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HOPF BIFURCATION AND GLOBAL PERIODIC SOLUTION
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PREY-PREDATOR SYSTEM
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Abstract: A prey-predator model with stage-structured for predator and time
delay is considered. The characteristic equations of the equilibrium points are
analyzed, by applying the theorem of Hopf bifurcation, the conditions for the
positive equilibrium occurring local Hopf bifurcation are given. The conditions
for the existence of global Hopf bifurcation of the system are obtained. Finally,
numerical simulation and brief conclusion are given.
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1. Introduction

In population dynamics, time delays play an important role, which can make
the system’s equilibrium points loss of its stability and bifurcate various peri-
odic solutions, even chaos. Recently, S.Y. Li and X.G. Xue [1, 2] investigated
the local Hopf bifurcation of a three-stage-structured prey-predator system,
they took time delay τ as the bifurcation parameter, shown that, the positive
equilibrium loses its stability and a local Hpof bifurcation occurring when the
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delay τ passes through the first critical value τ0.
In delayed population systems, are there existence of large-scale periodic

solutions (global Hopf bifurcation) when τ far away from the first Hopf bifurca-
tion critical values τ0? C.J. Sun, M.A. Han and Y.P. Lin [3] studied the global
Hopf bifurcation of a delayed logistic model by using a the result due to Wu [4].
The global periodic solutions of a delayed predator-prey system have considered
by X.P. Yan and W.T. Li [5]. In this paper, we consider the Hopf bifurcation
and global periodic solution of following stage-structured prey-predator system
with hunting delay















x′1(t) = αx2(t)− x1(t)[γ − ηx1(t)− Ey(t− τ)],
x′2(t) = Ωx1(t)− θx2(t),
x′3(t) = ax2(t)− bx3(t)− cx23(t),
y′(t) = y(t)(kEx1(t)− d− fy(t)),

(1)

where γ = γ1 + Ω, θ = θ1 + a. xi(t)(i = 1, 2, 3) are the densities of immature
preys, mature preys and old preys at time t, y(t) is the density of predator at
time t, respectively. All of the parameters are positive, α is the birth rate of
mature prey population, and γ1, θ1, b are the death rate of immature, mature
and old prey population, respectively. Ω and a are the maturity rate and ageing
rate of the prey population, respectively. η, c and f are the density dependent
coefficients of immature and old prey population, predator population, respec-
tively. k(0 < k < 1) is the rate of conversing prey into predator and E is the
predation coefficient. τ is the hunting delay for predator population. The initial
conditions for (1) are:

xi(t) = φi(i) ≥ 0(i = 1, 2, 3), y(t) = ϕ(t) ≥ 0, t ∈ [−τ, 0].

2. Local Hopf Bifurcation

Obviously, (1) has two boundary equilibrium E0 = (0, 0, 0, 0) and E1(x1, x2, x3, 0)
(if condition C1 : αΩ − γθ > 0 holds), and a unique positive equilibrium
E2(x

∗
1, x

∗
2, x

∗
3, y

∗) (if condition C2 : kEx∗1 − d > 0 holds), where

x1 =
αΩ − γθ

ηθ
, x2 =

Ω

θ
x1, x3 =

√
b2 + 4acx2 − b

2c
= f(x2),

x∗1 =
f(αΩ− γθ) + dEθ

θ(kE2 + ηf)
, x∗2 =

Ω

θ
x∗1, x

∗
3 = f(x∗2), y

∗ =
kEx∗1 − d

f
.
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The characteristic equation about the positive equilibrium E2 is given by

det









a11 α 0 −Ex∗1e
−λτ

Ω −θ − λ 0 0
0 a −b− 2cx∗3 − λ 0

kEy∗ 0 0 −fy∗ − λ









= 0,

where a11 = −γ − 2ηx∗1 − Ey∗ − λ. Namely, (λ + b + 2cx∗3)D(λ, τ) = 0. λ4 =
−b− 2cx∗3 < 0, λi(i = 1, 2, 3) are the roots of the characteristic equation

D(λ, τ) = M(λ) +N(λ)e−λτ = 0, (2)

where
M(λ) = λ3 +m2λ

2 +m1λ+m0, N(λ) = n1λ+ n0

m2 = γ + 2ηx∗1 + Ey∗ + θ + fy∗,
m1 = θ(ηx∗1 + fy∗) + fy∗(γ + 2ηx∗1 + Ey∗),
m0 = fηθx∗1y

∗, n1 = kE2x∗1y
∗, n0 = kE2θx∗1y

∗.

When τ = 0, (2) becomes

λ3 +m2λ
2 + (m1 + n1)λ+m0 + n0 = 0. (3)

Note that, if C3 : kE2 < fη hold true, then m2(m1 + n1)− (m0 + n0) > 0. By
Routh-Hurwits criterion, all roots of (3) have negative real parts. Then, the
equilibrium E2 is local stable.

Suppose λ = iω(ω > 0) is a root of (2) and separating the real and imaginary
parts, we have

{

m2ω
2 −m0 = (n0 − n2ω

2) cosωτ + n1ω sinωτ,
ω3 −m1ω = n1ω cosωτ − (n0 − n2ω

2) sinωτ,
(4)

From (4), one can get that

(n0 − n2ω
2)2 + n2

1ω
2 = (m2ω

2 −m0)
2 + (ω3 −m1ω)

2. (5)

Namely
F (ω) = ω6 + pω4 + qω2 + r = 0, (6)

where p = m2
2 − 2m1 − n2

2 > 0, q = m2
1 + 2n2n0 − n2

1 − 2m2m0,

r = m2
0 − n2

0 = x∗1y
∗θ(m0 + n0)(kE

2 − fη). (7)

If C3 : kE2 < fη and q > 0 hold, we know that (6) has a unique positive root
ω0. From (4), we have

cosω0τ =
(m2ω

2
0 −m0)(n0 − n2ω

2
0) + n1ω0(ω

3
0 −m1ω0)

(n0 − n2ω2
0)

2 + (n1ω0)2
,
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Thus

τj =
1

ω0
cos−1

[

(m2ω
2
0 −m0)(n0 − n2ω

2
0) + n1ω0(ω

3
0 −m1ω0)

(n0 − n2ω2
0)

2 + (n1ω0)2

]

+
2jπ

ω0
, j = 0, 1, 2, · · ·

(8)

Let λ(τ) = v(τ)+ iω(τ) be the roots of (2) such that when τ = τj satisfying
v(τj) = 0 and ω(τn) = ω0. Since ω0 is the unique positive root of (6), then, at
each τ = τj(j = 0, 1, 2, · · · ) straightforward calculation gives [6]

sign [dF (ω)/dω|ω=ω0
] = 2ω0(3ω

4
0 + 2pω2

0 + q) > 0.

According to the Hopf bifurcation theorem for functional differential equations
[7], we have the following result.

Theorem 1. If C3 : kE2 < fη and q > 0 hold, then there exists τ0,
when τ ∈ [0, τ0) the positive E2 of (1) is asymptotically stable and unstable
when τ > τ0; system (1) can undergo a local Hopf bifurcation near the positive
equilibrium E2 when τ = τj(j = 0, 1, 2, · · · ).

3. Global Hopf Bifurcation

In this section, we study the existence of global Hopf bifurcations. The method
we used here is based on the global Hopf bifurcating theorem for general func-
tional differential equations introduced by Wu [4]. For convenience, we write
system (1) as the following form

z′(t) = F (zt, τ) (9)

where z(t) = (x1(t), x2(t), x3(t), y(t)), zt(θ) = z(t+ θ) ∈ ([−τ, 0],R4).
Define X = C([−τ, 0],R4), Σ = Cl{(z(t), τ, T ) ∈ X × R × R

+, z(t) is T -
periodic solution of (1)}, N = {(z(t), τ, T ), F (z(t), τ, T ) = 0}.

Let l(E2,τj ,2π/ω0) be the connected component (E2, τj , 2π/ω0) in Σ, where τj
and ω0 defined in (8).

Lemas 2. All solution of (1) are positive and uniformly bounded.

Proof. It is true that,

x′1(t)|x1(t)=0 = αx2(t) ≥ 0,

x′2(t)|x2(t)=0 = Ωx1(t) ≥ 0, x′3(t)|x3(t)=0 = ax2(t) ≥ 0,

y(t) = ϕ(0) exp
{

∫ t
0 [kEx1(s)− d− fy(s)]ds

}

≥ 0.
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Let V (t) =
∑3

i=1 xi(t) , for 0 < ε < |θ − α− a|, we have

V ′(t)|(1) + εV (t) ≤ −(γ − Ω− ε+ ηx1(t))x1(t)− (θ − α)x2(t)

+(a+ ε)x2(t)− (b+ cx3(t)− ε)x3(t).

There exist C > 0 such that V ′(t)|(1) + εV (t) ≤ C, then limt→+∞ V (t) ≤
C/ε := M∗

1 . Therefore, exist T1 > 0 and constant M1 > M∗
1 such that xi(t) <

M1(i = 1, 2, 3) for all t > T1. From the fourth equation of system (1), we have
y′(t) ≤ y(t)(kEM1−d−fy(t)). Then, there exist T2 > T1 and positive constant
M2 such that y(t) ≤ (kEM1 − d)/f := M2 for all t > T2.

Lemas 3. If condition C2 holds, then (1) has no nontrivial periodic solu-
tions of τ .

Proof. Assume (1) has a nontrivial periodic solution of period τ , then the
following differential equations















x′1(t) = αx2(t)− (γ + ηx1(t) + Ey(t))x1(t),
x′2(t) = Ωx1(t)− θx2(t),
x′3 = ax2(t)− bx3(t)− cx23(t),
y′(t) = y(t)(kEx1(t)− d− fy(t)),

(10)

have periodic solutions. Let V (t) =
∑3

i=1 cixi(t)+c4y(t), where ci(i = 1, 2, 3, 4)
are positive constants to be determined, it follows that

V ′(t)|(10) =
∑3

i=1 cix
′
i(t) + c4y

′(t)

= (c2Ω− c1γ)x1(t)− c1ηx
2
1(t) + (c1α− c2θ + c3a)x2(t)

−c3(b+ cx3(t))x3(t) + Ex1(t)y(t)(c4k − c1)
−c4y(t)(d+ fy(t)).

Let c1 = 1, c2 = γ/Ω, c3 = (αΩ − γθ)/(aΩ), c4 = 1/k, then

V ′(t) = −c1ηx
2
1(t)− c3(b+ cx3(t))x3(t)− c4y(t)(d+ fy(t)) ≤ 0.

Applying Barbalat’s lemma [8], we conclude that

lim
t→∞

(x1(t), x2(t), x3(t), y(t)) = E2 = (x∗1, x
∗
2, x

∗
3, y

∗),

which contradicts the fact that (1) has periodic solutions.

Theorem 4. Suppose C2, C3 and q > 0 hold, then for each τ > τj(j =
0, 1, 2, · · · ), (1) has at least j + 1 periodic solutions, where τj is defined in (8).
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Figure 1: The time-series plot show that positive equilibrium point E2

of system (1) is asymptotically stable for τ = 2.3 < τ0.

Proof. The characteristic equation of (1) at the positive equilibrium E2 is
given by

det(∆(E2, τ, p)(λ)) = (λ+ b+ 2cx∗3)(M(λ) +N(λ)e−λτ ).

The equilibrium E2 is local stable when τ = 0, it can be verified that (E2, τj ,
2π/ω0) are isolated centers. Let

Ωε,2π/ω0
= {(µ, p) : 0 < µ < ε, |p − 2π/ω0| < ε}

Clearly, |τ − τj | ≤ δ and (µ, p) ∈ ∂Ωε, then the necessary and sufficient condi-
tions for ∆(E2, τ, p)(µ + i2π/p) = 0 are µ = 0, τ = τj and p = 2π/ω0. Define

H±(E2, τj, 2π/ω0)(µ, p) = ∆(E2, τj ± δ, p)(µ ± i2π/p)

Then, we have the transversal number

γ(E2, τj, 2π/ω0) = degB(H
−(E2, τj , 2π/ω0),Ωε,2π/ω0

)

− degB(H
+(E2, τj , 2π/ω0),Ωε,2π/ω0

) = −1

By Theorem 3.3 of Wu [4], we conclude that the connected component
l(E2,τj ,2π/ω0) through (E2, τj , 2π/ω0) in Σ is nonempty. Meanwhile, we have

Σ
(z(t), τ, p) ∈ l(E2,τj ,2π/ω0)

γ(z(t), τ, p) < 0



HOPF BIFURCATION AND GLOBAL PERIODIC SOLUTION... 499

500 750 1000
0.1

0.4

0.7

1.0

t

x 1(t
)

500 750 1000
0.1

0.3

0.5

0.8

t

x 2(t
)

500 750 1000
0.4

0.7

1.0

1.4

t

x 3(t
)

500 750 1000
0.4

1.0

1.6

2.1

t

y(
t)

Figure 2: The time-series plot show that the local Hopf bifurcation for
τ = 2.5 > τ0 near positive equilibrium point E2.

and hence l(E2,τj ,2π/ω0) is unbounded.

Lemma 1 implies that the projection of l(E2,τj ,2π/ω0) onto the z-space is
bounded. From the definition of τj, we have 2π/ω0 < τj for j ≥ 1. Lemma 2
implies that the projection of l(E2,τj ,2π/ω0) onto the τ -space is bounded. Assume
the projection of l(E2,τj ,2π/ω0) onto the τ -space (0, τ∗) and τ∗ > τj. Applying
Lemma 2, we know (z(t), τ, p) ∈ l(E2,τj ,2π/ω0) implies p < τj. This shows that
in order for l(E2,τj ,2π/ω0) to be unbounded, its projection onto the τ -space must
be unbounded. Consequently, the projection of l(E2,τj ,2π/ω0) onto the τ -space
includes [τj,+∞). This shows that, for each τj, (1) has j + 1 nonconstant
periodic solutions.

4. Numerical Simulation

Let α = 2.8, γ1 = 0.2,Ω = 0.85, η = 0.15, E = 1.25, θ1 = 0.2, a = 0.8, b =
0.3, c = 0.1, k = 0.6, d = 0.15, f = 0.2 and the initial point X(0) = (1, 1, 1, 1).
System (1) has unique positive equilibrium point E2 = (0.47, 0.40, 0.83, 1.01).
We evaluate p = 11.80, q = 0.29, r = −0.20, ω0 = 0.3417, τ0 = 2.4084 and
τj = 2.4084 + j5.854π(j = 0, 1, 2, · · · ). The the positive equilibrium point E2

is asymptotically stable when τ = 2.3 < τ0 (Fig. 1). When τ = 2.5 > τ0,
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Figure 3: The large period oscillation (global Hopf bifurcation) of sys-
tem (1) when τ = 3, 5, 7, 25.

the positive equilibrium E2 is unstable and the local Hopf bifurcation occurring
around the positive E2 are shown (Fig. 2). The simulations consistently show
global existence of periodic solution (global Hopf bifurcation): existence of
large amplitude periodic solutions for values of τ far away from τj, where τ =
3, 5, 7, 25 and the periodic solutions are stable. From Fig. 3, we know that the
period of the periodic solutions are increasing when τ 3 to 25. These are the
slowly oscillating periodic solutions for (1). But, too large time delay would
make the population to be die out, because the population very close to zero
as time delay increase to some critical value.

5. Conclusion

In this paper, we studied a delayed stage-structured prey-predator system and
analyzed the stability of the positive equilibrium, obtained the conditions of
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the positive equilibrium occurring local Hopf bifurcation and global Hopf bifur-
cation (global periodic solution).

Numerical examples by time-series plot, shown that the system considered
local asymptotically stable and stable local Hopf bifurcation periodic solutions.
And the populations can be coexistence with large periodic fluctuating under
some conditions which caused by the large time delay far away from τ0, and
the amplitudes of period oscillatory are increasing as time delays increased. In
particular, we observe that the solutions of the delayed system could arbitrary
close to zero when the delay tend to some critical values, which means that
the prey or predator would tend to extinction. These are very interesting in
mathematics and biology.
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