RN HYERS-ULAM-RASSIAS STABILITY OF FUNCTIONAL EQUATIONS: A DIRECT METHOD

D.Y. Shin1, H. Azadi Kenary2,§, N. Sahami3

1Department of Mathematics
College of Natural Science
University of Seoul
KOREA

2Department of Mathematics
Beyza Branch
Islamic Azad University
Beyza, IRAN

AMS Subject Classification: 39B22, 39B52, 39B22, 39B82, 46S10
Key Words: random stability, functional equations

1. Preliminaries

Definition 1.1. A function $F : \mathbb{R} \to [0, 1]$ is called a distribution function if it is nondecreasing and left-continuous, with $\sup_{t \in \mathbb{R}} F(t) = 1$ and $\inf_{t \in \mathbb{R}} F(t) = 0$. The class of all distribution functions F with $F(0) = 0$ is denoted by D_+. For every $a \geq 0$, H_a is the element of D_+ defined by

Received: May 9, 2013

§Correspondence author
\[H_a(t) = \begin{cases} 0 & \text{if } t \leq a \\ 1 & \text{if } t > a \end{cases} \]

Definition 1.2. Let \(X \) be a real vector space, \(\Psi \) be a mapping from \(X \) into \(D_+ \) (for any \(x \in X \), \(\Psi(x) \) is denoted by \(\Psi_x \)) and \(T \) be a \(t \)-norm. The triple \((X, \Psi, T)\) is called a random normed space (briefly \(RN \)-space) iff the following conditions are satisfied:

(i) \(\Psi_x = H_0(t) \) iff \(x = \theta \), the null vector;

(ii) \(\Psi_{\alpha x}(t) = \Psi_x \left(\frac{t}{|\alpha|} \right) \) for all \(\alpha \in \mathbb{R} \), \(\alpha \neq 0 \) and \(x \in X \).

(iii) \(\Psi_{x+y}(t+s) \geq T(\Psi_x(t), \Psi_y(s)) \), for all \(x,y \in X \) and \(t,s > 0 \).

Every normed space \((X, \|\|)\) defines a random normed space \((X, \Psi, T_M)\) where for every \(t > 0 \),
\[
\Psi_u(t) = \frac{t}{t + \|u\|}
\]
and \(T_M \) is the minimum \(t \)-norm. This space is called the induced random normed space.

If the \(t \)-norm \(T \) is such that \(\sup_{0<a<1} T(a,a) = 1 \), then every \(RN \)-space \((X, \Psi, T)\) is a metrizable linear topological space with the topology \(\tau \) (called the \(\Psi \)-topology or the \((\epsilon, \delta)\)-topology) induced by the base of neighborhoods of \(\theta \), \(\{U(\epsilon, \lambda) | \epsilon > 0, \lambda \in (0,1)\} \), where
\[
U(\epsilon, \lambda) = \{x \in X | \Psi_x(\epsilon) > 1 - \lambda\}
\]

Definition 1.3. A sequence \(\{x_n\} \) in an \(RN \)-space \((X, \Psi, T)\) converges to \(x \in X \), in the topology \(\tau \) (we denote \(\lim x_n = x \)) if \(\lim_{n \to \infty} \Psi_{x_n-x}(t) = 1 \), \(\forall t > 0 \).

Definition 1.4. A sequence \(\{x_n\} \) is called Cauchy sequence if for all \(t > 0 \), \(\lim_{n \to \infty} \Psi_{x_n-x_m}(t) = 1 \). The \(RN \)-space \((X, \Psi, T)\) is said to be complete if every Cauchy sequence in \(X \) is convergent.

2. Random Stability of the Functional Equation

\[f(mx + ny) = mf(x) + nf(y) \]

Throughout this section, using direct method we prove the Hyers-Ulam-Rassias stability of functional equation \(f(mx + ny) = mf(x) + nf(y) \) in random normed spaces(where \(m, n \in \mathbb{N} \)).
Theorem 2.1. Let X be a vector space, (Z, Ψ, \min) be an RN-space, and $\psi : X^m \to Z$ be a function such that for some $0 < \alpha < m + n$,

$$\Psi_{\psi((m+n)x,(m+n)y)}(t) \geq \Psi_{\alpha \psi(x,y)}(t), \quad \forall x, y \in X, \ t > 0$$

(2.1)

Also, for all $x, y \in X$ and $t > 0$

$$\lim_{n \to \infty} \Psi_{\psi((m+n)p_x,(m+n)p_y)}((m+n)^pt) = 1.$$

If (Y, μ, \min) be a complete RN-space. If $f : X \to Y$ is a mapping such that for all $x, y \in X$ and $t > 0$

$$\mu f(mx+ny) - mf(x) - nf(y)(t) \geq \Psi_{\psi(x,y)}((m + n - \alpha)t).$$

(2.2)

then there is a unique additive mapping $C(x) : X \to Y$ such that

$$\mu f(x) - C(x)(t) \geq \Psi_{\psi(x,x)}((m + n - \alpha)t).$$

(2.3)

Proof. Putting $y = x$ in (4.2) we see that for all $x \in X$,

$$\mu f((m+n)x) - f(x)(t) \geq \Psi_{\psi(x,x)}((m + n)t).$$

(2.4)

Replacing x by $(m + n)p_x$ in (4.4) and using (4.1), we obtain

$$\mu \frac{f((m+n)p_x)}{(m+n)^p} - f(x)(t) \geq \Psi_{\psi((m+n)p_x,(m+n)p_x)}((m+n)^{p+1}t) \geq \Psi_{\psi(x,x)}((m + n)^{p+1}t).$$

(2.5)

So by (4.5) we obtain

$$\mu \frac{f((m+n)p_x)}{(m+n)^p} - f(x) \left(\sum_{k=0}^{p-1} \frac{t\alpha^k}{(m+n)^{k+1}} \right) \geq \mu \frac{f((m+n)p_x)}{(m+n)^p} - f(x) \left(\sum_{k=0}^{p-1} \frac{t\alpha^k}{(m+n)^{k+1}} \right) \geq \Psi_{\psi(x,x)}((m + n)^{p+1}t).$$

(2.6)
This implies that

\[\mu \frac{f((m+n)^p x)}{(m+n)^p} - f(x) (t) \geq \Psi (x,x) \left(\frac{t}{\sum_{k=0}^{p-1} \frac{\alpha^k}{(m+n)^{k+1}}} \right). \quad (2.7) \]

Replacing \(x \) by \((m+n)^q x \) in (4.7), we obtain

\[\mu \frac{f((m+n)^p + q x)}{(m+n)^p + q} \frac{f((m+n)^q x)}{(m+n)^q} (t) \geq \Psi (x,x) \left(\frac{t}{\sum_{k=0}^{p-1} \frac{\alpha^k}{(m+n)^{k+1}}} \right) \]

\[\geq \Psi (x,x) \left(\frac{t}{\sum_{k=0}^{p+q-1} \frac{\alpha^k}{(m+n)^{k+q+1}}} \right) \]

\[= \Psi (x,x) \left(\frac{t}{\sum_{k=q}^{p+q-1} \frac{\alpha^k}{(m+n)^{k+1}}} \right). \quad (2.8) \]

As

\[\lim_{p,q \to \infty} \Psi (x,x) \left(\frac{t}{\sum_{k=q}^{p+q-1} \frac{\alpha^k}{(m+n)^{k+1}}} \right) = 1, \]

then \(\left\{ \frac{f((m+n)^p x)}{(m+n)^p} \right\}_{n=1}^{+\infty} \) is a Cauchy sequence in complete RN-space \((Y, \mu, \min)\), so there exist some point \(C(x) \in Y \) such that

\[C(x) = \lim_{n \to \infty} \frac{f((m+n)^p x)}{(m+n)^p}. \]

Fix \(x \in X \) and put \(q = 0 \) in (4.8). Then we obtain

\[\mu \frac{f((m+n)^p x)}{(m+n)^p} - f(x) (t) \geq \Psi (x,x) \left(\frac{t}{\sum_{k=0}^{p-1} \frac{\alpha^k}{(m+n)^{k+1}}} \right). \quad (2.9) \]

and so, for every \(\epsilon > 0 \), we have

\[\mu C(x) - f(x) (t + \epsilon) \geq T \left(\mu C(x) - f((m+n)^p x) (\epsilon), \frac{f((m+n)^p x)}{(m+n)^p} - f(x) (t) \right) \]

\[\geq T \left(\mu C(x) - f((m+n)^p x) (\epsilon), \Psi (x,x) \left(\frac{t}{\sum_{k=0}^{p-1} \frac{\alpha^k}{(m+n)^{k+1}}} \right) \right). \]

Taking the limit as \(p \to \infty \), we get

\[\mu C(x) - f(x) (t + \epsilon) \geq \Psi (x,x) \left((m + n - \alpha)t \right). \quad (2.10) \]

Since \(\epsilon \) was arbitrary by taking \(\epsilon \to 0 \) in (4.10), we obtain

\[\mu C(x) - f(x) (t) \geq \Psi (x,x) \left((m + n - \alpha)t \right). \quad (2.11) \]
Replacing x and y by $(m + n)^p x$ and $(m + n)^p y$ respectively, in (4.2) and using this fact that $\lim_{p \to \infty} \psi((m + n)^p x, (m + n)^p y)((m + n)^p t) = 1$, we get for all $x, y \in X$ and for all $t > 0$,

$$C(mx + ny) = mC(x) + nC(y).$$

To prove the uniqueness of the additive mapping C, assume that there exist another additive mapping $D : X \to Y$ which satisfies (4.3). Since for all $p \in \mathbb{N}$ and every $x \in X$,

$$C((m + n)^p x) = (m + n)^p C(x) \quad \text{and} \quad D((m + n)^p x) = (m + n)^p D(x),$$

we find that

$$\mu_{C(x) - D(x)}(t) = \lim_{n \to \infty} \frac{\mu C((m + n)^p x)}{(m + n)^p} - \frac{D((m + n)^p x)}{(m + n)^p} (t). \tag{2.12}$$

So

$$\frac{\mu C((m + n)^p x)}{(m + n)^p} - \frac{D((m + n)^p x)}{(m + n)^p} (t) \geq \min \left\{ \mu C((m + n)^p x) - f((m + n)^p x) \left(\frac{t}{2} \right), \mu D((m + n)^p x) - f((m + n)^p x) \left(\frac{t}{2} \right) \right\} \tag{2.13}$$

$$\geq \Psi \psi((m + n)^p x, (m + n)^p x) \left(\frac{(m + n)^p (m + n - \alpha) t}{2} \right).$$

Since $\lim_{p \to \infty} \frac{(m + n)^p (m + n - \alpha) t}{2\alpha^p} = \infty$, we get

$$\lim_{p \to \infty} \Psi \psi(x,x) \frac{(m + n)^p (m + n - \alpha) t}{2\alpha^p} = 1.$$

Therefore, it follows that for all $t > 0$, $\mu_{C(x) - D(x)}(t) = 1$ and so $C(x) = D(x)$. This completes the proof. \[\square\]

Corollary 2.1. Let X be a real linear space, (Z, Ψ, \min) be an RN-space and (Y, μ, \min) a complete RN-space. Let $p \in (0, 1)$ and $z_0 \in Z$. If $f : X \to Y$ is a mapping such that for all $x, y \in X$ and $t > 0$

$$\mu_{f(mx + ny) - f(x) - f(y)}(t) \geq \Psi ||x||^{p_{z_0}}(t), \tag{2.14}$$

then there is a unique additive mapping $C(x) : X \to Y$ such that

$$\mu_{f(x) - C(x)}(t) \geq \Psi ||x||^{p_{z_0}}((m + n - (m + n)^p)t), \tag{2.15}$$
Proof. Let $\alpha = (m+n)^p$ and $\psi : X^2 \to Z$ be defined by $\psi(x,y) = ||x||^p z_0$.

Corollary 2.2. Let X be a real linear space, (Z, Ψ, \min) be an RN-space and (Y, μ, \min) a complete RN-space. Let $p \in (0,1)$ and $z_0 \in Z$. If $f : X \to Y$ is a mapping such that for all $x,y \in X$ and $t > 0$

$$\mu_f(mx+ny)-mf(x)-nf(y)(t) \geq \Psi(||x||^p+||y||^p)z_0(t),$$ \hspace{1cm} (2.16)

then there is a unique additive mapping $C(x) : X \to Y$ such that

$$\mu_f(x-y)(t) \geq \Psi(||x||^p \frac{(m+n-(m+n)^p)t}{2}).$$ \hspace{1cm} (2.17)

Proof. Let $\alpha = (m+n)^p$ and $\psi : X^2 \to Z$ be defined by $\psi(x,y) = (||x||^p + ||y||^p)z_0$.

Corollary 2.3. Let X be a real linear space, (Z, Ψ, \min) be an RN-space and (Y, μ, \min) a complete RN-space. Let $p,q \in \mathbb{R}^+$ where $p+q \in (0,1)$ and $z_0 \in Z$. If $f : X \to Y$ is a mapping such that for all $x,y \in X$ and $t > 0$

$$\mu_f(mx+ny)-mf(x)-nf(y)(t) \geq \Psi(||x||^{p+q}+||y||^{p+q}+||x||^p,||y||^q)z_0(t),$$ \hspace{1cm} (2.18)

then there is a unique additive mapping $C : X \to Y$ such that

$$\mu_f(x-y)(t) \geq \Psi(||x||^{p+q} \frac{(m+n-(m+n)^{p+q})t}{3}).$$ \hspace{1cm} (2.19)

Proof. Let $\alpha = (m+n)^{p+q}$ and $\psi : X^2 \to Z$ be defined by $\psi(x,y) = (||x||^{p+q} + ||y||^{p+q} + ||x||^p,||y||^q)z_0$.

Corollary 2.4. Let X be a real linear space, (Z, Ψ, \min) be an RN-space and (Y, μ, \min) a complete RN-space. Let $z_0 \in Z$ and $f : X \to Y$ is a mapping such that for all $x,y \in X$ and $t > 0$

$$\mu_f(mx+ny)-mf(x)-nf(y)(t) \geq \Psi z_0(t),$$ \hspace{1cm} (2.20)

then there is a unique additive mapping $C : X \to Y$ such that for all $x \in X$ and $t > 0$

$$\mu_f(x-y)(t) \geq \Psi \delta z_0((m+n-1)t).$$ \hspace{1cm} (2.21)

Proof. Let $\alpha = 1$ and $\psi : X^2 \to Z$ be defined by $\psi(x,y) = \delta z_0$.

Acknowledgment:
D.Y. Shin was supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (NRF-2010-0021792).
References

