HYERS-ULAM-RASSIAS STABILITY OF FUNCTIONAL EQUATION IN NAB-SPACES

Dong Yun Shin¹, Hassan Azadi Kenary²§, N. Sahami³

¹Department of Mathematics
College of Natural Science
University of Seoul
KOREA

²,³Department of Mathematics
Beyza Branch
Islamic Azad University
Beyza, IRAN

Abstract: In this paper, using direct method we investigate the Hyers-Ulam-Rassias stability of an additive functional equation in non-Archimedean Banach spaces (briefly, NAB-spaces).

AMS Subject Classification: 39B22, 39B52, 39B22, 39B82, 46S10
Key Words: Hyers-Ulam-Rassias stability, non-Archimedean Banach spaces

1. Introduction and Preliminaries

A classical question in the theory of functional equations is the following: When is it true that a function which approximately satisfies a functional equation D must be close to an exact solution of D?

If the problem accepts a solution, we say that the equation D is stable. The first stability problem concerning group homomorphisms was raised by Ulam [26] in 1940.
We are given a group G and a metric group G' with metric $d(.,.)$. Given $\varepsilon > 0$, does there exist a $\delta > 0$ such that if $f : G \to G'$ satisfies $d(f(xy), f(x)f(y)) < \delta$, for all $x, y \in G$, then a homomorphism $h : G \to G$ exists with $d(f(x), h(x)) < \varepsilon$ for all $x \in G'$?

Ulam’s problem was partially solved by Hyers [10] in 1941.

In 1978, Th. M. Rassias [18] formulated and proved the following theorem, which implies Hyers’s Theorem as a special case. Suppose that E and F are real normed spaces with F a complete normed space, $f : E \to F$ is a mapping such that for each fixed $x \in E$ the mapping $t \to f(tx)$ is continuous on R, and let there exist $\varepsilon \geq 0$ and $p \in [0,1)$ such that for all $x, y \in E$

$$||f(x + y) - f(x) - f(y)|| \leq \varepsilon(||x||^p + ||y||^p) \quad (1.1)$$

Then there exists a unique linear mapping $T : E \to F$ such that such that for all $x \in E$

$$||f(x) - T(x)|| \leq \frac{\varepsilon||x||^p}{1 - 2^p - 1}$$

The case of the existence of a unique additive mapping had been obtained by T. Aoki [2], as it is recently noticed by Lech Maligranda. However, Aoki [2] had claimed the existence of a unique linear mapping, that is not true because he did not allow the mapping f to satisfy some continuity assumption. Th.M. Rassias [18], who independently introduced the unbounded Cauchy difference was the first to prove that there exists a unique linear mapping T satisfying

$$||f(x) - T(x)|| \leq \frac{\varepsilon||x||^p}{1 - 2^p - 1} \quad x \in E$$

In 1990, Th.M. Rassias [19] during the 27th International Symposium on Functional Equations asked the question whether such a theorem can also be proved for $p \geq 1$. In 1991, Z. Gajda [8] following the same approach as in Th. M. Rassias [24], gave an affirmative solution to this question for $p > 1$. It was proved by Z. Gajda [8], as well as by Th. M. Rassias and P. Šemrl [20] that one can not prove a Th. M. Rassias type theorem when $p = 1$. In 1994, P. Găvruta [9] provided a further generalization of Th. M. Rassias theorem in which he replaced the bound $\varepsilon(||x||^p + ||y||^p)$ by a general control function $\psi(x,y)$ for the existence of a unique linear mapping.

The functional equation

$$f(x + y) + f(x - y) = 2f(x) + 2f(y)$$

is called the quadratic functional equation. In particular, every solution of the quadratic functional equation is said to be a quadratic mapping. A generalized
Hyers-Ulam stability problem for the quadratic functional equation was proved by Skof [25] for mappings $f : X \to Y$, where X is a normed space and Y is a Banach space. Cholewa [6] noticed that the theorem of Skof is still true if the relevant domain X is replaced by an Abelian group. In [7], Czerwik proved the generalized Hyers-Ulam stability of the quadratic functional equation.

During the last decades several stability problems of functional equations have been investigated by a number of mathematicians([1]-[5], [11]-[24]).

Definition 1.1. By a non-Archimedean field we mean a field K equipped with a function(valuation) $|.| : K \to [0,\infty)$ such that for all $r, s \in K$, the following conditions hold:

(i) $|r| = 0$ if and only if $r = 0$

(ii) $|rs| = |r||s|$

(iii) $|r + s| \leq \max\{|r|, |s|\}$.

Definition 1.2. Let X be a vector space over a scalar field K with a non-Archimedean non-trivial valuation $|.|$. A function $||.|| : X \to \mathbb{R}$ is a non-Archimedean norm (valuation) if it satisfies the following conditions:

(i) $||x|| = 0$ if and only if $x = 0$

(ii) $||rx|| = |r|||x||$ ($r \in K, x \in X$)

(iii) The strong triangle inequality(ultrametric); namely

$$||x + y|| \leq \max\{||x||, ||y||\}. \quad x, y \in X$$

Then $(X, ||.||)$ is called a non-Archimedean space.

Due to the fact that

$$||x_n - x_m|| \leq \max\{||x_{j+1} - x_j|| : m \leq j \leq n - 1\} \quad (n > m)$$

Definition 1.3. A sequence $\{x_n\}$ is Cauchy if and only if $\{x_{n+1} - x_n\}$ converges to zero in a non-Archimedean space. By a complete non-Archimedean space we mean one in which every Cauchy sequence is convergent.

Example 1.1. Fix a prime number p. For any nonzero rational number x, there exists a unique integer $n_x \in \mathbb{Z}$ such that $x = \frac{a}{b}p^{n_x}$, where a and b are integers not divisible by p. Then $|x|_p := p^{-n_x}$ defines a non-Archimedean norm on \mathbb{Q}. The completion of \mathbb{Q} with respect to the metric $d(x, y) = |x - y|_p$ is denoted by \mathbb{Q}_p which is called the p-adic number field. In fact, \mathbb{Q}_p is the set of all formal series $x = \sum_{k \geq n_x} a_kp^k$ where $|a_k| \leq p - 1$ are integers. The addition
and multiplication between any two elements of \mathbb{Q}_p are defined naturally. The norm $|\sum_{k \geq n} a_k p^k| p = p^{-n}$ is a non-Archimedean norm on \mathbb{Q}_p and it makes \mathbb{Q}_p a locally compact field.

Definition 1.4. Let X be a set. A function $d : X \times X \to [0, \infty]$ is called a **generalized metric** on X if d satisfies the following conditions:

(a) $d(x, y) = 0$ if and only if $x = y$ for all $x, y \in X$;
(b) $d(x, y) = d(y, x)$ for all $x, y \in X$;
(c) $d(x, z) \leq d(x, y) + d(y, z)$ for all $x, y, z \in X$.

Theorem 1.1. Let (X, d) be a complete generalized metric space and $J : X \to X$ be a strictly contractive mapping with Lipschitz constant $L < 1$. Then, for all $x \in X$, either

$$d(J^n x, J^{n+1} x) = \infty$$ \hspace{1cm} (1.2)

for all nonnegative integers n or there exists a positive integer n_0 such that:

(a) $d(J^n x, J^{n+1} x) < \infty$ for all $n_0 \geq n_0$;
(b) the sequence $\{J^n x\}$ converges to a fixed point y^* of J;
(c) y^* is the unique fixed point of J in the set $Y = \{y \in X : d(J^{n_0} x, y) < \infty\}$;
(d) $d(y, y^*) \leq \frac{1}{1-L} d(y, Jy)$ for all $y \in Y$.

In this paper, we prove the generalized Hyers-Ulam stability of the following functional equation

$$f(f(x) - f(y)) = f(x + y) + f(x - y) - f(x) - f(y)$$ \hspace{1cm} (1.3)

in non-Archimedean normed spaces. In the rest of the paper let $|2| \neq 1$.

2. Non-Archimedean Stability of Eq. (1.3): A Direct Method

Throughout this section, using direct method we prove the generalized Hyers-Ulam stability of composite functional equation (1.3) in non-Archimedean spaces.

Theorem 2.1. Let G be an additive semigroup and X is a complete non-Archimedean space. Assume that $\varphi : G^2 \to [0, +\infty)$ be a function such that

$$\lim_{n \to \infty} \frac{\varphi(2^n x, 2^n y)}{|2|^n} = 0$$ \hspace{1cm} (2.1)
for all $x, y \in G$. Let for all $x \in G$

$$\Phi(x) = \text{Sup}_{k \geq 0} \left\{ \frac{\varphi(2^k x, 2^k x)}{|2|^k}; \ k \in \mathbb{N} \cup \{0\} \right\}$$ \hspace{1cm} (2.2)

exists. Suppose that $f : G \to X$ be a mapping satisfying the inequality

$$\left\| f(f(x) - f(y)) - f(x + y) - f(x - y) + f(x) + f(y) \right\| \leq \varphi(x, y)$$ \hspace{1cm} (2.3)

for all $x, y \in G$. Then the limit

$$A(x) := \lim_{n \to \infty} \frac{f(2^n x)}{2^n}$$

exist for all $x \in G$ and $A : G \to X$ is an additive mapping satisfying

$$\left\| f(x) - A(x) \right\| \leq \frac{1}{|2|} \Phi(x)$$ \hspace{1cm} (2.4)

for all $x \in G$. Moreover, if

$$\lim_{j \to \infty} \lim_{n \to \infty} \max \left\{ \frac{\varphi(2^k x, 2^k x)}{|2|^k}; \ j \leq k < n + j \right\} = 0$$

Then A is the unique mapping satisfying (2.4).

Proof. Putting $y = x$ in (2.3), we have

$$\left\| \frac{f(2x)}{2} - f(x) \right\| \leq \frac{1}{|2|} \varphi(x, x)$$ \hspace{1cm} (2.5)

Replacing x by $2^n x$ in (2.5), we get

$$\left\| \frac{f(2^{n+1} x)}{2^{n+1}} - \frac{f(2^n x)}{2^n} \right\| \leq \frac{\varphi(2^n x, 2^n x)}{|2|^{n+1}}$$ \hspace{1cm} (2.6)

It follows from (2.1) and (2.6) that the sequence $\left\{ \frac{f(2^n x)}{2^n} \right\}_{n=1}^{\infty}$ is a Cauchy sequence. Since X is complete, so $\left\{ \frac{f(2^n x)}{2^n} \right\}_{n=1}^{\infty}$ is convergent. Set

$$A(x) := \lim_{n \to \infty} \frac{f(2^n x)}{2^n}.$$

Using induction we see that

$$\left\| \frac{f(2^n x)}{2^n} - f(x) \right\| \leq \frac{1}{|2|} \max \left\{ \frac{\varphi(2^k x, 2^k x)}{|2|^k}; 0 \leq k < n \right\}.$$ \hspace{1cm} (2.7)
Indeed, (2.7) holds for \(n = 1 \) by (2.5). Let, (2.7) holds for \(n \), so by (2.6), we obtain

\[
\left\| \frac{f(2^{n+1}x)}{2^{n+1}} - f(x) \right\|_X = \left\| \frac{f(2^{n+1}x)}{2^{n+1}} - \frac{f(2^nx)}{2^n} - f(x) \right\|_X \tag{2.8}
\]

\[
\leq \max \left\{ \left\| \frac{f(2^{n+1}x)}{2^{n+1}} - \frac{f(2^nx)}{2^n} \right\|_X, \left\| \frac{f(2^nx)}{2^n} - f(x) \right\|_X \right\}
\]

\[
\leq \frac{1}{|2|} \max \left\{ \frac{\varphi(2^nx, 2^nx)}{|2|^n}, \max \left\{ \frac{\varphi(2^kx, 2^kx)}{|2|^k}; 0 \leq k < n \right\} \right\}
\]

\[
= \frac{1}{|2|} \max \left\{ \frac{\varphi(2^kx, 2^kx)}{|2|^k}; 0 \leq k < n + 1 \right\}.
\]

So for all \(n \in \mathbb{N} \) and all \(x \in G \), (2.7) holds. By taking \(n \) to approach infinity in (2.8), one obtains (2.4).

If \(L \) is another mapping satisfies (2.4), then for \(x \in G \), we get

\[
\|A(x) - L(x)\|_X = \lim_{k \to \infty} \left\| \frac{A(2^kx)}{2^k} - \frac{L(2^kx)}{2^k} \right\|_X
\]

\[
= \lim_{k \to \infty} \left\| \frac{A(2^kx)}{2^k} + \frac{f(2^kx)}{2^k} - \frac{L(2^kx)}{2^k} \right\|_X
\]

\[
\leq \lim_{k \to \infty} \max \left\{ \left\| \frac{A(2^kx) - f(2^kx)}{2^k} \right\|_X, \left\| \frac{f(2^kx) - L(2^kx)}{2^k} \right\|_X \right\}
\]

\[
\leq \lim_{j \to \infty} \lim_{n \to \infty} \max \left\{ \frac{\varphi(2^kx, 2^kx)}{|2|^k}; j \leq k < n + j \right\}
\]

\[
= 0.
\]

Therefore \(A = L \). This completes the proof. \(\square \)

Corollary 2.1. Let \(\xi : [0, \infty) \to [0, \infty) \) be a function satisfying

\[
\xi(|2|) \leq \xi(|2|)\lambda(t), \quad \xi(|2|) < |2|
\]

for all \(t \geq 0 \). Let \(\delta > 0 \) and \(f : G \to X \) is a mapping satisfying the inequality

\[
\left\| f(f(x) - f(y)) - f(x + y) - f(x - y) + f(x) + f(y) \right\| \leq \delta \left(\xi(||x||) + \xi(||y||) \right) \tag{2.9}
\]

for all \(x, y \in G \). Then the limit \(A(x) = \lim_{n \to \infty} \frac{f(2^nx)}{2^n} \) exists for all \(x \in G \) and \(A : G \to X \) is a unique additive mapping such that

\[
\left\| f(x) - A(x) \right\| \leq \frac{2\delta\xi(||x||)}{|2|}
\]

for all \(x \in G \).
Proof. Defining $\varphi : G^2 \to [0, \infty)$ by $\varphi(x, y) := \delta (\xi(||x||) + \xi(||y||))$. Since $\frac{\xi(||2||)}{2} < 1$, we have
\[
\lim_{n \to \infty} \frac{\varphi(2^n x, 2^n y)}{|2|^n} \leq \lim_{n \to \infty} \left(\frac{\xi(||2||)}{|2|} \right)^n \varphi(x, y) = 0
\]
for all $x, y \in G$. Also for all $x \in G$
\[
\Phi(x) = \sup_{k \geq 0} \left\{ \frac{\varphi(2^k x, 2^k x)}{|2|^k}; k \in \mathbb{N} \cup \{0\} \right\} = \varphi(x, x) = 2\delta \xi(||x||)
\]
exists for all $x \in G$. On the other hand
\[
\lim_{j \to \infty} \lim_{n \to \infty} \max \left\{ \frac{\varphi(2^k x, 2^k x)}{|2|^k}; j \leq k < n + j \right\} = \lim_{j \to \infty} \frac{\varphi(2^j x, 2^j x)}{|2|^j} = 0.
\]
Applying Theorem 2.1, then we get the desired result.
\[
\square
\]

Theorem 2.2. Let G is an additive semigroup and X is a complete non-Archimedean space. Assume that $\varphi : G^2 \to [0, +\infty)$ be a function such that
\[
\lim_{n \to \infty} |2|^n \varphi \left(\frac{x}{2^n}, \frac{y}{2^n} \right) = 0
\]
for all $x, y \in G$. Let for each $x \in G$
\[
\Phi(x) = \sup_{k \geq 0} \left\{ |2|^k \varphi \left(\frac{x}{2^k+1}, \frac{x}{2^k+1} \right); k \in \mathbb{N} \cup \{0\} \right\}
\]
exists. Suppose that $f : G \to X$ is a mapping satisfying the inequality (2.3). Then the limit
\[
A(x) := \lim_{n \to \infty} 2^n f \left(\frac{x}{2^n} \right)
\]
exist for all $x \in G$ and $A : G \to X$ is an additive mapping satisfying
\[
||f(x) - A(x)|| \leq \Phi(x)
\]
for all $x \in G$. Moreover, if
\[
\lim_{j \to \infty} \lim_{n \to \infty} \max \left\{ |2|^k \varphi \left(\frac{x}{2^k+1}, \frac{x}{2^k+1} \right); j \leq k < n + j \right\} = 0
\]
Then A is the unique mapping satisfying (2.12).
Proof. By (??), we have

$$\left\| f(x) - 2f \left(\frac{x}{2} \right) \right\|_X \leq \zeta \left(\frac{x}{2}, \frac{x}{2} \right)$$

(2.14)

for all $x \in G$. Replacing x by $\frac{x}{2^n}$ in (2.14), we get

$$\left\| 2^n f \left(\frac{x}{2^n} \right) - 2^{n+1} f \left(\frac{x}{2^{n+1}} \right) \right\|_X \leq |2|^n \phi \left(\frac{x}{2^{n+1}}, \frac{x}{2^{n+1}} \right)$$

(2.15)

It follows from (2.10) and (2.15) that the sequence $\{2^n f \left(\frac{x}{2^n} \right)\}_{n=1}^{\infty}$ is a Cauchy sequence. Since X is complete, so $\{2^n f \left(\frac{x}{2^n} \right)\}_{n=1}^{\infty}$ is convergent. It follows from (2.15) that

$$\left\| 2^n f \left(\frac{x}{2^n} \right) - 2^p f \left(\frac{x}{2^p} \right) \right\|_X = \left\| \sum_{k=p}^{n-1} 2^{k+1} f \left(\frac{x}{2^{k+1}} \right) - 2^k f \left(\frac{x}{2^k} \right) \right\|_X$$

(2.16)

$$\leq \max \left\{ \left\| 2^{k+1} f \left(\frac{x}{2^{k+1}} \right) - 2^k f \left(\frac{x}{2^k} \right) \right\|_X \mid ; p \leq k < n-1 \right\}$$

$$\leq \max \left\{ \left| 2^{k+1} \varphi \left(\frac{x}{2^{k+1}}, \frac{x}{2^{k+1}} \right) \right| ; p \leq k < n-1 \right\}$$

for all $x \in G$ all non-negative integer n, p with $n > p \geq 0$. Letting $p = 0$ and passing the limit $n \to \infty$ in the last inequality, we obtain (2.12). The rest of the proof is similar to the proof of Theorem 2.1.

Corollary 2.2. Let $\xi : [0, \infty) \to [0, \infty)$ be a function satisfying

$$\xi(|2|^{-1}t) \leq \xi(|2|^{-1}) \lambda(t), \quad \xi(|2|^{-1}) < |2|^{-1}$$

for all $t \geq 0$. Let $\delta > 0$ and $f : G \to X$ is a mapping satisfying the inequality (2.9). Then the limit $A(x) = \lim_{n \to \infty} 2^n f \left(\frac{x}{2^n} \right)$ exists for all $x \in G$ and $A : G \to X$ is a unique additive mapping such that

$$\left\| f(x) - A(x) \right\| \leq \frac{2\xi(||x||)}{|2|}$$

(2.17)

for all $x \in G$.

Proof. Defining $\varphi : G^2 \to [0, \infty)$ by $\varphi(x, y) := \delta (\xi(||x||) + \xi(||y||))$. Proceeding as in the proof of the Corollary 2.1, we have $\lim_{n \to \infty} \varphi \left(\frac{2^n x, 2^n y}{|2|^n} \right) = 0$ for all $x, y \in G$. Also for all $x \in G$

$$\Phi(x) = \Sup_{k \geq 0} \left\{ |2|^k \varphi \left(\frac{x}{2^{k+1}}, \frac{x}{2^{k+1}} \right) ; k \in \mathbb{N} \cup \{0\} \right\} = \varphi \left(\frac{x}{2}, \frac{x}{2} \right) = \frac{2\xi(||x||)}{|2|}$$

exists for all $x \in G$. Applying Theorem 2.2, then we get the desired result. \qed
Acknowledgments

D.Y. Shin was supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (NRF-2010-0021792).

References

