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1. Introduction

The basic theory of difference equations is based on the operator ∆ defined as
∆u(k) = u(k + 1)− u(k), k ∈ N = {0, 1, 2, 3, · · · }. Eventhough many authors
([1], [12]-[14]) have suggested the definition of ∆ as

∆u(k) = u(k + ℓ)− u(k), k ∈ R, ℓ ∈ R− {0}, (2)

no significant progress took place on this line. But recently, E. Thandapani,
M.M.S. Manuel, G.B.A.Xavier [5] considered the definition of ∆ as given in (2)
and developed the theory of difference equations in a different direction. For
convenience, the operator ∆ defined by (2) is labelled as ∆ℓ and by defining its
inverse ∆−1

ℓ , many interesting results and applications in number theory (see
[5],[7]-[11]) were obtained. By extending the study related to the sequences
of complex numbers and ℓ to be real, some new qualitative properties of the
solutions like rotatory, expanding, shrinking, spiral and weblike were obtained
for difference equations involving ∆ℓ. The results obtained using ∆ℓ can be
found in ([5]-[11]). Jerzy Popenda and B.Szmanda ([2],[3]) defined ∆ as

∆αu(k) = u(k + 1)− αu(k) (3)

and based on this definition they studied the qualitative properties of a par-
ticular difference equation and no one else has handled this operator. In this
paper, we have generalized the definition of ∆α given in (3) and defined and
denoted it as

∆α(ℓ)u(k) = u(k + ℓ)− αu(k), (4)

where α > 1 and ℓ ∈ [0,∞). and by defining its inverse, several interesting
results on number theory were obtained.
In this paper, we discuss various properties of solutions of (1).
Throughout this paper we use the following notations;
(i) N = {0, 1, 2, 3, . . . }, N(a) = {a, a+ 1, a+ 2, . . . },
(ii) Nℓ(j) = {j, j + ℓ, j + 2ℓ, . . . },
(iii) [x] denotes the integer part of x.

2. Preliminaries

In this section, we present some basic definitions and results which will be useful
for further discussion.
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Definition 2.1. [8] Let u(k), k ∈ [0,∞) be a real or complex valued
function and ℓ ∈ (0,∞). Then, the generalized α-difference operator ∆α(ℓ) on
u(k) is defined as in (3). When α = 1, the generalized α-difference operator
∆α(ℓ) becomes the generalized difference operator ∆ℓ. When α = 1 and ℓ = 1,
then ∆α(ℓ) becomes the usual difference operator ∆. Similarly, the generalized

α-difference operator of the rth kind is defined as

∆r
α(ℓ)u(k) = ∆α(ℓ)(∆α(ℓ)(. . . (∆α(ℓ)u(k))))

︸ ︷︷ ︸

r times

. (5)

In particular,

∆4
α(ℓ)u(k) = u(k+4ℓ)−4αu(k+3ℓ)+6α2u(k+2ℓ)−4α3u(k+ ℓ)+α4u(k). (6)

Definition 2.2. [5] Let u(k), k ∈ [0,∞) be a real or complex valued
function and ℓ ∈ (0,∞). Then, the inverse of ∆ℓ denoted by ∆−1

ℓ is defined as
follows.

If ∆ℓv(k) = u(k), then v(k) = ∆−1
ℓ u(k) + cj , (7)

where cj is a constant for all k ∈ Nℓ(j), j = k −
[
k
ℓ

]
ℓ. In general, ∆−n

ℓ u(k) =

∆−1
ℓ (∆

−(n−1)
ℓ u(k)) for n ∈ N(2).

Definition 2.3. [9] The inverse of the Generalized α-difference operator
denoted by ∆−1

α(ℓ) on u(k) is defined as follows. If ∆α(ℓ)v(k) = u(k), then

∆−1
α(ℓ)u(k) = v(k) − α[

k
ℓ ]cj. (8)

where cj is a constant for all k ∈ Nℓ(j), j = k −
[
k
ℓ

]
ℓ.

Definition 2.4. [6] A solution u(k) of (1) is called recessive, if there exists
an a ∈ [0,∞) such that for all k ∈ [a,∞)

u(k) > 0, ∆α(ℓ)u(k) ≤ 0, ∆2
α(ℓ)u(k) ≥ 0 and ∆3

α(ℓ)u(k) ≤ 0. (9)

Lemma 2.5. [9] Let lim
k→∞

(v(k) − Lj)

αk
= L, u(k) = v(k)− Lj and

lim
k→∞

∆α(ℓ)u(k) = lim
k→∞

∆2
α(ℓ)u(k) = lim

k→∞
∆3

α(ℓ)u(k) = 0. Then

∆−4
α(ℓ)u(k) =

∞∑

r=0

(
r + 3
3

)
u(k + rℓ)

αr+4
. (10)



120 M.M.S. Manuel, K. Srinivasan, D.S. Dilip, G.D. Babu

Lemma 2.6. If u is a solution of (1) with u(a + j) = u(a + j + ℓ) =
u(a + j + 2ℓ) = u(a + j + 3ℓ) = 0 for all j ∈ [0, ℓ) for some a ∈ [0,∞), then
u(k) = 0 for all k ∈ [0,∞).

Proof. The proof follows from (1) and (6).

Definition 2.7. Let u(k) be a solution of (1) and we say that k ∈ (ℓ,∞)
is a ℓ-generalized zero for u(k) if one of the following holds:
(i) u(k) = 0;
(ii) k ∈ (ℓ,∞) and u(k − ℓ)u(k) < 0; k ∈ (ℓ,∞) and there exists an integer m,
1 < m ≤

[
k
ℓ

]
such that

(iii) (−1)mu(k −mℓ)u(k) > 0 and u(n) = 0 for all n ∈ Nℓ(k −mℓ+ ℓ, k − ℓ).
An ℓ-generalized zero for u(k) is said to be of order 0, 1 or m > 1, according

to whether the above condition (i), (ii) or (iii), respectively, holds. In particular,
an ℓ-generalized zero of order 0 will simply be called a zero, and a ℓ-generalized
zero of order one will be called a node.

Thus, a nontrivial solution of (1) can have zeros at no more than three
consecutive values of k. In section 4, we shall show that a nontrivial solution
(1) cannot have a ℓ-generalized zero of order m > 3. However, a solution of (1)

can have arbitrarily many consecutive nodes, as it is clear from u(k) = (−α)[
k
ℓ ],

which is the solution of ∆4
α(ℓ)u(k − 2ℓ) = 16α2u(k).

Definition 2.8. [4] A function u(k) is called convex upward on I if its
derivative is decreasing on the interval I.

3. Monotonicity Properties

Lemma 3.1. If u(k) is a function satisfying ∆2
α(ℓ)u(k) ≥ 0 for all k ∈

[K,∞) for some K, then

u(k) ≥ u(K + j) + α⌈
k−K

ℓ ⌉(k −K + j)∆α(ℓ)u(K + j) for all k ∈ [K,∞), (11)

where j = k−K
ℓ

−
[
k−K
ℓ

]
ℓ.

Proof. Since ∆2
α(ℓ)u(k) ≥ 0 for all k ∈ [K,∞), ∆α(ℓ)u(k) is nondecreasing.

So,

u(k)− α⌈
k−K

ℓ ⌉u(K + j) =

k−ℓ−K−j

ℓ∑

r=0

∆α(ℓ)u(K + j + rℓ)

α⌈
K−k+j+ℓ+rℓ

ℓ ⌉
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≥ (k −K − j)∆α(ℓ)u(K + j),

where j = k−K
ℓ

−
[
k−K
ℓ

]
ℓ.

Lemma 3.2. If u(k) is a nontrivial real solution of (1) and if

(a) u(k) ≥ 0, (b) ∆α(ℓ)u(k) ≥ 0,

(c) ∆2
α(ℓ)u(k − ℓ) ≥ 0, (d) ∆3

α(ℓ)u(k − 2ℓ) ≥ 0 (12)

for some k = a + j, a ∈ [2ℓ,∞), for all j = [0, ℓ) then (12) holds for all
k ∈ [a+ ℓ,∞), with the strict inequality in (12a) for all k ∈ [a+ 3ℓ,∞), strict
inequality in (12b) for all k ∈ [a + 2ℓ,∞) and strict inequality in (12c) and
(12d) for all k ∈ [a+ 4ℓ,∞). Furthermore

∆4
α(ℓ)u(k − 2ℓ) ≥ 0, for all k ∈ [a,∞), (13)

with the strict inequality for all k ∈ [a + 2ℓ,∞) and u(k),∆α(ℓ)u(k) and
∆2

α(ℓ)u(k) all tend to +∞ as k → ∞.

Proof. Since u(a + j) ≥ 0,∆α(ℓ)u(a + j) ≥ 0,∆2
α(ℓ)u(a + j − ℓ) ≥ 0 and

∆3
α(ℓ)u(a + j − 2ℓ) ≥ 0, we immediately have u(a + j + ℓ) − αu(k + j) =

∆α(ℓ)u(a+ j) ≥ 0, hence

u(a+ j + ℓ) ≥ αu(a+ j) ≥ 0.

The fourth order generalized difference equation (6) can be written in the form

∆4
α(ℓ)u(a+ j − 2ℓ) = u(a+ j + 2ℓ)− αu(a+ j + ℓ)− α∆α(ℓ)u(a+ j)

− α∆2
α(ℓ)u(a+ j − ℓ)− α∆3

α(ℓ)u(a+ j − 2ℓ)

and by (1) we obtain

u(a+ j + 2ℓ) = α∆3
α(ℓ)u(a+ j − 2ℓ) + α∆2

α(ℓ)u(a+ j − ℓ)

+ α∆α(ℓ)u(a+ j) + αu(a+ j + ℓ) + α2p(a+ j)u(a + j). (14)

∆α(ℓ)u(a+ j + ℓ) = u(a+ j + 2ℓ)− αu(a+ j + ℓ) = α∆3
α(ℓ)u(a+ j − 2ℓ)

+α∆2
α(ℓ)u(a+ j − ℓ) + α∆α(ℓ)u(a+ j) + α2p(a+ j)u(a + j). (15)

Then (15) yields
∆2

α(ℓ)u(a+ j) = ∆α(ℓ)u(a+ j + ℓ)− α∆α(ℓ)u(a+ j)

= α∆3
α(ℓ)u(a+ j − 2ℓ) + α∆2

α(ℓ)u(a+ j − ℓ) + α2p(a+ j)u(a + j), (16)
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and this in turn leads to

∆3
α(ℓ)u(a+ j − ℓ) = ∆2

α(ℓ)u(a+ j)− α∆2
α(ℓ)u(a+ j − ℓ)

= α∆3
α(ℓ)u(a+ j − 2ℓ) + α2p(a+ j)u(a + j). (17)

All the terms on the right-hand sides of (15), (16) and (17) are nonnegative, so
∆α(ℓ)u(a + j + ℓ),∆2

α(ℓ)u(a+ j) and ∆3
α(ℓ)u(a + j − ℓ) are nonnegative. Thus,

assuming that conditions (12a-d) hold for a + j implies that they also hold
for a + j + ℓ. Proceeding in this way, we see by mathematical induction that
conditions (12a-d) hold for all k ∈ [a,∞). Condition (13) follows immediately
from (1), since p(k + j) > 0 and u(k + j) ≥ 0 for all k ≥ [a+ ℓ,∞).
Since p(a + j) > 0, at least one term on the right in (15) must be positive,
since otherwise u(a + j + ℓ) = u(a + j) = u(a + j − ℓ) = u(a + j − 2ℓ) = 0 by
(6), hence u(a + j) would be the trivial solution of (1) by Lemma 2.6. Thus
∆α(ℓ)u(a+ j + ℓ) > 0 and it follows that the strict inequality holds in (12b) for
all k ∈ [a+ ℓ,∞). This implies that u(k) is strictly increasing for k ∈ [a+ ℓ,∞)
and since u(a + j + ℓ) ≥ 0, we then have u(k) > 0 for all k ∈ [a + 2ℓ,∞),
as claimed. This in turn implies, by use of (1), that strict inequality holds
for (13) for k ∈ [a + 2ℓ,∞). Also, using (16) and (17), we may conclude that
∆2

α(ℓ)u(k) > 0 and ∆3
α(ℓ)u(k − ℓ) > 0 for all k ∈ [a + 2ℓ,∞). Therefore, the

strict inequality holds in (12c) and (12d) for all k ∈ [a+ 3ℓ,∞).
To prove the last statement in the conclusion, we observe that the functions
u(k), v(k) = ∆α(ℓ)u(k) and w(k) = ∆2

α(ℓ)u(k) all satisfy the hypotheses of

Lemma 3.1 for any K ∈ [a,∞). Application of Lemma 3.1 to these three
sequences yields, respectively,

u(k) ≥ α⌈
k−K

ℓ ⌉u(K + j) + ∆α(ℓ)u(K + j)(k −K − j),

∆α(ℓ)u(k) ≥ ∆α(ℓ)u(K + j)α⌈
k−K

ℓ ⌉ +∆2
α(ℓ)u(K + j)(k −K − j),

∆2
α(ℓ)u(k) ≥ ∆2

α(ℓ)u(K + j)α⌈
k−K

ℓ ⌉ +∆3
α(ℓ)u(K + j)(k −K − j),

where j = k−K
ℓ

−
[
k−K
ℓ

]
ℓ for all k ≥ K. In particular, these inequalities are

true for K = a+2ℓ and since ∆α(ℓ)u(K + j),∆2
α(ℓ)u(K + j) and ∆3

α(ℓ)u(K + j)

are all positive for K = a + 2ℓ, it follows that u(k),∆α(ℓ)u(k) and ∆2
α(ℓ)u(k)

tend to +∞ as k → ∞, which completes the proof.

Remark 3.3. The above Lemma 3.2 fails if the hypothesis u(a) ≥ 0 is

replaced by u(a+ℓ) ≥ 0. This is shown by the example u(k) = (−α)[
k+ℓ
ℓ ], which

is a solution of ∆4
α(ℓ)u(k − 2ℓ) = 16α2u(k). Let ℓ = 0.5 and k = 1.7. Then the
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function satisfies u(1.7) = α4 > 0,∆α(ℓ)u(1.2) = 2α4 > 0,∆2
α(ℓ)u(0.7) = 4α4 >

0,∆3
α(ℓ)u(0.2) = 8α4 > 0, but fails to have any of the monotonicity properties

of the conclusion of Lemma 3.2. It is interesting to note also that the initial
conditions given in the hypotheses of Lemma 3.2 are not necessarily of ”convex”
type, i.e., the graph of a solution satisfying these conditions is not necessarily
convex upward in the interval from [a−2ℓ , a+ ℓ] for a ∈ [2ℓ,∞). For example,
a function u(k) satisfying u(0) = 0, u(ℓ) = ℓ, u(2ℓ) = 0, u(3ℓ) = ℓ, satisfies the
hypotheses of Lemma 3.2, since u(2ℓ) = 0,∆α(ℓ)u(2ℓ) = ℓ > 0,∆2

α(ℓ)u(ℓ) = 2ℓ >

0 and ∆3
α(ℓ)u(0) = 4ℓ > 0. However, the ”convex” conditions u(0) = 2ℓ, u(ℓ) =

0, u(2ℓ) = 0, u(3ℓ) = ℓ, do not, since in this case u(2ℓ) = 0,∆α(ℓ)u(2ℓ) =
ℓ,∆2

α(ℓ)u(ℓ) = ℓ, but ∆3
α(ℓ)u(0) = −ℓ.

Lemma 3.4. If u(k) is a nontrivial solution of (1) and if

(a) u(k) ≥ 0, (b) ∆α(ℓ)u(k) ≥ 0,

(c) ∆2
α(ℓ)u(k) ≥ 0, (d) ∆3

α(ℓ)u(k) ≥ 0 (18)

for some interval k ∈ [a, a + ℓ) for some a ∈ [0,∞), then (18) holds for all
k ∈ [a,∞), with the strict inequality in (18a,b,d) for all k ∈ [a+ 3ℓ,∞) and in
(18c) for all k ∈ [a+ 4ℓ,∞). Furthermore,

∆4
α(ℓ)u(k) ≥ 0 for all k ∈ [a,∞) (19)

with the strict inequality for all k ∈ [a + 2ℓ,∞) and u(k),∆α(ℓ)u(k) and
∆2

α(ℓ)u(k) all tend to ∞ as k → ∞.

Proof. Given a nontrivial solution u(k) of (1) satisfying (19) for some k ∈
[a, a+ ℓ), a ∈ [0,∞), let k1 = a+ 2ℓ. Then ∆3

α(ℓ)u(k1 + j − 2ℓ) = ∆2
α(ℓ)u(k1 +

j − ℓ)− α∆2
α(ℓ)u(k1 + j − 2ℓ) ≥ 0, so

∆2
α(ℓ)u(k1 + j − ℓ) ≥ ∆2

α(ℓ)u(k1 + j − 2ℓ) = ∆2
α(ℓ)u(a+ j) ≥ 0.

Similarly, ∆2
α(ℓ)u(k1− 2ℓ) ≥ 0 implies ∆α(ℓ)u(k1− ℓ) ≥ ∆α(ℓ)u(k1 − 2ℓ) ≥ 0 and

∆2
α(ℓ)u(k1 + j − ℓ) ≥ 0 implies ∆α(ℓ)u(k1 + j) ≥ ∆α(ℓ)u(k1 + j − ℓ), hence

∆α(ℓ)u(k1 + j) ≥ ∆α(ℓ)u(k1 + j − ℓ) ≥ ∆α(ℓ)u(k1 + j − 2ℓ) ≥ 0. (20)

This in turn implies

u(k1 + j + ℓ) ≥ u(k1 + j) ≥ u(k1 + j − ℓ) ≥ u(k1 + j − 2ℓ) ≥ 0. (21)
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Thus ∆3
α(ℓ)u(k1 + j − 2ℓ),∆2

α(ℓ)u(k1 + j − ℓ),∆α(ℓ)u(k1 + j) and u(k1 + j) are
all nonnegative and it follows from Lemma 3.2 that

(a) u(k) ≥ 0, (b) ∆α(ℓ)u(k) ≥ 0, (c) ∆2
α(ℓ)u(k − ℓ) ≥ 0,

(d) ∆3
α(ℓ)u(k − 2ℓ) ≥ 0, (e) ∆4

α(ℓ)u(k − 2ℓ) ≥ 0, (22)

for all k ∈ [k1,∞), with the strict inequality in (22a, e) for k ∈ [k1 + 2ℓ,∞), in
(22b) for k ∈ [k1+ℓ,∞) and in (22c, d) for k ∈ [k1+3ℓ,∞). Also, u(k),∆α(ℓ)u(k)
and ∆2

α(ℓ)u(k) tend to ∞ as k → ∞. By shifting subscripts and using k1 =

a+2ℓ, we may rewrite (22) and the related statements about the strict inequality
as follows:

(a)u(k) ≥ 0, k ∈ [a+ 2ℓ,∞) (> 0 for k ∈ [a+ 4ℓ,∞)),

(b)∆α(ℓ)u(k) ≥ 0, k ∈ [a+ 2ℓ,∞) (> 0 for k ∈ [a+ 3ℓ,∞)),

(c)∆2
α(ℓ)u(k) ≥ 0, k ∈ [a+ ℓ,∞) (> 0 for k ∈ [a+ 4ℓ,∞)), (23)

(d)∆3
α(ℓ)u(k) ≥ 0, k ∈ [a,∞) (> 0 for k ∈ [a+ 3ℓ,∞)),

(e)∆4
α(ℓ)u(k) ≥ 0, k ∈ [a,∞) (> 0 for k ∈ [a+ 2ℓ,∞)).

Since k1 = a + 2ℓ, (20) and (21) immediately imply that u(k) ≥ 0 and
∆α(ℓ)u(k) ≥ 0 hold also for k = a+ℓ and k = a. Furthermore, (21) implies that
if u(a+j+3ℓ) = 0, then u(a+j+3ℓ) = u(a+j+2ℓ) = u(a+j+ℓ) = u(a+j) = 0,
so u(k) would be the trivial solution of (1). Therefore, u(a+j+3ℓ) > 0. Finally,
∆2

α(ℓ)u(a+ j) ≥ 0 by hypothesis and we have shown that all conditions of (18)
hold for k ≥ a, with the strict inequality as stated in the conclusion.

Lemma 3.5. If u(k) is a nontrivial solution of (1) with

(a) u(k) ≥ 0, (b) ∆α(ℓ)u(k − ℓ) ≤ 0,

(c) ∆2
α(ℓ)u(k − ℓ) ≥ 0, (d) ∆3

α(ℓ)u(k − ℓ) ≤ 0 (24)

for some interval k ∈ [a, a + ℓ), a ∈ [3ℓ,∞), then (24) holds for all k ∈ [2ℓ, a]
and

∆4
α(ℓ)u(k − 2ℓ) ≥ 0 for all k ∈ [2ℓ, a]. (25)

Furthermore, u(0) > u(1) > 0 and ∆α(ℓ)u(0) < 0. Strict inequality holds in
(24a) and (25) for all k ∈ [2ℓ, a−2ℓ] if a ∈ [4ℓ,∞), in (24b) for all k ∈ [2ℓ, a− ℓ]
and in (24c,d) for all k ∈ [2ℓ, a− 3ℓ] if a ∈ [5ℓ,∞).
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Proof. Let u(k) be a nontrivial solution of (1) satisfying (24) for some in-
terval k ∈ [a, a+ ℓ), a ∈ [3ℓ,∞). Let

v(i) = u(2a+ j − i), i ∈ [0, 2a].

Then it is readily verified that

∆α(ℓ)v(i) = −∆α(ℓ)u(2a− i− ℓ), i ∈ [0, 2a− ℓ],

∆2
α(ℓ)v(i) = ∆2

α(ℓ)u(2a− i− 2ℓ), i ∈ [0, 2a − 2ℓ],

∆3
α(ℓ)v(i) = −∆3

α(ℓ)u(2a− i− 3ℓ), i ∈ [0, 2a − 3ℓ], (26)

∆4
α(ℓ)v(i) = ∆4

α(ℓ)u(2a− i− 4ℓ), i ∈ [0, 2a − 4ℓ].

In particular, since u(k) is a solution of (1),

∆4
α(ℓ)v(i− 2ℓ) = ∆4

α(ℓ)u(2a+ j − i− 2ℓ) = α2p(2a+ j − i)u(2a + j − i),

i ∈ [2ℓ, 2a − 2ℓ]. So v(k) is a solution of

∆4
α(ℓ)v(i− 2ℓ) = P (i)v(i), i ∈ [2ℓ, 2a − 2ℓ], (27)

where P (i) = p(2a − i) > 0, i ∈ [2ℓ, 2a − 2ℓ]. Using (26) and the definition
of v(i), we find that v(a + j) = u(a + j),∆α(ℓ)v(a + j) = −∆α(ℓ)u(a + j −
ℓ),∆2

α(ℓ)u(a+ j− ℓ) and ∆3
α(ℓ)v(a+ j−2ℓ) = −∆3

α(ℓ)u(a+ j− ℓ). It then follows
from our hypotheses that v satisfies the hypotheses of Lemma 3.2, which implies
that

(a) v(i) ≥ 0, (b) ∆α(ℓ)v(i) ≥ 0, (c) ∆2
α(ℓ)v(i− ℓ) ≥ 0,

(d) ∆3
α(ℓ)v(i− 2ℓ) ≥ 0, (e) ∆4

α(ℓ)v(i− 2ℓ) ≥ 0, (28)

for a ≤ i ≤ 2a− 2ℓ, with the strict inequality holding as follows:

(a) v(i) > 0, i ∈ [a+ 2ℓ, 2a− 2ℓ](a ∈ [4ℓ,∞)),

(b) ∆α(ℓ)v(i) > 0, i ∈ [a+ ℓ, 2a− 2ℓ](a ∈ [3ℓ,∞)),

(c) ∆2
α(ℓ)v(i− ℓ) > 0, i ∈ [a+ 3ℓ, 2a− 2ℓ](a ∈ [5ℓ,∞)), (29)

(d) ∆3
α(ℓ)v(i− 2ℓ) > 0, i ∈ [a+ 3ℓ, 2a− 2ℓ](a ∈ [5ℓ,∞)),

(e) ∆4
α(ℓ)v(i− 2ℓ) > 0, i ∈ [a+ 2ℓ, 2a− 2ℓ](a ∈ [4ℓ,∞)).

It follows from (26) and (28) that (a) u(2a+ j − i) ≥ 0,

(b) ∆α(ℓ)u(2a+ j − i− ℓ) ≤ 0, (c) ∆2
α(ℓ)u(2a+ j − i− ℓ) ≥ 0,
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(d) ∆3
α(ℓ)u(2a+j−i−ℓ) ≤ 0, (e) ∆4

α(ℓ)u(2a+j−i−2ℓ) ≥ 0, (30)

for i ∈ [a, 2a − 2ℓ], with the strict inequality for the same values of i as given
in (29). If we replace k = 2a+ j − i, we may rewrite (30) as

(a)u(k) ≥ 0, (b)∆α(ℓ)u(k − ℓ) ≤ 0, (c)∆2
α(ℓ)u(k − ℓ) ≥ 0,

(d)∆3
α(ℓ)u(k − ℓ) ≤ 0, (e)∆4

α(ℓ)u(k − 2ℓ) ≥ 0, (31)

for k ∈ [2ℓ, a], which proves that (24) holds as claimed. The values of k which
give the strict inequality in (31), as claimed the conclusions of the lemma,
follow immediately by letting, i = 2a + j − k in the i-intervals stated in (29).
To complete the proof we need to extend the domain of (31a, b) by showing
u(0) > u(1) > 0 and ∆α(ℓ)u(0) < 0. For this, we first observe that (29b) implies
v(2a+ j − ℓ)− αv(2a + j − 2ℓ) = ∆α(ℓ)v(2a+ j − 2ℓ) > 0 so

u(ℓ) = v(2a + j − ℓ) > v(2a+ j − 2ℓ) ≥ 0. (32)

Also, v is a solution of (27) and we may rewrite (27), as in (14), as
v(i+ 2ℓ) = α∆3

α(ℓ)v(i − 2ℓ) + α∆2
α(ℓ)v(i− ℓ)

+α∆α(ℓ)v(i) + v(i+ ℓ) + α2P (i)v(i). (33)

In particular,

v(2a + j) = α∆3
α(ℓ)v(2a + j − 4ℓ) + α∆2

α(ℓ)v(2a + j − 3ℓ)+

α∆α(ℓ)v(2a+ j − 2ℓ) + v(2a+ j − ℓ) + α2P (2a+ j − 2ℓ)v(2a + j − 2ℓ), (34)

from which it follows by (28b,c,d) with i = 2a+ j − 2ℓ and by (32), that

u(0) = v(2a) > 0. (35)

Similarly (28) and (34) imply

∆α(ℓ)v(2a+ j − ℓ) = v(2a + j)− αv(2a + j − ℓ) = α∆3
α(ℓ)v(2a + j − 4ℓ)

+ α∆2
α(ℓ)v(2a+ j − 3ℓ) + α∆α(ℓ)v(2a+ j − 2)

+ α2P (2a+ j − 2ℓ)v(2a + j − 2) > 0, (36)

hence ∆α(ℓ)u(0) = −∆α(ℓ)v(2a + j − ℓ) < 0, which yields u(ℓ) < u(0), which
completes the proof.
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Lemma 3.6. Let a ∈ [2ℓ,∞). If u(k) is a solution of (1) with u(a+ j) =
0, u(a+ j− ℓ) ≥ 0, u(a+ j+ ℓ) ≥ 0, u(a+ j− ℓ) and u(a+ j+ ℓ) for all j ∈ [0, ℓ)
not both 0, then at least one of the following conditions must be true.
(a) Either u(k) > 0 for all k ∈ [a+ ℓ,∞),or
(b) u(k) > 0 for all k ∈ (−∞, a− ℓ], a ∈ [0,∞).
In particular, u(k) cannot have ℓ-generalized zeros of any order at both R and
S, where R < a+ j − ℓ < a+ j + ℓ < S. An analogous statement holds for the
hypotheses u(a+ j − ℓ) ≤ 0 and u(a+ j + ℓ) ≤ 0.

Proof. From the hypotheses, we have

u(a+ j) = 0,

∆α(ℓ)u(a+ j) = u(a+ j + ℓ)− αu(a+ j) = u(a+ j + ℓ) ≥ 0,

∆α(ℓ)u(a+ j − ℓ) = u(a+ j)− αu(a+ j − ℓ) = −αu(a+ j − ℓ) ≤ 0,

∆2
α(ℓ)u(a+ j − ℓ) = u(a+ j + ℓ)− 2αu(a+ j) + α2u(a+ j − ℓ) > 0.

If ∆3
α(ℓ)u(a+j−2ℓ) ≥ 0, then Lemma 3.2 holds and we can conclude u(k) > 0 for

all k ∈ [a+2ℓ,∞). On the other hand, if ∆3
α(ℓ)u(a+j−2ℓ) < 0, then (1) implies

∆3
α(ℓ)u(a+j−ℓ)−∆3

α(ℓ)u(a+j−2ℓ) = ∆4
α(ℓ)u(a+j−2ℓ) = p(a+j)u(a+j) = 0,

hence ∆3
α(ℓ)u(a + j − ℓ) = ∆3

α(ℓ)u(a + j − 2ℓ) > 0. If a ∈ [3ℓ,∞), then the

hypotheses of Lemma 3.5 are satisfied, hence u(k) > 0 for all k ∈ [a − 2ℓ,∞).
If a = 2ℓ, then ∆3

α(ℓ)u(a+ j − 2ℓ) = u(3ℓ)− 3αu(2ℓ) + 3α2u(ℓ)− α3u(0). Since

u(a+ j) = u(2ℓ) = 0 and ∆3
α(ℓ)u(a+ j − 2ℓ) = ∆3

α(ℓ)u(a+ j − ℓ) < 0, we have

that u(3ℓ) + 3α2u(ℓ) < α3u(0). Since u(3ℓ) and u(ℓ) are nonnegative and are
not both equal to zero, it must be true that u(0) > 0, which is part (b) of our
conclusion for a = 2ℓ.

4. Separation Theorems

Theorem 4.1. If u(k) is a nontrivial solution of (1) with zeros at three
consecutive values of k, say a + j, a + j + ℓ and a + j + 2ℓ for all j = [0, ℓ),
then u(k) has no other ℓ-generalized zeros. If u(a + j + 3ℓ) > 0(< 0), then
∆α(ℓ)u(k) ≥ 0(≤ 0) for all k and the inequality is strict if k ∈ [a + 2ℓ,∞) or
k ∈ [0, a−ℓ]. In particular, if γ ∈ [0, a−ℓ] and β ∈ [0, a+3ℓ], then u(γ)u(β) < 0.
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Proof. Clearly ∆α(ℓ)u(a + j) = ∆2
α(ℓ)u(a+ j) = 0. Since the solution u(k)

is nontrival, we may assume that u(a + j + 3ℓ) > 0. Thus, ∆3
α(ℓ)u(a + j) =

u(a + j + 3ℓ) > 0 and by Lemma 3.4, u(k) is positive and strictly increasing
for k ∈ [a+ 3ℓ,∞). Let v(k) = −u(k). Then, v(a+ j + ℓ) = 0,∆α(ℓ)v(a+ j) =
0,∆2

α(ℓ)v(a + j) = 0 and ∆3
α(ℓ)v(a + j) < 0. If a ∈ [2ℓ,∞), then Lemma 3.5

implies that v(k) is positive and strictly decreasing on [0, a]. Thus, u(k) is
negative and strictly increasing on [0, a]. If a = ℓ, then we again assume that
u(a + j + 3ℓ) = u(4ℓ) > 0. Then, by (1), ∆4

α(ℓ)u(0) = α2p(2ℓ)u(2ℓ) = 0. But,

∆4
α(ℓ)u(0) = u(4ℓ) + α4u(0) by (6), so u(0) = −u(4ℓ) < 0 and ∆α(ℓ)u(0) =

α3u(ℓ) − α4u(0) > 0, as claimed. If a = 0, then the part of the conclusion
concerning k ≤ a− ℓ is empty. This completes the proof.

Theorem 4.2. Let a ∈ [ℓ,∞) and suppose that u(k) is a solution of (1)
with u(a+ j) = 0, u(a+ j+ ℓ) = 0, u(a+ j+2ℓ) 6= 0 for all j = [0, ℓ), but a+2ℓ
is a ℓ-generalized zero for u(k). Then, u(k) has no other ℓ-generalized zeros. If
u(a+j+2ℓ) > 0(< 0), then ∆α(ℓ)u(k) ≥ (≤ 0) for all k ∈ [0,∞), with the strict
inequality for all k ∈ [a+ 2ℓ,∞) or k ∈ [0, a− ℓ]. In particular, if γ ∈ [0, a− ℓ]
and β ∈ [a+ 2ℓ,∞), then u(γ)u(β) < 0.

Proof. Since u(a+ j+2ℓ) 6= 0, we can assume that u(a+ j+2ℓ) > 0. Since
u(a + j) = u(a+ j + ℓ) = 0, a + j + 2ℓ cannot be a ℓ-generalized zero of order
1 or 2 and Theorem 4.1 implies that the order cannot be greater than 3. Thus,
a+ j+2ℓ is a ℓ-generalized zero of order 3, which implies that u(a+ j− ℓ) < 0.
Now, since from (1), we have
u(a+ j + 3ℓ)− 4αu(a + j + 2ℓ) + 6α2u(a+ j + ℓ)

−4α3u(a+ j) + α4u(a+ j − ℓ) = α2p(a+ j + ℓ)u(a+ j + ℓ),

or u(a+ j + 3ℓ) = 4αu(a + j + 2ℓ)− α2u(a+ j − ℓ),

it follows that
∆3

α(ℓ)u(a+ j) = u(a+ j + 3ℓ)− 3αu(a+ j +2ℓ) + 3α2u(a+ j + ℓ)−α3u(a+ j)

= 4αu(a+j+2ℓ)−u(a+j−ℓ)−3αu(a+j+2ℓ)+3α2u(a+j+ℓ)−α3u(a+
j) = αu(a+j+2ℓ)−u(a+j−ℓ) > 0. Clearly, ∆2

α(ℓ)u(a+j) > 0,∆α(ℓ)u(a+j) = 0

and u(a + j) = 0, thus by Lemma 3.4, u(k) is positive and strictly increasing
on [a+3ℓ,∞). For k ∈ [0, a], let v(k) = −u(k). Then, v(a+ j) = 0,∆α(ℓ)v(a+
j − ℓ) < 0,∆2

α(ℓ)v(a + j − ℓ) > 0 and ∆3
α(ℓ)v(a + j − ℓ) < 0. If a ∈ [3ℓ,∞),

then the result follows as in Theorem 4.1 and Lemma 3.5. If a = 2ℓ, then
u(2ℓ) = u(3ℓ) = 0, u(ℓ) < 0, u(4ℓ) > 0 and ∆α(ℓ)u(ℓ) > 0. By (1), we have
∆4

α(ℓ)u(0) = α2p(2ℓ)u(2ℓ) = 0. But, ∆4
α(ℓ)u(0) = u(4ℓ) − 4αu(3ℓ) + 6α2u(2ℓ)−
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4α3u(ℓ)+α4u(0) = u(4ℓ)−4α3u(ℓ)+α4u(0) and so 4u(ℓ)−α4u(0) = u(4ℓ) > 0.
Hence, u(0) < 4u(ℓ) < 0 and u(0) − u(ℓ) < 3u(ℓ) < 0. Therefore, u(0) < 0
and ∆α(ℓ)u(0) > 0, as claimed. If a = ℓ, then u(ℓ) = u(2ℓ) = 0, u(3ℓ) 6= 0
and a + 2ℓ = 3ℓ is a ℓ-generalized zero. It follows from the definition of a
ℓ-generalized zero that this must be a ℓ-generalized zero of order 3. So, if
u(3ℓ) > 0 then u(0) < 0. Hence, ∆α(ℓ)u(0) > 0, which completes the proof.

Corollary 4.3. If u(k) is a nontrivial solution of (1) with ℓ-generalized
zeros at γ and β and a zero at a + j, where γ + ℓ < a + j < β − ℓ, then
u(a+ j − ℓ)u(a+ j + ℓ) < 0. In particular, u(k) does not have a ℓ-generalized
zero at a+ j + ℓ.

Proof. Since γ + ℓ < a + j < β − ℓ, from Theorem 4.1 it follows that
u(a+ j+ ℓ) and u(a+ j− ℓ) both cannot be zero. If u(a+ j+ ℓ)u(a+ j− ℓ) ≥ 0,
then Lemma 3.6 implies that u(k) cannot have ℓ-generalized zeros at both γ

and β, which is a contradiction. Thus, u(a+ j − ℓ)u(a+ j + ℓ) < 0.

Corollary 4.4. If u(k) is a nontrivial solution of (1) with u(γ) = u(a+j) =
u(β) = 0, where γ < a+ j < β − ℓ, then u(a+ j + ℓ) 6= 0.

Proof. If a + j = γ + ℓ, the corollary follows immediately from Theorem
4.1. If a+ j > γ + ℓ, it follows from Corollary 4.3.

Corollary 4.5. If a nontrivial solution u(k) of (1) has a zero at γ and a
ℓ-generalized zero at β, where γ < β, then u(k) cannot have consecutive zeros
at a+ j, a + j + ℓ where γ < a+ j < β − ℓ.

Proof. Let u(k) be a nontrivial solution of (1) with zeros at γ, a+j, a+j+ℓ

for all j = [0, ℓ) and a ℓ-generalized zero at β, where γ < a+ j < βℓ. Theorems
4.1 and 4.2 imply that we must have γ < a + j − ℓ and β > a + j + 2ℓ, i.e.,
γ + ℓ < a + j < β − ℓ. Corollary 4.3 implies u(a + j − ℓ)u(a + j + ℓ) < 0,
contradicting u(a+ j + ℓ) = 0.

Remark 4.6. Corollary 4.5 says that, if a solution u(k) of (1) has four or
more zeros, then no two zeros can occur at consecutive values of k, unless they
are the first two zeros or the last two zeros. For example, consider the function
u(k) = {−4ℓ, 0, 0,−ℓ, 0, ℓ, 0, 0, 4ℓ, 15ℓ, . . . } which is a solution of ∆4

α(ℓ)u(k −

2ℓ) = 5u(k) with u(ℓ) = −4ℓ. This solution is positive and increasing for all
k ∈ [9ℓ,∞) follows from Lemma 3.2 with a = 7ℓ. Also, the terms u(3ℓ) through
u(7ℓ) illustrate Corollary 4.3.
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Theorem 4.7. If two nontrivial solutions u(k) and v(k) of (1) have three
zeros in common, then u(k) and v(k) are linearly dependent, i.e. specifying
any three zeros uniquely determines a nontrivial solution up to a multiplicative
constant.

Proof. If u(γ) = u(a+ j) = u(a+ j+ ℓ) = v(γ) = v(a+ j) = v(a+ j+ ℓ) = 0
for all j ∈ [0, ℓ), for some γ and a, where 0 ≤ γ < a+ j, then by Theorem 4.1,
u(a+ j+2ℓ) 6= 0 and v(a+ j+2ℓ) 6= 0. Define w(k) = v(a+ j+2ℓ)u(k)−u(a+
j+2ℓ)v(k). Since w(k) is a linear combination of u(k) and v(k), it is a solution
of (1). However, w(γ) = w(a + j) = w(a + j + ℓ) = w(a + j + 2ℓ) = 0 and so
w(k) must be the trivial solution of (1) by Theorem 4.1. Since u(a + j + 2ℓ)
and v(a+ j+2ℓ) are nonzero, u(k) and v(k) must be constant multiples of each
other.

Next, if u(γ) = u(a + j) = u(β) = v(γ) = v(a + j) = v(β) = 0, where
γ < a+ j < β− ℓ, then, by Corollary 4.5, u(a+ j+ ℓ) 6= 0 and v(a+ j+ ℓ) 6= 0.
Define w(k) = v(a+ j + ℓ)u(k)− u(a+ j + ℓ)v(k). Clearly, w(γ) = w(a+ j) =
w(a+ j + ℓ) = w(β) = 0, which contradicts Corollary 4.4 unless w(k) ≡ 0. But
this means u(k) and v(k) are constant multiples of each other. This completes
the proof.

5. Recessive Solutions

Let u[
m
ℓ ](k) be the solution of (1) satisfying u[

m
ℓ ](m)= u[

m
ℓ ](m+ ℓ)= u[

m
ℓ ](m+

2ℓ) = 0 and u[
m
ℓ ](0) = ℓ for m ∈ [ℓ,∞). For each m,u[

m
ℓ ](k) exists and is

unique. The existence is clear from Theorem 4.1 and a normalization, while
the uniqueness follows from Theorem 4.7. Note that by construction

0 ≤ u[
m
ℓ ](k) ≤ 1 for all k ∈ [0,m+ 2ℓ]. (37)

Also, Theorem 4.1 implies that

u[
m
ℓ ](k) ≥ u[

m
ℓ ](k + ℓ) for all k ∈ [0,∞). (38)

We now consider m sequence {u[
m
ℓ ](ℓ)}. By (37), 0 ≤ u[

m
ℓ ](ℓ) ≤ ℓ for

all m ∈ [ℓ,∞), hence lim sup
m→∞

{u[
m
ℓ ](ℓ)} exists, we call it u(ℓ). Then, there

exists a subsequence {m1t} ⊆ [ℓ,∞) such that u[
m1t
ℓ ](ℓ) → u(ℓ) as t → ∞.

Next, consider the m−sequence {u[
m
ℓ ](2ℓ)}. By (37), lim sup

t→∞
{u[

m1t
ℓ ](2ℓ)} ex-

ists, we call it u(2ℓ). Also, there exists a subsequence {m2t} ⊆ {m1t} such that
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u[
m2t
ℓ ](2ℓ) → u(2ℓ) (and u[

m2t
ℓ ](ℓ) → u(ℓ)) as t → ∞. In a similar fashion, by

considering {u[
m
ℓ ](3ℓ)}, we can arrive at a subsequence {m3t} and a limit u(3ℓ)

such that u[
m3t
ℓ ](k) → u(k) as t → ∞, k ∈ [ℓ, 3ℓ]. Clearly, u[

m3t
ℓ ](0) = ℓ for all

t.
Recall that by definition, for any k and any m

u[
m
ℓ ](k + 2ℓ)− 4αu[

m
ℓ ](k + ℓ) + 6α2u[

m
ℓ ](k)

−4α3u[
m
ℓ ](k − ℓ) + α4u[

m
ℓ ](k − 2ℓ) = α2p(k)u[

m
ℓ ](k). (39)

Consider (39) with k = 2ℓ and m replaced by m3t. We can conclude that

lim
t→∞

u[
m3t
ℓ ](4ℓ) exists, we call it u(4ℓ). Now, replace k by 3ℓ in (39) and conclude

the existence of lim
t→∞

u[
m3t
ℓ ](5ℓ) = u(5ℓ). Proceeding inductively, we conclude

that lim
t→∞

u[
m3t
ℓ ](k) = u(k) exists for any k ∈ [0,∞). Replacing m by m3t in

(39) and letting t → ∞, we conclude that u(k) is a solution of (1). Also,

u(k) ≥ u(k + ℓ) ≥ 0. (40)

This follows from (38) by replacing m by m3t, fixing k and letting t → ∞. From
(40), we conclude that

lim
k→∞

u(k) exists and we shall call it Lj . (41)

In the following theorem we show that this u(k) is a recessive solution of (1).

Theorem 5.1. The solution u(k) constructed above is a recessive solu-
tion of (1). In addition ∆α(ℓ)u(k),∆

2
α(ℓ)u(k) and ∆3

α(ℓ)u(k) all monotonically
approach zero as k → ∞.

Proof. We will first show that (9) is satisfied. By (38) and Theorem 4.1,

u[
m3t
ℓ ](m3t+3ℓ) < 0. Choosingm3t ≥ 3ℓ and using Lemma 3.5 with a = m3t+ℓ,

we can conclude that for any k such that 2ℓ ≤ k ≤ m3t+ ℓ, ∆α(ℓ)u
[m3t

ℓ ](k− ℓ) ≤

0, ∆2
α(ℓ)u

[m3t
ℓ ](k − ℓ) ≥ 0 and ∆3

α(ℓ)u
[m3t

ℓ ](k − ℓ) ≤ 0. Letting t → ∞ implies

that u(k) satisfies (9) for a = ℓ and is recessive. We note that u(k) also satisfies
(9) for a = 0. Concerning the monotonicity, we choose any k ∈ [2ℓ,∞) and

any m3t ≥ k. Then, ∆2
α(ℓ)u

[m3t
ℓ ](k − ℓ) ≥ 0 which means ∆α(ℓ)u

[m3t
ℓ ](k) ≥

α∆α(ℓ)u
[m3t

ℓ ](k − ℓ) and hence 0 ≤ −∆α(ℓ)u
[m3t

ℓ ](k) ≤ −α∆α(ℓ)u
[m3t

ℓ ](k − ℓ).
Taking the limit as t → ∞ implies that ∆α(ℓ)u(k) is monotonically decreas-
ing in absolute value. By (41), since u(k) monotonically approaches a finite
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limit, ∆α(ℓ)u(k) → 0 as k → ∞. The argument that ∆2
α(ℓ)u(k) and ∆3

α(ℓ)u(k)
monotonically approach zero is similar.

Corollary 5.2. By Theorem 5.1 and Definition 2.5, this recessive solution
u(k) of (1) can be written as

u(k − 2ℓ) = Lj +

∞∑

r=0

(
r + 3
3

)
u(k + rℓ)

αr+4
. (42)

Corollary 5.3. If

∞∑

(k + tℓ)3p(k + tℓ) = ∞, then, the recessive solution

u(k) of (1) constructed above approaches zero as k → ∞.

Corollary 5.4. Suppose that u(k) and v(k) are two recessive solutions of
(1) such that u(a) = v(a). If u(k) ≥ v(k) for all k ∈ [a,∞), then u(k) ≡ v(k).

Proof. Let Lj = lim
k→∞

u(k) and Mj = lim
k→∞

v(k). By hypothesis, L ≥ M .

Thus, if w(k) = u(k)− v(k), then from (42) with k = a+ 2ℓ we have

0 ≥ Lj −Mj +

∞∑

r=0

(
r + 3
3

)
u(a+ 2ℓ+ rℓ)

αr+4
≥ 0. From this we conclude that

u(k) ≡ v(k).
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