POINTWISE BINOMIAL APPROXIMATION TO
THE GENERALIZED HYPERGEOMETRIC DISTRIBUTION

K. Teerapabolarn
Department of Mathematics
Faculty of Science
Burapha University
Chonburi, 20131, THAILAND

Abstract: In this paper, we use the result in [2] and the w-function associated
with the generalized hypergeometric random variable to give a pointwise bound
for the point metric between the generalized hypergeometric distribution with
parameters α, β and N and the binomial distribution with parameters $n = N - 1$
and $p = 1 - q = \frac{\beta + 1}{\alpha + \beta + 2}$. With this bound, it is observed that the desired result
gives a good binomial approximation when α is sufficiently large.

AMS Subject Classification: 62E17, 60F05
Key Words: binomial approximation, generalized hypergeometric distribution, point metric

1. Introduction

Let a non-negative integer-valued random variable X have the generalized hy-
pergeometric distribution with parameters α, β and N. Its probability mass
function is given by

$$GH_{\alpha, \beta, N}(x) = \frac{(N-1)! \Gamma(N+\alpha-x)\Gamma(\beta+1+x)\Gamma(\alpha+\beta+2)}{\Gamma(\alpha+1)\Gamma(\beta+1)\Gamma(\alpha+\beta+N+1)}, \quad x = 0, ..., N - 1,$$

where $N \in \mathbb{N} \setminus \{1\}$, $\alpha \geq 0$ and $\beta > -1$ and the mean and variance of X are
\(\mu = \frac{(N-1)(\beta+1)}{\alpha+\beta+2} \) and \(\sigma^2 = \frac{(N-1)(\beta+1)(\alpha+\beta+N+1)}{(\alpha+\beta+2)^2(\alpha+\beta+3)} \), respectively [1]. We know that this distribution can be approximated by some appropriate discrete distributions if some conditions of their parameters are satisfied. In this case, Crosu [1] used Stein’s method and the \(w \)-function associated with the generalized hypergeometric random variable to obtain a bound for the total variation distance between the generalized hypergeometric distribution and a Poisson distribution with mean \(\mu = \frac{(N-1)(\beta+1)}{\alpha+\beta+2} \), where \(\beta + 2 \geq N \). After that, Teerapabolarn [3] used the same tools to give a bound for the total variation distance between the generalized hypergeometric distribution and a binomial distribution with parameters \(n = N - 1 \) and \(p = \frac{\beta+1}{\alpha+\beta+2} \). In this paper, we extend the result in [3] to approximate the generalized hypergeometric probability function by determining an appropriate pointwise bound for the point metric \(|GH_{\alpha,\beta,N}(x) - B_{n,p}(x)| \) when \(x \in \{0, ..., n\} \), where \(B_{n,p}(x) \) is the binomial probability function with parameters \(n \) and \(p \), which is in Section 2. The conclusion of this study is presented in the last section.

2. Result

The following lemma presents the \(w \)-function associated with the generalized hypergeometric random variable, which obtained from [1].

Lemma 2.1. Let \(w(X) \) be the \(w \)-function associated with the generalized hypergeometric random variable \(X \). Then, we have the following:

\[
w(x) = \frac{(\beta + x + 1)(N - x - 1)}{(\alpha + \beta + 2)\sigma^2}, \quad x = 0, ..., N - 1.
\]

(2.1)

The desired result of this study is a pointwise bound for the point metric between \(GH_{\alpha,\beta,N}(x) \) and \(B_{n,p}(x) \), which presents in the following theorem.

Theorem 2.1. Let \(n = N - 1 \) and \(p = 1 - q = \frac{\beta+1}{\alpha+\beta+2} \), for \(x \in \{0, ..., N-1\} \), then we have

\[
|GH_{\alpha,\beta,N}(x) - B_{n,p}(x)| \leq \begin{cases} (1-q^{N-1})(N-2)(\alpha+1) \\ (\alpha+\beta+2)(\alpha+\beta+3) \end{cases} \min \{ \frac{1-p^{N-1}}{x}, \frac{1-p^n-Nq^N}{Np} \} \quad \text{if } x = 0,
\]

\[
(N-1)(N-2)(\beta+1) \quad \text{if } x > 0.
\]

(2.2)

Proof. Because \((n-x)p - \sigma^2 w(x) = \frac{(\beta+1)(N-x-1)}{\alpha+\beta+2} - \frac{(\beta+x+1)(N-x-1)}{\alpha+\beta+2} \leq 0 \) for
every \(0 \leq x \leq N - 1\) and by following Corollary 3.1 in [2], we have that

\[
|GH_{\alpha,\beta,N}(x) - B_{n,p}(x)| \leq \begin{cases} \frac{1}{np} \left| \mu q - \sigma^2 \right| & \text{if } x = 0, \\ \min \left\{ \frac{1-p^n}{x_0 q}, \frac{1-p^{n+1}-q^{n+1}}{(n+1)pq} \right\} \left| \mu q - \sigma^2 \right| & \text{if } x > 0. \end{cases}
\]

Hence, by substituting these parameters, the inequality (2.2) is obtained. □

Corollary 2.1. If \(\beta = 0\), then, for \(x \in \{0, ..., N - 1\}\), we have

\[
|GH_{\alpha,N}(x) - B_{n,p}(x)| \leq \begin{cases} \frac{(1-q^{N-1})(N-2)(\alpha+1)}{(\alpha+2)(\alpha+3)} & \text{if } x = 0, \\ \min \left\{ \frac{1-p^{N-1}}{x}, \frac{1-p^{N}-q^{N}}{Np} \right\} \frac{(N-1)(N-2)}{(\alpha+2)(\alpha+3)} & \text{if } x > 0. \end{cases}
\]

(2.3)

Remark. It can be seen that the result gives a good binomial approximation when \(p\) is small, or \(\beta\) is small and \(\alpha\) is large, rather than \(p\) is large. Especially, in the case of \(\beta = 0\), the bound is a good measurement of the accuracy of this approximation when \(\frac{N}{\alpha}\) is small, or \(\alpha\) is large.

3. Conclusion

In this study, a pointwise bound for the point metric between the generalized hypergeometric with parameters \(\alpha, \beta\) and \(N\) and an appropriate binomial distribution with parameters \(n = N - 1\) and \(p = \frac{\beta+1}{\alpha+\beta+2}\) was obtained. With this bound, it is observed that the binomial probability function can be used as an estimate of the generalized hypergeometric probability function when \(\frac{N}{\alpha}\) is small, or \(\alpha\) is sufficiently large.

References

