ON THE DIOPHANTINE EQUATION $p^x + (p + 1)^y = z^2$

Alongkot Suvarnamani
Department of Mathematics
Faculty of Science and Technology
Rajamangala University of Technology Thanyaburi
Thanyaburi, Pathum Thani, 12110, THAILAND

Abstract: In this paper, we found that $(p, x, y, z) = (3, 1, 0, 2)$ is a unique solution of the Diophantine equation $p^x + (p + 1)^y = z^2$, where p is an odd prime number and x, y and z are non-negative integers.

AMS Subject Classification: 11D61
Key Words: Diophantine equations, exponential equations

1. Introduction

In 1844, Catalan [2] posed a conjecture that $(a, b, x, y) = (3, 2, 2, 3)$ is a unique solution of the Diophantine equation $a^x - b^y = 1$ where a, b, x and y are integers with $\min\{a, b, x, y\} > 1$. Then Mihăilescu [3] proved the Catalan’s conjecture in 2004. After that Acu [1] proved that $(3, 0, 3)$ and $(2, 1, 3)$ are only two solutions (x, y, z) for the Diophantine equation $2^x + 5^y = z^2$ where x, y and z are non-negative integers.

In 2011, Suvarnamani, Singta and Chotchaisthit [9] proved that two Diophantine equations $4^x + 7^y = z^2$ and $4^x + 11^y = z^2$ have no non-negative integer solution. Then Suvarnamani [5] proved that two Diophantine equations $4^x + 13^y = z^2$ and $4^x + 17^y = z^2$ have no non-negative integer solution. After that Suvarnamani [6] proved that the Diophantine equation $2^x + p^y = z^2$ has some non-negative integer solutions where p is a prime number.
In 2012, Suvarnamani [7] found that Diophantine equation \(A^x + B^y = C^z \) has some non-negative integer solutions. Then Suvarnamani [8] found that the Diophantine equation \(p^x + p^y = z^2 \) has some non-negative integer solutions where \(p \) is a prime number. After that Sroysang [4] proved that \((0, 1, 3)\) is a unique non-negative integer solution of the Diophantine equation \(7^x + 8^y = z^2 \).

In this paper, we will use the Catalan’s conjecture to solving \(p^x + (p + 1)^y = z^2 \) where \(p \) is an odd prime number and \(x, y \) and \(z \) are non-negative integers.

2. Preliminaries

Lemma 2.1. \((a, b, x, y) = (3, 2, 2, 3)\) is a unique solution of the Diophantine equation \(a^x - b^y = 1 \) where \(a, b, x \) and \(y \) are integers with \(\min\{a, b, x, y\} > 1 \).

Proof. See in [4].

Lemma 2.2. If \(q \) is an odd prime number and \(y, z \) are non-negative integers. Then the Diophantine equation \(1 + q^y = z^2 \) has no solution.

Proof. Let \(q \) is an odd prime number and \(y, z \) be non-negative integers such that \(1 + (p + 1)^y = z^2 \). We consider in 3 cases.

Case 1: \(y = 0 \). Then \(z^2 = 2 \) which is impossible.

Case 2: \(y = 1 \). Thus \(z^2 = p + 2 \). That is \(z = 0 \) or \(2 \). It is impossible.

Case 3: \(y > 1 \). Thus \(z^2 = (p + 1)^y + 1 > p + 2 \). Then \(z > 2 \). By Lemma 2.1, we have \(z = 3, p = 1 \) and \(y = 3 \). Contradiction.

Lemma 2.3. \((p, x, z) = (3, 1, 2)\) is a unique solution of the Diophantine equation \(p^x + 1 = z^2 \) where \(p \) is an odd prime number and \(x, z \) are non-negative integers.

Proof. Let \(p \) be an odd prime number and \(x, z \) be non-negative integers such that \(p^x + 1 = z^2 \). We consider in 3 cases.

Case 1: \(x = 0 \). Then \(z^2 = 2 \) which is impossible.

Case 2: \(x = 1 \). Thus \(z^2 = p + 1 \). That is \(z = 2 \). Then we get \(p = 3 \).

Case 3: \(x > 1 \). Thus \(z^2 = p^x + 1 > p + 1 \). Then \(z > 2 \). By Lemma 2.1, we have \(z = 3, p = 2 \) and \(x = 3 \). Contradiction.
ON THE DIOPHANTINE EQUATION $p^x + (p + 1)^y = z^2$

3. Main Theorem

Main Theorem 3.1. \((p, x, y, z) = (3, 1, 0, 2)\) is a unique solution of the Diophantine equation \(p^x + (p + 1)^y = z^2\) where \(p\) is an odd prime number and \(x, y, z\) are non-negative integers.

Proof. Let \(p\) is an odd prime number and \(x, y, z\) are non-negative integers such that \(p^x + (p + 1)^y = z^2\). By Lemma 2.2, we have \(x \geq 1\). Then we consider in 2 cases.

Case 1: \(y = 0\). Then \(p^x + 1 = z^2\). By Lemma 2.3, we get \((p, x, y, z) = (3, 1, 0, 2)\) is a solution.

Case 2: \(y \geq 1\). Then \(z^2 = p^x + (p + 1)^y\). So, \(z\) is odd. Then \(z^2 \equiv 1(mod 4)\). Next, we consider in 2 cases.

Subcase 1: \(x\) is even, i.e., \(x = 2k\) where \(k \in N\).
We get \((p + 1)^y = z^2 - p^{2k} = (z - p^k)(z + p^k)\), where \(z - p^k = (p + 1)^u\) and \(z + p^k = (p + 1)^{x - u}, y > 2u\). Then \((p + 1)^u((p + 1)^y-2u - 1) = 2 \cdot p^k\). That is \((p + 1)^u = 2 \cdot p^v\) and \((p + 1)^{y-2u - 1} = p^{k-v}\) where \(v \in N\). But it is impossible.

Subcase 2: \(x\) is odd, i.e., \(x = 2h + 1\) where \(h \in N\).
If \(y\) is odd, i.e., \(y = 2i + 1\) where \(i \in N\). We have \(z^2 = p^{2h+1} + (p + 1)^{2i+1}\). We get \(z = 0, 2\). But it is impossible.
If \(y\) is even, i.e., \(y = 2j\) where \(j \in N\). We have \(z^2 = p^{2h+1} + (p + 1)^{2j}\). We get \(z = 0, 2\). But it is impossible.

\(\square\)

Acknowledgements

I would like to thank the referees for their comments and suggestions on the manuscript. This work was supported by the Faculty of Sciences and Technology, Rajamangala University of Technology Thanyaburi (RMUTT), Thailand.

References

