynomial of total degree t with leading term x^{a_i} which lies in I_t, $1 \leq i \leq s$. Hence, B_t is contained in I_t.

By rearranging and deleting duplicates, we may assume that $x^{a_1} \succ \ldots \succ x^{a_s}$. Let $f_i = x^{a_i} - r_i \in I_t$, $1 \leq i \leq s$, and claim that the elements f_1, \ldots, f_s form a \mathbb{K}-basis of I_t. Indeed, consider a nontrivial linear combination $k_1f_1 + \ldots + k_tf_t$ with $k_i \in \mathbb{K}$ and take the smallest index i such that $k_i \neq 0$. By the ordering of the leading monomials, there is nothing to cancel k_if_i and so the linear combination is nonzero. Hence, f_1, \ldots, f_s are linearly independent.

Moreover, let U be the subspace of I_t spanned by f_1, \ldots, f_s. Suppose U is a proper subspace of I_t. Pick an element $f \in I_t \setminus U$ whose leading monomial is minimal. By definition, the leading monomial of f equals the leading monomial of f_i for some i and $\text{lt}(f) = k\text{lt}(f_i)$ for some $k \in \mathbb{K}$. It follows that $f - k_f_i$ lies in I_t and has a smaller leading monomial. Thus $f - k_f_i \in U$ by the minimality of the leading monomial of f and so $f \in U$, a contradiction. Hence, $U = I_t$ and the claim follows.

Let $t \geq \min\{\deg(\text{lt}_<(g)) \mid g \in \mathcal{G}\}$. Then $t \geq \deg(g)$ for some element $g \in \mathcal{G}$ and thus the leading monomial of $g x^u$ with $|u| + \deg(g) = t$ lies in $\text{lm}_<(I_t)$. Hence, the vector space I_t is non-trivial. Conversely, let $f \in I_t$. Then $f \in I$ and there is an element $g \in \mathcal{G}$ such that the leading term of f is divisible by the leading term of g. Hence, $t \geq \deg(g)$.

Finally, let \(t \geq \max \{ \deg(\text{lt}_{\succ}(g)) \mid g \in G \} \) and claim that \(B_t \) is the reduced Gröbner basis for \(\langle I_t \rangle \). Indeed, the set \(B_t \) generates \(I_t \) as a vector space and so generates also the ideal \(\langle I_t \rangle \). It remains to show that the leading terms of the elements in \(B_t \) generate the leading ideal \(\langle \text{lt}_{\succ}(\langle I_t \rangle) \rangle \). To this end, let \(f \in \langle I_t \rangle \).

Since \(f \in I_t \), there is a Gröbner basis element \(g \in G \) such that \(\text{lt}_{\succ}(g) \) divides \(\text{lt}_{\succ}(f) \). By the choice of \(t \), \(\deg(g) \leq t \) and so all monomial multiples of \(\text{lt}_{\succ}(g) \) of total degree \(t \) appear as leading terms in \(B_t \). But the leading term of \(f \) is also a monomial multiple of \(\text{lt}_{\succ}(g) \) (possibly of total degree larger than \(t \)) and so must be divisible by at least one monomial \(x^{a_i} \) where \(1 \leq i \leq s \). This proves the claim.

The set \(\text{lm}_{\succ}(I_t) \) can be constructed from the reduced Gröbner basis \(G \) for \(I \) w.r.t. any monomial order \(\succ \) as follows. Starting with the empty set add for each element \(g \in G \) with leading term of total degree \(s \leq t \) all monomial multiples of \(\text{lt}_{\succ}(g) \) that are of degree \(t \), i.e., the set \(\{ \text{lt}_{\succ}(g)x^u \mid |u| = t - s \} \). This will give the set \(\text{lm}_{\succ}(I_t) \) in a finite number of steps, since the Gröbner basis is finite.

Example 1. Consider the homogeneous ideal

\[
I = \langle z^3 - yw^2, yz - xw, y^3 - x^2 z, xz^2 - y^2 w \rangle \subset K[x, y, z, w] = R.
\]

The above set is the reduced Gröbner basis w.r.t. the grevlex order \(\succ \) on \(R \) with \(x \succ y \succ z \succ w \). Thus

\[
\langle \text{lt}_{\succ}(I) \rangle = \langle z^3, yz, y^3, xz^2 \rangle.
\]

Note that all monomials in this generating set have degree greater than or equal to 2 and so \(I_i = \{0\} \) for \(i \leq 1 \). By the above remark, the leading ideals for \(I_2 \), \(I_3 \) and \(I_4 \) are generated as follows,

\[
\text{lm}_{\succ}(I_2) = \{yz\},
\]

\[
\text{lm}_{\succ}(I_3) = \{z^3, xyz, y^2 z, yzw, y^3, xz^2\},
\]

\[
\text{lm}_{\succ}(I_4) = \{xz^3, yz^3, z^4, wz^3, x^2 yz, y^3 z, yzw^2, xy^2 z, y^2 z^2, yz^2 w, xz^2, y^2 zw, xyzw, xy^3, y^4, y^3 w, x^2 z^2, xz^2 w\}.
\]

By the division algorithm, a vector space basis for \(I_2 \) is \(B_2 = \{yz - xw\} \), a vector space basis for \(I_3 \) is

\[
B_3 = \{z^3 - yw^2, xyz - x^2 w, y^2 z - xyw, yz^2 - xzw, yzw - xw^2, y^3 - x^2 z, xz^2 - y^2 w\},
\]
and a vector space basis for \(I_4 \) is

\[
B_4 = \begin{cases}
 xz^3 - xyw^2, & yz^3 - y^2w^2, & z^4 - xw^3, \\
 z^3w - yw^3, & x^2yz - x^3w, & y^3z - xy^2w, \\
 yzw^2 - xw^3, & y^2z^2 - z^2y^w, & y^2z^2 - x^2w^2, \\
 y^2w - xzw^2, & x^3z^2 - x^2zw, & y^3z^2 - x^2w^2, \\
 y^3w - x^2zw, & y^3x^2 - x^2y^2w, & x^2w - y^2w^2
\end{cases}
\]

The homogeneous ideal \(\langle I_3 \rangle \) has the generating set \(B_3 \) and one can show that it is also the reduced Gröbner basis for this ideal w.r.t. the above grevlex order. However, a Gröbner basis for the ideal \(I \) w.r.t. the grevlex order with \(w \succ y \succ z \succ x \) is

\[
\{ z^4 - xw^3, yw^2 - z^3, yz - xw, y^2w - xz^2, y^3 - x^2z \}.
\]

It follows that a basis for the \(\mathbb{K} \)-vector space \(I_3 \) is

\[
B_3' = \{ yw^2 - z^3, x^2y - x^3w, yz^2 - xy^2w, y^2z - xzw, \\
y^2w - xz^2, y^3 - x^2z \}.
\]

Since \(B_3' \) differs from \(B_3' \) only by scalar multiples, it is also a generating set for the ideal \(\langle I_3 \rangle \). However, it is not the reduced Gröbner basis w.r.t. the grevlex order with \(w \succ y \succ z \succ x \) since the S-polynomial

\[
S \left(yw^2 - z^3, yzw - xw^2 \right) = z(yw^2 - z^3) - w(yzw - xw^2) = -z^4 + xw^3
\]

has the leading term \(z^4 \) which is not divisible by any of the leading terms in \(B_3' \). This confirms the necessity of the condition \(t \geq \max \{ \deg(\text{lt}(g)) \mid g \in G \} \) for \(B_t \) to form a Gröbner basis for the ideal \(\langle I_t \rangle \).

4. Vector Space Bases for the Homogeneous Parts in Graded Modules

Let \(m \geq 1 \) be an integer. The graded submodules \(M \) of \(R^m \) can be characterized as follows [5]:

- The standard grading on \(R^m \) induces a graded module structure on \(M \), which is given by \(M_t = (R^m)_t \cap M \) for all \(t \in \mathbb{Z} \).
• There are elements \(f_1, \ldots, f_r \) in \(R^m \), whose components are homogeneous polynomials of the same degree, such that \(M = \langle f_1, f_2, \ldots, f_r \rangle \subset R^m \) for all \(t \in \mathbb{Z} \).

• A reduced Gröbner basis for \(M \) (w.r.t. any monomial order on \(R^m \)) consists of vectors of homogeneous polynomials whose components have the same degree.

Using these facts, we obtain the following result.

Proposition 2. Let \(M \subset R^m \) be a graded module over \(R \). Let \(G \) be a Gröbner basis for \(M \) w.r.t. any monomial order \(\succ \) and let

\[
\text{lm}_\succ(M_t) = \{\text{lm}_\succ(f) \mid f \in M_t\} = \{x^{a_1}e_{i_1}, \ldots, x^{a_s}e_{i_s}\}, \quad t \in \mathbb{N}_0,
\]

where \(e_{i_1}, \ldots, e_{i_s} \) are unit vectors in \(R^m \). Then a \(\mathbb{K} \)-basis for the vector space \(M_t \) is given by

\[
B_t = \{x^{a_1}e_{i_1} - r_1, \ldots, x^{a_s}e_{i_s} - r_s\},
\]

where \(r_j \in R^m \) is the remainder of \(x^{a_j}e_{i_j} \) on division by \(G \) for each \(1 \leq j \leq s \). The vector space \(M_t \) is non-trivial if and only if \(t \geq \min\{\deg(lt_\succ(g)) \mid g \in G\} \).

The proof is the same as that of Prop. 1 since all statements used there are also applicable to submodules of \(R^m \) (see for instance [5, Chapter 5, 2]). Moreover, the construction of \(\text{lm}_\succ(M_t) \) in the module case is analogous to that in the ideal case (see the remark after the proof of Prop. 1).

Example 2. Let \(R = \mathbb{K}[x, y, z, w] \) and consider the submodule \(M \) of \(R^4 \) generated by the vectors

\[
\begin{pmatrix}
y^2 \\
xz \\
yw \\
z^2
\end{pmatrix}, \quad \begin{pmatrix}
z \\
w \\
-\color{red}z \\
-\color{red}w
\end{pmatrix}, \quad \begin{pmatrix}
x \\
y \\
-\color{red}z \\
y \\
-\color{red}z
\end{pmatrix}, \quad \text{and} \quad \begin{pmatrix}
0 \\
0 \\
0 \\
0
\end{pmatrix}.
\]

The generators are vectors of homogeneous monomials of the same total degree and so by the above remark, the module \(M \) is graded.

The reduced Gröbner basis for the module \(M \) w.r.t. the POT-extension of the grevlex order \(\succ \) with \(x \succ y \succ z \succ w \) is given by the columns of the matrix

\[
\begin{pmatrix}
0 & 0 & 0 & 0 & z & x & y^2 \\
0 & yz - xw & xz^2 - y^2w & y^3 - x^2z & w & y & xz \\
x & -z^2 & yzw & -y^2z & 0 & -z & yw \\
y & -zw & z^3 & -xz^2 & 0 & -w & z^2
\end{pmatrix}.
\]
Thus the leading ideal of M is

$\langle \text{lt}_{\mathcal{POT}}(M) \rangle = \langle y^2e_1, xe_1, ze_1, y^3e_2, xz^2e_2, yze_2, xe_3 \rangle$

and therefore

$\text{lm}_{\mathcal{POT}}(M_1) = \{xe_1, ze_1, xe_3\}$,

$\text{lm}_{\mathcal{POT}}(M_2) = \{x^2e_1, xyze_1, xze_1, xwe_1, y^2e_1, yze_1, z^2e_1,$

$\text{ }zwe_1, yze_2, x^2e_3, xyze_3, xze_3, xwe_3\}.$

The bases for the \mathbb{K}-vector spaces B_1 and B_2 for M_1 and M_2, respectively, are

$$B_1 = \left\{ \begin{pmatrix} 0 \\ 0 \\ x \\ y \end{pmatrix}, \begin{pmatrix} z \\ w \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} x \\ y \\ -z \\ -w \end{pmatrix} \right\},$$

$$B_2 = \left\{ \begin{pmatrix} x^2 \\ xy \\ -xz \\ -xw \end{pmatrix}, \begin{pmatrix} xy \\ y^2 \\ -yz \\ -yw \end{pmatrix}, \begin{pmatrix} xz \\ wx \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} xw \\ yw \\ -zw \\ -w^2 \end{pmatrix}, \begin{pmatrix} y^2 \\ xz \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} yz \\ yw \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} zw \\ w^2 \\ yz - xw \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \right\}.$$