International Journal of Pure and Applied Mathematics

Volume 95 No. 4 2014, 493-502

ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version)
url: http://www.ijpam.eu
doi: http://dx.doi.org/10.12732/ijpam.v95i4.1 ijpam.eu

HOPF BIFURCATION AND GLOBAL PERIODIC SOLUTION
IN A DELAYED STAGE-STRUCTURED
PREY-PREDATOR SYSTEM

Shunyi Li' ¢, Yu Wei?, Wenwu Liu®

L2.3Department of Mathematics
Qiannan Normal College for Nationalities
Duyun, Guizhou, 558000, P.R. CHINA

Abstract: A prey-predator model with stage-structured for predator and time
delay is considered. The characteristic equations of the equilibrium points are
analyzed, by applying the theorem of Hopf bifurcation, the conditions for the
positive equilibrium occurring local Hopf bifurcation are given. The conditions
for the existence of global Hopf bifurcation of the system are obtained. Finally,
numerical simulation and brief conclusion are given.

AMS Subject Classification: 34K13, 34K18, 34K20, 34K60, 92D25
Key Words: prey-predator system, stage-structured, time delay, Hopf bifur-
cation, global periodic solution

1. Introduction

In population dynamics, time delays play an important role, which can make
the system’s equilibrium points loss of its stability and bifurcate various peri-
odic solutions, even chaos. Recently, S.Y. Li and X.G. Xue [1, 2] investigated
the local Hopf bifurcation of a three-stage-structured prey-predator system,
they took time delay 7 as the bifurcation parameter, shown that, the positive
equilibrium loses its stability and a local Hpof bifurcation occurring when the
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delay 7 passes through the first critical value 7.

In delayed population systems, are there existence of large-scale periodic
solutions (global Hopf bifurcation) when 7 far away from the first Hopf bifurca-
tion critical values 79? C.J. Sun, M.A. Han and Y.P. Lin [3] studied the global
Hopf bifurcation of a delayed logistic model by using a the result due to Wu [4].
The global periodic solutions of a delayed predator-prey system have considered
by X.P. Yan and W.T. Li [5]. In this paper, we consider the Hopf bifurcation
and global periodic solution of following stage-structured prey-predator system
with hunting delay

h(t) = awa(t) — bag(t) — cad(t), (1)
y'(t) = y(t)(kBx1(t) — d — fy(t)),

where v = 71 + 9,0 = 61 + a. z;(t)(i = 1,2,3) are the densities of immature
preys, mature preys and old preys at time ¢, y(t) is the density of predator at
time ¢, respectively. All of the parameters are positive, « is the birth rate of
mature prey population, and 71, 01,b are the death rate of immature, mature
and old prey population, respectively. €2 and a are the maturity rate and ageing
rate of the prey population, respectively. 7, c and f are the density dependent
coefficients of immature and old prey population, predator population, respec-
tively. k(0 < k < 1) is the rate of conversing prey into predator and E is the
predation coefficient. 7 is the hunting delay for predator population. The initial
conditions for (1) are:

zi(t) = ¢i(i) = 0(i = 1,2,3),y(t) = ¢(t) 2 0,t € [-7,0].

2. Local Hopf Bifurcation

Obviously, (1) has two boundary equilibrium Ey = (0,0,0,0) and E;(x1, 2, x3,0)
(if condition C; : af2 — 40 > 0 holds), and a unique positive equilibrium
Es(x7, x5, 2%, y*) (if condition Cy : kEx} — d > 0 holds), where

af) —~0 Q V0?2 +dacry —b

TS T T gLt = 5 f(x2),
1 (9(/6E2+’I’]f) 9 2_9 1,43 — 2) Y = f .
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The characteristic equation about the positive equilibrium FEs is given by

all « 0 —Ex’fe‘”
Q —-0-A 0 0
det 0 a —b—2cxy — A 0 -
kEy* 0 0 —fyt—A

where a1; = —y — 2nz} — Ey* — A\, Namely, (A + b+ 2ca§)D(\,7) = 0. \y =
—b —2cxl < 0, (i =1,2,3) are the roots of the characteristic equation
D\, 7)=M\) +N\)e ™ =0, (2)
where
M()\) =\ 4+ mg)\2 +miA+ mo,N()\) =n1A+ ng
my =7+ 2nxy + Ey* + 0+ [y,
my = 0(nai + fy*) + fy* (v + 2nz] + Ey”),
mo = fnlxiy*,ng = kE%riy* ng = kE?0x%y*.
When 7 =0, (2) becomes
)\3+m2)\2—|—(m1+n1))\+m0+n0:0. (3)

Note that, if C3 : kE? < fn hold true, then ma(my +n1) — (mg + ng) > 0. By
Routh-Hurwits criterion, all roots of (3) have negative real parts. Then, the
equilibrium FEs is local stable.

Suppose A = iw(w > 0) is aroot of (2) and separating the real and imaginary
parts, we have

(4)

3

maw? — mg = (ng — now?) cos Wt + Nyw sin w,
w3 — miw = njwcoswt — (ng — now?) sin wr,

From (4), one can get that

(ng — naw?)? + niw? = (mow? — my)? + (W — mw)> (5)

Namely
F(w) = wl +pwt + qu? +r =0, (6)

where p = m% —2mq — n% >0,q = m% + 2n9ng — n% — 2momy,
r=mg —ng = x1y*0(mo + no)(kE* — fn). (7)

If C3: kE? < fnand ¢ > 0 hold, we know that (6) has a unique positive root
wp. From (4), we have

(mawd — mg)(ng — nawd) + niwo(wi — mawp)

COSwWoT =
0 (’rlo — n2w8)2 + (n1w0)2 ’
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Thus
o 1 o1 (mawd — mg)(ng — naw?) + niwo(wi — mywp)
J w02 . (no — naw3)? + (n1wp)? ®)
+£7 j:071727"'
wo

Let A(1) = v(7) +iw(7) be the roots of (2) such that when 7 = 7; satisfying
v(7;) = 0 and w(7,) = wp. Since wy is the unique positive root of (6), then, at
each 7 =7;(j = 0,1,2,---) straightforward calculation gives [6]

sign [dF(w)/dw|w=w,] = 2w0(3w§ + 2pw8 +q) > 0.

According to the Hopf bifurcation theorem for functional differential equations
[7], we have the following result.

Theorem 1. If C3 : kE? < fn and g > 0 hold, then there exists T,
when T € [0,79) the positive Ey of (1) is asymptotically stable and unstable
when T > 79; system (1) can undergo a local Hopf bifurcation near the positive
equilibrium Ey when 7 = 7;(j = 0,1,2,---).

3. Global Hopf Bifurcation

In this section, we study the existence of global Hopf bifurcations. The method
we used here is based on the global Hopf bifurcating theorem for general func-
tional differential equations introduced by Wu [4]. For convenience, we write
system (1) as the following form

(t) = F(z,7) (9)

where z(t) = (z1(t), 22(t), 23(t),y(t)), 2:(0) = z(t + 0) € ([-7,0], R*).

Define X = C([-7,0],R?), ¥ = Cl{(2(t),7,T) € X x R x RT 2(t) is T-
periodic solution of (1)}, N = {(z(¢),7,T), F(2(t),7,T) = 0}.

Let (g, r; 27 /wy) be the connected component (B2, 7j, 27 /wp) in 3, where 7;
and wq defined in (8).

Lemas 2. All solution of (1) are positive and uniformly bounded.
Proof. It is true that,

x/l (t)‘xl(t)zo = Oéilﬁ‘g(t) > 0,
95,2(75)|x2(t)=0 = Qxl(t) > vaé(t”xs(t)zo = ax?(t) >0,

y(t) = (0) exp { JE kB (s) — d — fy(s)]ds} > 0.
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Let V(t) =320 2(t) , for 0 < & < |6 — a — al, we have

Vi) +eV(t) < —(v = Q—e+na1(t)21(t) — (0 — a)z2(t)
+(a+e)xa(t) — (b+ cxs(t) — e)xs(t).

There exist C' > 0 such that V'(t)[q) + eV (t) < C, then limy, o V(t) <
C/e := M. Therefore, exist 77 > 0 and constant M; > M; such that z;(t) <
M;(i=1,2,3) for all t > T. From the fourth equation of system (1), we have
y'(t) < y(t)(kEMy—d— fy(t)). Then, there exist T» > T} and positive constant
My such that y(t) < (kEM; —d)/f := M, for all t > Tb. O

Lemas 3. If condition Cy holds, then (1) has no nontrivial periodic solu-
tions of T.

Proof. Assume (1) has a nontrivial periodic solution of period 7, then the
following differential equations

(1) = aa(t) — (3 4+ s (6) + Ey(t))aa (1),
xh(t) = Quq(t) — Oza(t),

o = awa(t) — bas(t) — cxi(t),

y'(t) = y(O)(kEz1(t) — d = fy(t)),

(10)

have periodic solutions. Let V (t) = Zg’:l cizi(t)+cqy(t), where ¢;(i = 1,2,3,4)

are positive constants to be determined, it follows that

V/()lao) = Xioy cwf(t) + cay/ (t)
= (2 — e1y)w1(t) — enzd (t) + (1o — 26 + cza)wa(t)
—c3(b+ cx3(t))x3(t) + Exq(t)y(t)(cak — c1)
—cay(t)(d + fy(t)).

Let ¢c1 = 1,¢0 =v/Q,¢c3 = (a2 —~+0)/(a), cqa = 1/k, then
V/(t) = —einai(t) — es(b+ cas(t))zs(t) — cay(t)(d + fy(t)) < 0.

Applying Barbalat’s lemma [8], we conclude that

lim (21 (t), w2 (t), 23(t), y(t)) = Ea = (271,23, 73, 4"),

t—ro0
which contradicts the fact that (1) has periodic solutions. O

Theorem 4. Suppose Ca, C3 and g > 0 hold, then for each T > 7;(j =
0,1,2,--+), (1) has at least j + 1 periodic solutions, where 7; is defined in (8).
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Figure 1: The time-series plot show that positive equilibrium point F»
of system (1) is asymptotically stable for 7 = 2.3 < 7.

Proof. The characteristic equation of (1) at the positive equilibrium Fj is
given by

det(A(Ey, 7,p)(N) = (A4 b + 2ca3) (M (X) + N(\)e 7).

The equilibrium FEs is local stable when 7 = 0, it can be verified that (Es,7;,
27 Jwyp) are isolated centers. Let

Qs,27r/wo = {(Map) 0 <p<e, ‘p - 27-(/(“‘)0’ < 8}

Clearly, |7 — 7;| < 0 and (u,p) € 052, then the necessary and sufficient condi-
tions for A(Es, 7,p)(p +i27/p) =0 are p = 0,7 = 75 and p = 27/wy. Define

H™*(Ea, 7j, 21 Jwo) (1, p) = A(E2, 75 % 6,p) (1 £ i27/p)

Then, we have the transversal number

(B2, 7,21 fwo) = degp(H ™ (E2,7j,2m/wo), Qe 27 /)
—degB(H+(E2,Tj,271'/(,00),95’2”/&}0) =-1
By Theorem 3.3 of Wu [4], we conclude that the connected component

U(Byr; 27 Jup) through (Ea, 7;,2m /wo) in 3 is nonempty. Meanwhile, we have

) Y(2(t),7,p) <0
(Z(t),T,p) € Z(Eg,Tj,27r/wo)
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Figure 2: The time-series plot show that the local Hopf bifurcation for
T = 2.5 > 79 near positive equilibrium point Fj.

and hence {(g, r; 27 /wy) 18 unbounded.

Lemma 1 implies that the projection of l(By ;27 )uwo) ONtO the z-space is
bounded. From the definition of 7;, we have 27/wy < 7; for j > 1. Lemma 2
implies that the projection of [ Ea,7j,2m/we) ONtO the T-space is bounded. Assume
the projection of (g, - 2r/w,) onto the 7-space (0,7%) and 7* > 7;. Applying
Lemma 2, we know (2(t),7,p) € l(g,,r; 2r/wo) implies p < 7;. This shows that
in order for l(g, ; 27 /wy) to be unbounded, its projection onto the 7-space must
be unbounded. Consequently, the projection of [ Ey,7;,2m)we) Onto the 7-space
includes [7j,+00). This shows that, for each 7;, (1) has j + 1 nonconstant
periodic solutions. ]

4. Numerical Simulation

Let « = 28,11 = 02,2 = 0.85,n = 0.15, F = 1.25,0; = 0.2,a = 0.8,b =
0.3,¢ = 0.1,k = 0.6,d = 0.15, f = 0.2 and the initial point X(0) = (1,1,1,1).
System (1) has unique positive equilibrium point Fy = (0.47,0.40,0.83,1.01).
We evaluate p = 11.80,¢ = 0.29,r = —0.20,wy = 0.3417, 79 = 2.4084 and
7j = 2.4084 + j5.8547(j = 0,1,2,---). The the positive equilibrium point Fy
is asymptotically stable when 7 = 2.3 < 79 (Fig. 1). When 7 = 2.5 > 79,
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Figure 3: The large period oscillation (global Hopf bifurcation) of sys-
tem (1) when 7= 3,5,7,25.

the positive equilibrium Fs is unstable and the local Hopf bifurcation occurring
around the positive Ey are shown (Fig. 2). The simulations consistently show
global existence of periodic solution (global Hopf bifurcation): existence of
large amplitude periodic solutions for values of 7 far away from 7;, where 7 =
3,5,7,25 and the periodic solutions are stable. From Fig. 3, we know that the
period of the periodic solutions are increasing when 7 3 to 25. These are the
slowly oscillating periodic solutions for (1). But, too large time delay would
make the population to be die out, because the population very close to zero
as time delay increase to some critical value.

5. Conclusion

In this paper, we studied a delayed stage-structured prey-predator system and
analyzed the stability of the positive equilibrium, obtained the conditions of
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the positive equilibrium occurring local Hopf bifurcation and global Hopf bifur-
cation (global periodic solution).

Numerical examples by time-series plot, shown that the system considered
local asymptotically stable and stable local Hopf bifurcation periodic solutions.
And the populations can be coexistence with large periodic fluctuating under
some conditions which caused by the large time delay far away from 7, and
the amplitudes of period oscillatory are increasing as time delays increased. In
particular, we observe that the solutions of the delayed system could arbitrary
close to zero when the delay tend to some critical values, which means that
the prey or predator would tend to extinction. These are very interesting in
mathematics and biology.
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