FIXED POINT AND APPROXIMATELY
COMPOSITE FUNCTIONAL EQUATIONS IN
NON-ARCHIMEDEAN NORMED SPACES

Mohammad Hadi Eghtesadifard¹, Dong Yun Shin²§, Hassan Azadi Kenary³,
Najmeh Sahami⁴

¹Instructor of Fars Education Department
Shiraz, IRAN

²Department of Mathematics
College of Natural Science
University of Seoul
KOREA

³,⁴Department of Mathematics
Beyza Branch
Islamic Azad University
Beyza, IRAN

Abstract: In this paper, we investigate the generalized Hyers-Ulam-Rassias (or

AMS Subject Classification: 39B22, 39B52, 39B22, 39B82, 46S10
Key Words: Hyers-Ulam stability, stability, non-Archimedean normed spaces

Received: April 29, 2013

§Correspondence author
1. Introduction and Preliminaries

A classical question in the theory of functional equations is the following: When is it true that a function which approximately satisfies a functional equation D must be close to an exact solution of D?

If the problem accepts a solution, we say that the equation D is stable. The first stability problem concerning group homomorphisms was raised by Ulam [26] in 1940.

We are given a group G and a metric group G' with metric $d(.,.)$. Given $\varepsilon > 0$, does there exist a $\delta > 0$ such that if $f : G \to G'$ satisfies $d(f(xy), f(x)f(y)) < \delta$, for all $x, y \in G$, then a homomorphism $h : G \to G'$ exists with $d(f(x), h(x)) < \varepsilon$ for all $x \in G'$?

Ulam’s problem was partially solved by Hyers [10] in 1941.

Let E_1 be a normed space, E_2 a Banach space and suppose that the mapping $f : E_1 \to E_2$ satisfies the inequality

$$||f(x+y) - f(x) - f(y)|| \leq \varepsilon$$

for all $x, y \in E_1$, where $\varepsilon > 0$ is a constant. Then the limit

$$T(x) = \lim_{n \to \infty} 2^{-n} f(2^n x)$$

exists for each $x \in E_1$ and T is the unique additive mapping satisfying

$$||T(x) - f(x)|| \leq \varepsilon \quad (1.1)$$

for all $x \in E_1$. Also, if for each x the function $t \to f(tx)$ from \mathbb{R} to E_2 is continuous on \mathbb{R}, then T is linear. If f is continuous at a single point of E_1, then T is continuous everywhere in E_1. Moreover (1.1) is sharp.

In 1978, Th. M. Rassias [18] formulated and proved the following theorem, which implies Hyers’s Theorem as a special case. Suppose that E and F are real normed spaces with F a complete normed space, $f : E \to F$ is a mapping such that for each fixed $x \in E$ the mapping $t \to f(tx)$ is continuous on R, and let there exist $\varepsilon \geq 0$ and $p \in [0, 1)$ such that for all $x, y \in E$

$$||f(x+y) - f(x) - f(y)|| \leq \varepsilon(||x||^p + ||y||^p) \quad (1.2)$$

Then there exists a unique linear mapping $T : E \to F$ such that such that for all $x \in E$

$$||f(x) - T(x)|| \leq \frac{\varepsilon||x||^p}{1 - 2p^{-1}}$$
The case of the existence of a unique additive mapping had been obtained by T. Aoki [2], as it is recently noticed by Lech Maligranda. However, Aoki [2] had claimed the existence of a unique linear mapping, that is not true because he did not allow the mapping \(f \) to satisfy some continuity assumption. Th.M. Rassias [18], who independently introduced the unbounded Cauchy difference was the first to prove that there exists a unique linear mapping \(T \) satisfying
\[
||f(x) - T(x)|| \leq \frac{\epsilon||x||^p}{1 - 2^{p-1}} \quad x \in E
\]

In 1990, Th.M. Rassias [19] during the 27th International Symposium on Functional Equations asked the question whether such a theorem can also be proved for \(p \geq 1 \). In 1991, Z. Gajda [8] following the same approach as in Th. M. Rassias [24], gave an affirmative solution to this question for \(p > 1 \). It was proved by Z. Gajda [8], as well as by Th. M. Rassias and P. Šemrl [20] that one can not prove a Th. M. Rassias type theorem when \(p = 1 \). In 1994, P. Gavruta [9] provided a further generalization of Th. M. Rassias theorem in which he replaced the bound \(\epsilon(||x||^p + ||y||^p) \) by a general control function \(\psi(x,y) \) for the existence of a unique linear mapping.

The functional equation \(f(x + y) + f(x - y) = 2f(x) + 2f(y) \) is called the quadratic functional equation. In particular, every solution of the quadratic functional equation is said to be a quadratic mapping. A generalized Hyers-Ulam stability problem for the quadratic functional equation was proved by Skof [25] for mappings \(f : X \to Y \), where \(X \) is a normed space and \(Y \) is a Banach space. Cholewa [6] noticed that the theorem of Skof is still true if the relevant domain \(X \) is replaced by an Abelian group. In [7], Czerwik proved the generalized Hyers-Ulam stability of the quadratic functional equation.

During the last decades several stability problems of functional equations have been investigated by a number of mathematicians([1]-[5], [11]-[24]).

Definition 1.1. By a non-Archimedean field we mean a field \(\mathbb{K} \) equipped with a function(valuation) \(|\cdot| : \mathbb{K} \to [0,\infty) \) such that for all \(r, s \in \mathbb{K} \), the following conditions hold:

\[
\begin{align*}
(i) & \quad |r| = 0 \text{ if and only if } r = 0; \\
(ii) & \quad |rs| = |r||s|; \\
(iii) & \quad |r + s| \leq \max\{|r|, |s|\}.
\end{align*}
\]

Definition 1.2. Let \(X \) be a vector space over a scalar field \(\mathbb{K} \) with a non-Archimedean non-trivial valuation \(|\cdot| \). A function \(||\cdot|| : X \to \mathbb{R} \) is a non-Archimedean norm (valuation) if it satisfies the following conditions:
(i) \(||x|| = 0\) if and only if \(x = 0\);
(ii) \(||rx|| = |r|||x||\) \((r \in \mathbb{K}, x \in X)\);
(iii) The strong triangle inequality (ultrametric); namely
\[||x + y|| \leq \max\{||x||, ||y||\}. \quad x, y \in X\]

Then \((X, ||.||)\) is called a non-Archimedean space.

Due to the fact that
\[||x_n - x_m|| \leq \max\{||x_{j+1} - x_j|| : m \leq j \leq n - 1\} \quad (n > m)\]

Definition 1.3. A sequence \(\{x_n\}\) is Cauchy if and only if \(\{x_{n+1} - x_n\}\) converges to zero in a non-Archimedean space. By a complete non-Archimedean space we mean one in which every Cauchy sequence is convergent.

Definition 1.4. Let \(X\) be a set. A function \(d : X \times X \to [0, \infty]\) is called a generalized metric on \(X\) if \(d\) satisfies the following conditions:

(a) \(d(x, y) = 0\) if and only if \(x = y\) for all \(x, y \in X\);
(b) \(d(x, y) = d(y, x)\) for all \(x, y \in X\);
(c) \(d(x, z) \leq d(x, y) + d(y, z)\) for all \(x, y, z \in X\).

Theorem 1.1. Let \((X, d)\) be a complete generalized metric space and \(J : X \to X\) be a strictly contractive mapping with Lipschitz constant \(L < 1\). Then, for all \(x \in X\), either \(d(J^n x, J^{n+1} x) = \infty\) for all nonnegative integers \(n\) or there exists a positive integer \(n_0\) such that:

(a) \(d(J^n x, J^{n+1} x) < \infty\) for all \(n_0 \geq n_0\);
(b) the sequence \(\{J^n x\}\) converges to a fixed point \(y^*\) of \(J\);
(c) \(y^*\) is the unique fixed point of \(J\) in the set \(Y = \{y \in X : d(J^{n_0} x, y) < \infty\}\);
(d) \(d(y, y^*) \leq \frac{1}{1-L}d(y, Jy)\) for all \(y \in Y\).

In this paper, we prove the generalized Hyers-Ulam stability of the following functional equation
\[f(f(x) - f(y)) = f(x + y) + f(x - y) - f(x) - f(y) \quad (1.3)\]
in non-Archimedean normed spaces. In the rest of the paper let \(|2| \neq 1\).
2. Non-Archimedean Stability of Eq. (1.3): A Fixed Point Method

Throughout this section, using the fixed point method we prove the generalized Hyers-Ulam stability of the composite functional equation (1.3) in non-Archimedean spaces.

Theorem 2.1. Let X be a non-Archimedean normed space and that Y be a complete non-Archimedean normed space. Assume $\zeta : X^2 \to [0, \infty)$ be a function such that there exists an $L < 1$ with
\[
\zeta(2x, 2y) \leq |2L\zeta(x, y) \tag{2.1}
\]
for all $x, y \in X$. Let $f : X \to Y$ be a mapping satisfying
\[
\left\| f(f(x) - f(y)) - f(x + y) - f(x - y) + f(x) + f(y) \right\| \leq \zeta(x, y) \tag{2.2}
\]
for all $x, y \in X$. Then there is a unique additive mapping $A : X \to Y$ such that
\[
\| f(x) - A(x) \| \leq \frac{\zeta(x,x)}{2 - |2L|} \tag{2.3}
\]

Proof. Putting $y = x$ in (2.2), we have
\[
\left\| f(2x) - f(x) \right\| \leq \frac{1}{2} \zeta(x,x) \tag{2.4}
\]
for all $x \in X$. Consider the set $S := \{ g : X \to Y \}$ and the generalized metric d in S defined by $d(f,g) = \inf_{\mu \in (0, +\infty)} \{ \| g(x) - h(x) \| \leq \mu \zeta(x,x), \forall x \in X \}$, where $\inf \emptyset = +\infty$. It is easy to show that (S,d) is complete (see [12], Lemma 2.1).

Now, we consider a linear mapping $J : (S,d) \to (S,d)$ such that $Jh(x) := \frac{1}{2} h(2x)$ for all $x \in X$. Let $g, h \in S$ be such that $d(g,h) = \epsilon$. Then $\| g(x) - h(x) \| \leq \epsilon \zeta(x,x)$ for all $x \in X$ and so
\[
\| Jg(x) - Jh(x) \| = \left\| \frac{g(2x)}{2} - \frac{h(2x)}{2} \right\| \leq \frac{1}{|2|} \epsilon \zeta(2x, 2x) \leq \frac{1}{|2|} \epsilon |2L| \zeta(x,x)
\]
for all $x \in X$. Thus $d(g,h) = \epsilon$ implies that $d(Jg, Jh) \leq L\epsilon$. This means that $d(Jg, Jh) \leq Ld(g,h)$ for all $g, h \in S$. It follows from (2.4) that $d(f, Jf) \leq \frac{1}{|2|} < +\infty$. By Theorem 1.1, there exists a mapping $A : X \to Y$ satisfying the following:

(1) A is a fixed point of J, that is,
\[
A(2x) = 2A(x) \tag{2.5}
\]
for all $x \in X$. The mapping A is a unique fixed point of J in the set $\Omega = \{ h \in S : d(g, h) < \infty \}$. This implies that A is a unique mapping satisfying (2.5) such that there exists $\mu \in (0, \infty)$ satisfying $\| f(x) - A(x) \| \leq \mu \zeta(x, x)$ for all $x \in X$.

(2) $d(J^n f, A) \to 0$ as $n \to \infty$. This implies the equality $\lim_{n \to \infty} \frac{f(2^n x)}{2^n} = A(x)$ for all $x \in X$.

(3) $d(f, A) \leq \frac{d(f,J)}{|2| - |2|L}$ with $f \in \Omega$, which implies the inequality $d(f, A) \leq \frac{1}{|2| - |2|L}$. This implies that the inequality (2.3) holds. By (2.1) and (2.2), we obtain

$$\left\| A(A(x) - A(y)) - A(x + y) - A(x - y) + A(x) + A(y) \right\|
\leq \lim_{n \to \infty} \frac{1}{|2|^n} \zeta(2^n x, 2^n y) \leq \lim_{n \to \infty} \frac{1}{|2|^n} \cdot |2|^n \zeta(x, y) = 0$$

for all $x, y \in X$ and $n \in \mathbb{N}$. So $\left\| A(A(x) - A(y)) - A(x + y) - A(x - y) + A(x) + A(y) \right\| = 0$, for all $x, y \in X$. Thus the mapping $A : X \to Y$ satisfying in (1.3).

On the other hand

$$2A \left(\frac{x}{2} \right) - A(x) = \lim_{n \to \infty} \frac{f(2^n x)}{2^n} - \lim_{n \to \infty} \frac{f(2^n x)}{2^n} = 0.$$

So, A is an additive mapping, as desired. This completes the proof. \qed

Corollary 2.1. Let $\theta \geq 0$ and r be a real number with $0 < r < 1$. Let $f : X \to Y$ be a mapping satisfying

$$\left\| f(f(x)) - f(x + y) - f(x - y) + f(x) + f(y) \right\| \leq \theta(\|x\|^r + \|y\|^r) \quad (2.6)$$

for all $x, y \in X$. Then the limit $A(x) = \lim_{n \to \infty} \frac{f(2^n x)}{2^n}$ exists for all $x \in X$ and $A : X \to Y$ is a unique additive mapping such that

$$\| f(x) - A(x) \| \leq \frac{2\theta \|x\|^r}{|2| - |2|^{r+1}}$$

for all $x \in X$.

Proof. The proof follows from Theorem 2.1 by taking $\zeta(x, y) = \theta(\|x\|^r + \|y\|^r)$ for all $x, y \in X$. In fact, if we choose $L = |2|^r$, then we get the desired result. \qed
Theorem 2.2. Let \(X \) be a non-Archimedean normed space and that \(Y \) be a complete non-Archimedean normed space. Assume \(\zeta : X^2 \to [0, \infty) \) be a function such that there exists an \(L < 1 \) with
\[
\zeta\left(\frac{x}{2}, \frac{y}{2}\right) \leq \frac{L}{|2|} \zeta(x, y)
\]
for all \(x, y \in X \). Let \(f : X \to Y \) be a mapping satisfying (2.2). Then the limit \(A(x) = \lim_{n \to \infty} 2^n f \left(\frac{x}{2^n} \right) \) exists for all \(x \in X \) and defines a unique additive mapping \(A : X \to Y \) such that
\[
\|f(x) - A(x)\| \leq \frac{L \zeta(x, x)}{|2| - |2|L}
\]

Proof. Substituting \(y = x \) in (2.2) and then replacing \(x \) by \(\frac{x}{2} \), we get
\[
\left\| f\left(\frac{x}{2}\right) - 2f\left(\frac{x}{4}\right) \right\| \leq \zeta\left(\frac{x}{2}, \frac{x}{2}\right)
\]
for all \(x \in X \). Let \((S, d)\) be the generalized metric space defined in the proof of Theorem 2.1. Consider a linear mapping \(J : (S, d) \to (S, d) \) such that
\[
Jh\left(\frac{x}{2}\right) := 2h\left(\frac{x}{2}\right)
\]
for all \(x \in X \). Let \(g, h \in S \) be such that \(d(g, h) = \epsilon \). Then
\[
\|g(x) - h(x)\| \leq \epsilon \zeta(x, x)
\]
for all \(x \in X \). Thus \(d(g, h) = \epsilon \) implies that \(d(Jg, Jh) \leq L\epsilon \). This means that
\[
d(Jg, Jh) \leq Ld(g, h)
\]
for all \(g, h \in S \). It follows from (2.8) that \(d(f, Jf) \leq \frac{L}{|2|} \).

By Theorem 1.1, there exists a mapping \(A : X \to Y \) satisfying the following:

1. \(A \) is a fixed point of \(J \), that is,
\[
A\left(\frac{x}{2}\right) = \frac{1}{2} A(x)
\]
for all \(x \in X \). The mapping \(A \) is a unique fixed point of \(J \) in the set \(\Omega = \{ h \in S : d(g, h) < \infty \} \). This implies that \(A \) is a unique mapping satisfying (2.9) such that there exists \(\mu \in (0, \infty) \) satisfying \(\|f(x) - A(x)\| \leq \mu \zeta(x, x) \) for all \(x \in X \).

2. \(d(J^n f, A) \to 0 \) as \(n \to \infty \). This implies the equality \(\lim_{n \to \infty} 2^n f \left(\frac{x}{2^n} \right) = A(x) \) for all \(x \in X \).

3. \(d(f, A) \leq \frac{d(f, Jf)}{1 - \frac{L}{|2|}} \) with \(f \in \Omega \), which implies the inequality \(d(f, A) \leq \frac{L}{|2| - |2|L} \). The rest of the proof is similar to the proof of Theorem 2.1. □
Corollary 2.2. Let $\theta \geq 0$ and r be a real number with $r > 1$. Let $f : X \to Y$ be a mapping satisfying (2.6). Then the limit $A(x) = \lim_{n \to \infty} 8^n f\left(\frac{x}{2^n}\right)$ exists for all $x \in X$ and $A : X \to Y$ is a unique additive mapping such that

$$
\|f(x) - A(x)\| \leq \frac{2|2|^{-1}\theta\|x\|^r}{|2| - |2|^r}
$$

for all $x \in X$.

Proof. The proof follows from Theorem 2.2 by taking $\zeta(x, y) = \theta(\|x\|^r + \|y\|^r)$ for all $x, y \in X$. In fact, if we choose $L = |2|^{-1}$, then we get the desired result. \qed

Acknowledgments

D.Y. Shin was supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (NRF-2010-0021792).

References

