FACTORIZATIONS OF ANALYTIC FUNCTIONS VIA GENERALIZED INVERSE POWER PRODUCT EXPANSIONS

H. Gingold1§, J. Quaintance2

1Department of Mathematics
West Virginia University
Morgantown WV 26506, USA

2Department of Mathematics
Rutgers University-Hill Center for the Mathematical Sciences
Piscataway, NJ 08854-8019, USA

Abstract: Given an arbitrary sequence of complex numbers \(\{a_n\}_{n=1}^{\infty}\) and an arbitrary nonzero sequence of complex numbers \(\{r_n\}_{n=1}^{\infty}\), we study the expansion of the Taylor series \(1 + \sum_{n=1}^{\infty} a_n x^n\) into infinite products of the form \(\prod_{n=1}^{\infty} (1 - h_n x^n)^{-r_n}\). Algebraic properties, convergence criteria, and combinatorial interpretations of the infinite products are investigated. We also provide an asymptotic formula for the majorizing product expansion associated with \(1 - \sum_{n=1}^{\infty} s^n x^n\), \(s := \sup_{n \geq 1} |a_n|\).

AMS Subject Classification: 41A10, 30E10, 11P81, 05A17
Key Words: power series, expansions, analytic functions, power products, generalized power products, generalized inverse power products, convergence, asymptotics, multi-sets, partitions, compositions

1. Introduction

Let \(f(x)\) be a complex function with power series representation \(f(x) = 1 + \sum_{n=1}^{\infty} a_n x^n\). In [9] the authors discovered algebraic, analytic, and combinatorial
properties of the generalized power product expansion \(f(x) = \prod_{n=1}^{\infty} (1 + g_n x^n)^{r_n} \), where \(\{r_n\} \) is an arbitrary set of nonzero complex numbers. Such work complements and extends the results of Borofsky, Feld, Hertzog, Ketchum, Kolberg, A. Knopfmacher, Indelkofer, Ritt, and Warlimont [1, 2, 3, 4, 12, 14, 15, 16, 17, 10, 5, 8, 7, 13, 19, 18], who analyzed the particular case of \(r_n = 1 \). These authors, besides exploring \(f(x) = \prod_{n=1}^{\infty} (1 + g_n x^n) \), also investigated the inverse power product expansion

\[
\prod_{n=1}^{\infty} (1 - h_n x^n)^{-r_n}.
\]

The purpose of this current work is to develop algebraic, analytic, and combinatorial properties of the generalized inverse power product expansion \(f(x) = \prod_{n=1}^{\infty} (1 - h_n x^n)^{-r_n} \). Many of the algebraic properties obeyed by \(\{h_n\}_{n=1}^{\infty} \) are similar in nature to the algebraic properties of \(\{g_n\}_{n=1}^{\infty} \) discussed in Section 2 of [9]. But there is an important difference. Whereas the negativity of all \(a_n \) translates to the negativity of all \(g_n \) whenever \(r_n \geq 1 \) (see Theorem 2.2. of [9]), in order for the negativity to transfer to all \(h_n \), it is necessary that all \(r_n \) be a positive integers.

This paper is presented in a self-contained manner, with no assumption that the reader has previously read [9]. Section 2 derives the algebraic properties of \(h_n \) in term of \(\{a_n\}_{n=1}^{\infty} \) and \(\{r_n\}_{n=1}^{\infty} \). The useful property, to be called the Structure Property, writes \(h_n \) as a polynomial in the variables \(\{a_i\}_{i=1}^{\infty} \), whose coefficients are rational expressions of the form \(\frac{p(r_1, r_2, ..., r_n)}{q(r_1, r_2, ..., r_n)} \). If each \(r_n \) is a positive integer, and each \(a_n \leq 0 \), the Structure Property ensures that \(h_n \leq 0 \). We exploit the Structure Property in Section 3 when determining a lower bound for the radius of convergence of \(\prod_{n=1}^{\infty} (1 - h_n x^n)^{-r_n} \). See Theorem 3.2. Section 3 also contains an asymptotic approximation for the generalized inverse power product expansion associated with \(1 - \sum_{n=1}^{\infty} s^n x^n \) where \(s = \sup_{n \geq 1} |a_n|^{1/n} \), namely the majorizing product expansion used in the proof of Theorem 3.2. The paper ends with a section dedicated to combinatorial interpretations of \(\prod_{n=1}^{\infty} (1 - h_n x^n)^{-r_n} \) and \(\prod_{n=1}^{\infty} (1 + g_n x^n)^{r_n} \), where \(\{r_n\}_{n=1}^{\infty} \) is assumed to be a fixed set of positive integers.
Given a formal power series \(1 + \sum_{n=1}^{\infty} a_n x^n \) or an analytic function \(f(x) \) with \(f(0) = 1 \) and a Taylor power series representation
\[
f(x) = 1 + \sum_{n=1}^{\infty} a_n x^n,
\]
we define the \textit{Generalized Power Product Expansion}, GPPE, of \(f(x) \) as
\[
f(x) = \prod_{n=1}^{\infty} (1 + g_n x^n)^{r_n} = (1 + g_1 x^1)^{r_1} (1 + g_2 x^2)^{r_2} (1 + g_3 x^3)^{r_3} \ldots,
\]
and the \textit{Generalized Inverse Power Product Expansion}, GIPPE, of \(f(x) \) as
\[
f(x) = \prod_{n=1}^{\infty} (1 - h_n x^n)^{-r_n} = (1 - h_1 x^1)^{-r_1} (1 - h_2 x^2)^{-r_2} (1 - h_3 x^3)^{-r_3} \ldots,
\]
where \(\{g_n\}_{n=1}^{\infty}, \{h_n\}_{n=1}^{\infty}, \) and \(\{r_n\}_{n=1}^{\infty} \) are arbitrary nonzero complex numbers.

In Section 2 of [9] various algebraic formulas relating \(\{a_n\}_{n=1}^{\infty} \) to \(\{g_n\}_{n=1}^{\infty} \) and \(\{r_n\}_{n=1}^{\infty} \) of the GPPE were developed. We now derive the analogous formulas for the GIPPE. We start by expanding the right side of Equation (2.2) via Newton’s Binomial Theorem.
\[
1 + \sum_{k=1}^{\infty} a_k x^k = \sum_{k_1=0}^{\infty} \binom{-r_1}{k_1} (-h_1 x^1)^{k_1} \sum_{k_2=0}^{\infty} \binom{-r_2}{k_2} (-h_2 x^2)^{k_2} \sum_{k_3=0}^{\infty} \binom{-r_3}{k_3} (-h_3 x^3)^{k_3} \ldots
\]
Comparing the coefficient of \(x^n \) on both sides of Equation (2.3) gives
\[
a_n = \binom{-r_n}{1} (-h_n) + \sum_{\substack{l,v=n \\ l_j \leq n \\ j \leq v}} (-1)^{v_1 + \ldots + v_\theta} \binom{-r_{l_1}}{v_1} \ldots \binom{-r_{l_\theta}}{v_\theta} \prod_{j=1}^{\theta} h_{l_j}^{v_j}, \tag{2.4}
\]
where \(l = [l_1, l_2, \ldots l_\theta] \) and \(v = [v_1, v_2, \ldots v_\theta] \). Equation (2.4) is equivalent to
\[
h_n = \frac{1}{r_n} \left[a_n - \sum_{\substack{l,v=n \\ l_j \leq n \\ j \leq v}} (-1)^{v_1 + \ldots + v_\theta} \binom{-r_{l_1}}{v_1} \ldots \binom{-r_{l_\theta}}{v_\theta} \prod_{j=1}^{\theta} h_{l_j}^{v_j} \right]. \tag{2.5}
\]
We formalize the above discussion in the following proposition. It is a statement about a bijection between the sequence of the coefficients in a given power series and the sequence of coefficients in its GIPPE expansion.

Proposition 2.1. Let \(\{r_k\}_{k=1}^{\infty} \) denote a sequence of nonzero complex numbers. Let \(h_k \in \mathbb{C} \), \(k = 1, 2, \ldots \), be an infinite sequence. Let the symbol \(\prod_{k=1}^{\infty} (1 - h_k x^k)^{-r_k} \) stand for the infinite product

\[
\prod_{k=1}^{\infty} (1 - h_k x^k)^{-r_k} := (1 - h_1 x)^{-r_1} (1 - h_2 x^2)^{-r_2} \cdots (1 - h_k x^k)^{-r_k} \cdots .
\]

(2.6)

Then there exists a unique sequence \(a_n \in \mathbb{C}, n = 1, 2, \ldots \), such that in the sense of power series the following holds

\[
1 + \sum_{n=1}^{\infty} a_n x^n := \prod_{k=1}^{\infty} (1 - h_k x^k)^{-r_k}.
\]

(2.7)

Conversely, let \(a_n \in \mathbb{C}, n = 1, 2, \ldots \), be an infinite sequence. Then there exists a unique sequence of elements \(h_k \in \mathbb{C}, k = 1, 2, \ldots \), such that the identity (2.7) holds. Moreover, the elements \(h_k \) have the representation provided by Equation (2.5).

To develop a number theoretic formula for \(h_n \), we define \(\log(1 - h_n x^n) := -\sum_{k=1}^{\infty} \left(\frac{h_n x^n}{k} \right)^k \), where we say \(\log(1 - h_n x^n) \) exists and is well-defined if the series itself converges. Next define

\[
\log \prod_{n=1}^{\infty} (1 - h_n x^n)^{-r_n} := \sum_{n=1}^{\infty} r_n \log (1 - h_n x^n) := \sum_{n=1}^{\infty} r_n \sum_{k=1}^{\infty} \frac{(h_n x^n)^k}{k},
\]

(2.8)

by the convention that \(\sum_{n=1}^{\infty} r_n \log (1 - h_n x^n) \) exists and is well-defined if the double sum on the right side of Equation (2.8) converges. If the double sum on the right of Equation (2.8) is absolutely convergent both \(\sum_{n=1}^{\infty} r_n \log (1 - h_n x^n) \) and \(\log (1 - h_n x^n) \) are also absolutely convergent.

Equation (2.8), when combined with Equation (2.2), allows us to define \(\log f(x) \) as

\[
\log f(x) := -\sum_{n=1}^{\infty} r_n \log(1 - h_n x^n).
\]

(2.9)
Assume that $\sum_{n=1}^{\infty} r_n \log(1 - h_n x^n)$ is absolutely convergent. Differentiate both sides of Equation (2.9) to find that
\[
\frac{f'(x)}{f(x)} = \sum_{n=1}^{\infty} \frac{nr_n h_n x^{n-1}}{1 - h_n x^n} = \sum_{n=1}^{\infty} \sum_{s=0}^{\infty} (h_n x^n)^s r_n h_n^{s+1} x^{n s + n - 1}.
\]

Since $\frac{f'(x)}{f(x)} = d_0 + \sum_{k=1}^{\infty} d_k x^k = r_1 h_1 + \sum_{k=1}^{\infty} d_k x^k$, we may compare the coefficient of x^k in this series with the coefficient of x^k in $\sum_{s=0}^{\infty} \sum_{n=1}^{\infty} nr_n h_n^{s+1} x^{n s + n - 1}$ to obtain
\[
d_k = \sum_{n: n|(k+1)} nr_n h_n^{k+1}.
\]

(2.10)

If $k + 1$ is prime the sum of Equation (2.10) consists of only two terms, namely those associated with $n = 1$ and $n = k + 1$. Equation (2.10) becomes $d_k = r_1 h_1^{k+1} + (k + 1)r_{k+1} h_{k+1}$, which is equivalent to saying
\[
h_{k+1} = \frac{d_k - r_1 h_1^{k+1}}{(k + 1)r_{k+1}}, \quad k + 1 \text{ prime.}
\]

(2.11)

If $k + 1$ is not prime we use Equation (2.10) to solve for h_{k+1} as
\[
h_{k+1} = \frac{d_k - \sum_{n: n|(k+1)} nr_n h_n^{k+1}}{(k + 1)r_{k+1}}.
\]

(2.12)

Equation (2.12) allows us to prove a theorem which demonstrates the connection between a GPPE of $f(x)$ and its associated GIPPE.

Theorem 2.1. Let $f(x) = 1 + \sum_{n=1}^{\infty} a_n x^n$. Let $\{r_n\}_{n=1}^{\infty}$ be a given set of nonzero complex numbers. Suppose $f(x)$ has a GPPE of the form $f(x) = \prod_{n=1}^{\infty} (1 + g_n x^n)^{r_n}$ and an GIPPE of the form $f(x) = \prod_{n=1}^{\infty} (1 - h_n x^n)^{-r_n}$. Then $h_{2l+1} = g_{2l+1}$ for all nonnegative integers l.

Proof. We induct on l. A derivation similar to the one used for Equation (2.12) implies that
\[
g_{k+1} = \frac{d_k + \sum_{n: n|(k+1)} nr_n (-g_n)^{k+1}}{(k + 1)r_{k+1}},
\]

(2.13)
where \(f(x) = 1 + \sum_{n=1}^{\infty} a_n x^n \), \(\frac{f'(x)}{f(x)} = \sum_{n=0}^{\infty} d_0 x^n \), and \(f(x) = \prod_{n=1}^{\infty} (1 + g_n x^n)^{r_n} \) for a given set of nonzero complex numbers \(\{r_n\}_{n=0}^{\infty} \). Let \(l = 0 \). Equation (2.13) with \(f(x) = \prod_{n=1}^{\infty} (1 + g_n x^n)^{r_n} \) implies \(g_1 = \frac{d_0}{r_1} \), while Equation (2.12) implies \(h_1 = \frac{d_0}{r_1} \). Hence \(g_1 = h_1 \). Now assume that \(g_{2l+1} = h_{2l+1} \) for all \(0 \leq l \leq L \) where \(L \) is a fixed nonnegative integer. In Equation (2.13) take \(k = 2L + 2 \) to obtain

\[
g_{2L+3} = \frac{d_{2L+2} + \sum_{n \neq 2L+3} n r_n (-g_n)^{2L+3}}{(2L + 3)r_{2L+3}}
\]

where the last equality follows from Equation (2.12).

Remark 2.1. Proposition 3.1 of [8] is now a special case of Theorem 2.1.

Our next task is to develop a recursive formula for \(h_n \). Let \(f(x) = 1 + \sum_{n=1}^{\infty} B_{1,n} x^n = \prod_{n=1}^{\infty} (1 - h_n x^n)^{-r_n} \). By definition \(a_n = B_{1,n} \). We define a recursive system of equations as follows.

\[
1 + \sum_{n=1}^{\infty} B_{1,n} x^n = (1 - h_1 x)^{-r_1} \prod_{n=2}^{\infty} (1 - h_n x^n)^{-r_n}
= (1 - h_1 x)^{-r_1} \left[1 + \sum_{n=2}^{\infty} B_{2,n} x^n \right]
\]
\[
1 + \sum_{n=2}^{\infty} B_{2,n} x^n = (1 - h_2 x^2)^{-r_2} \prod_{n=3}^{\infty} (1 - h_n x^n)^{-r_n}
= (1 - h_2 x^2)^{-r_2} \left[1 + \sum_{n=3}^{\infty} B_{3,n} x^n \right]
\]
\[
\vdots
\]
\[
1 + \sum_{n=j}^{\infty} B_{j,n} x^n = (1 - h_j x^j)^{-r_j} \prod_{n=j+1}^{\infty} (1 - h_n x^n)^{-r_n}
\]
\[(1 - h_j x^j)^{-r_j} \left[1 + \sum_{n=j+1}^{\infty} B_{j+1,n} x^n \right] \]

\[\vdots\]

Newton’s Binomial Theorem implies that

\[1 + \sum_{n=j}^{\infty} B_{j,n} x^n = \left[1 + \sum_{k=1}^{\infty} \binom{-r_j}{k} (-h_j)^k x^{jk} \right] \left[1 + \sum_{n=j+1}^{\infty} B_{j+1,n} x^n \right]. \tag{2.14}\]

We expand the right side of Equation (2.14) and compare the coefficient of \(x^s\) with that of \(x^s\) in \(1 + \sum_{n=j}^{\infty} B_{j,n} x^n\) to obtain

\[B_{j,s} = \sum_{N+jk=s} \binom{-r_j}{k} (-h_j)^k B_{j+1,N} \tag{2.15}\]

\[= B_{j+1,s} + \sum_{k=1}^{\left\lfloor \frac{s}{j} \right\rfloor} \binom{r_j + k - 1}{k} h_j^k B_{j+1,s-jk}, \tag{2.16}\]

since \(\binom{z}{k} = (-1)^k \binom{-z+k-1}{k}\).

Take Equation (2.15) and set \(s = j\) where \(j \geq 1\). The sum has only two terms, namely when \(N = 0\) and \(k = 1\), or \(N = j\) and \(k = 0\). By definition \(B_{j+1,j} = 0\) and \(B_{j+1,0} = 1\), and Equation (2.15) becomes

\[B_{j,j} = \binom{-r_j}{1} (-h_j)^k B_{j+1,0} = r_j h_j. \tag{2.17}\]

Equation (2.17) demonstrates the connection between \(B_{j,j}\) and \(h_j\). We use this connection to derive a structure property of \(\{h_j\}_{j=1}^{\infty}\). To discover this intriguing structure rewrite \(1 + \sum_{n=j}^{\infty} B_{j,n} x^n = (1 - h_j x^j)^{-r_j} \left[1 + \sum_{n=j+1}^{\infty} B_{j+1,n} x^n \right]\) as

\[1 + \sum_{n=j+1}^{\infty} B_{j+1,n} x^n = (1 - h_j x^j)^{r_j} \left[1 + \sum_{n=j}^{\infty} B_{j,n} x^n \right] = \left[1 + \sum_{k=1}^{\infty} \binom{r_j}{k} (-h_j)^k x^{jk} \right] \left[1 + \sum_{n=j}^{\infty} B_{j,n} x^n \right] \]
$$= \left[1 + \sum_{k=1}^{\infty} (-1)^k \left(\frac{r_j}{k} \right) \left(\frac{B_{j,j}}{r_j} \right)^k x^k \right] \left[1 + \sum_{n=j}^{\infty} B_{j,n}x^n \right].$$

If we compare the coefficient of x^s on both sides of the previous equation we find that

$$B_{j+1,s} = \sum_{jk+n=s} (-1)^k \left(\frac{r_j}{k} \right) B_{j,n}B_{j,j}^k, \quad 0 \leq k \leq \frac{s}{j}. \quad (2.18)$$

Equation (2.18) is key to proving the following theorem.

Theorem 2.2. Let j be any positive integer. Define $B_{j,0} = 1$ and $B_{j,N} = 0$ for $1 \leq N \leq j-1$. Assume that r_j is a positive integer for all j and that $B_{j,N} \leq 0$ for all $j \leq N$. Then $B_{j+1,N} \leq 0$ whenever $j + 1 \leq N$.

Proof. Equation (2.18) is equivalent to

$$B_{j+1,s} = \sum_{n+jk=s} \left(-1 \right)^k \left(\frac{r_j}{k} \right) B_{j,j}^k B_{j,n} + \frac{\left(r_j \right)}{\hat{s}} \left(-B \right)^{\hat{s}_{j,j}} + \left(-1 \right)^{\hat{s}_{j,j}-1} \left(\frac{r_j}{\hat{s}_{j,j}-1} \right) B_{j,j}^{\hat{s}_{j,j}}. \quad (2.19)$$

Rewrite Equation (2.19) as $B_{j+1,s} = A + B$, where

$$A := \sum_{n+jk=s} \left(-1 \right)^k \left(\frac{r_j}{k} \right) B_{j,j}^k B_{j,n}, \quad B := \frac{\left(r_j \right)}{\hat{s}} \left(-B \right)^{\hat{s}_{j,j}} + \left(-1 \right)^{\hat{s}_{j,j}-1} \left(\frac{r_j}{\hat{s}_{j,j}-1} \right) B_{j,j}^{\hat{s}_{j,j}}. \quad (2.20)$$

Since r_j is a positive integer $\left(\frac{r_j}{k} \right) \geq 0$. By hypothesis $B_{j,n}B_{j,j}^k$ is the product of $k + 1$ nonpositive numbers and is either zero or has a sign of $(-1)^{k+1}$. Thus $(-1)^kB_{j,n}B_{j,j}^k$ is either zero or negative, and each summand in A is nonpositive.

It remains to show that B is also nonpositive. Notice that B only exists if $\frac{s}{j}$ is a positive integer, say $\hat{s}_{j} = \hat{k}$. Then B becomes

$$B = (-1)^{\hat{k}} \left(\frac{r_j}{\hat{k}} \right) B_{j,j}^{\hat{k}} + (-1)^{\hat{k}-1} \left(\frac{r_j}{\hat{k} - 1} \right) B_{j,j}^{\hat{k}-1}$$

$$= (-1)^{\hat{k}} \frac{r_j}{\hat{k}} \left(\frac{r_j - 1}{\hat{k} - 1} \right) B_{j,j}^{\hat{k}} + (-1)^{\hat{k}-1} \left(\frac{r_j}{\hat{k} - 1} \right) B_{j,j}^{\hat{k}-1}.$$
Since \(r_j \) and \(\hat{k} \) are positive integers \(\binom{r_j - 1}{\hat{k} - 1} \geq 0 \). By hypothesis \(B^k_{j,j} \) is either zero or has a sign of \((-1)^k\). Thus \(\frac{(-1)^{k-1}}{r_j - \hat{k} - 1} \binom{r_j - 1}{\hat{k} - 1} B^k_{j,j} \) is nonpositive. It remains to analyze the sign of the rational expression inside the square bracket at (2.21). The sign of this expression depends only on the sign of \(r_j - \hat{k} - 1 \) since the other three factors are always nonnegative. If we assume \(r_j - \hat{k} + 1 > 0 \), or that \(r_j + 1 > \hat{k} \), then the rational expression is nonnegative, and the quantity at (2.21) becomes nonpositive. If \(r_j + 1 - \hat{k} < 0 \), then \(1 \leq r_j \leq \hat{k} - 1 \), which in turn implies that \(\binom{r_j - 1}{\hat{k} - 1} = 0 \). So once again the quantity at Line (1) is nonpositive. Only one case remains, that of \(r_j + 1 = \hat{k} \). Notice that \(1 \leq r_j = \hat{k} - 1 \). The definition of \(B \) provided by Equation (2.20) implies that \(B = (-1)^{k-1} \frac{B^k_{j,j}}{r_j - 1} \), a quantity which is either zero or has a sign of \((-1)^{k-1}(-1)^{\hat{k}} = -1 \). In all three cases we have shown that \(B \) is nonpositive.

If we use the notation of [6], we may transform Theorem (2.2) into a theorem about the structure of the \(B_{j+1,s} \). Define \(\alpha = (j_1, j_2, \ldots, j_n) \) to be a vector with \(n \) components where each component is a positive integer. Let \(\lambda = \lambda(\alpha) \) be the length of \(\alpha \), i.e. \(\lambda = n \). Let \(|\alpha| \) denote the sum of the components, namely \(|\alpha| = \sum_{s=1}^{n} j_s \). The symbol \(B_{j,\alpha} \) represents the expression \(B_{j,j_1}B_{j,j_2} \ldots B_{j,j_n} \). For example if \(\alpha = (2, 3, 4, 3) \), then \(\lambda = 4 \), \(|\alpha| = 12 \), and \(B_{j,(2,3,4,3)} = B_{j,2}B_{j,3}B_{j,4}B_{j,3} = B_{j,2}B_{j,3}^2B_{j,4} \).

Theorem 2.3. (Structure Property) Let \(j \) be a positive integer. Then

\[
B_{j+1,s} = \sum_{l} (-1)^{\lambda(\alpha(l)) - 1} |c(\alpha(l), j, s)| B_{j,\alpha(l)}
= \sum_{l} (-1)^{\lambda(\alpha(l)) + 1} |c(\alpha(l), j, s)| B_{j,\alpha(l)}, \tag{2.22}
\]
where the sum is over all \(\alpha(l) = (j_1, j_2, \ldots j_\lambda) \) such that \(|\alpha(l)| = s \) and at most one \(j_i \neq j \). The expression \(|c(\alpha(l), j, s)| \) denotes a rational expression in terms of \(j, s \) and \(r_j \) which is nonnegative whenever \(r_j \) is a positive integer. Furthermore, define \(B_{j, \alpha(l)} = B_{j, j_1} B_{j, j_2} \ldots B_{j, j_\lambda} \). If \(B_{j, s} \leq 0 \) for all nonnegative integers \(j \) and all \(s \geq j \), Equation (2.22) is equivalent to

\[
B_{j+1, s} = -\sum |c(\alpha(l), j, s)||B_{j, j_1}||B_{j, j_2}||B_{j, j_3}|, \tag{2.23}
\]

where the sum is over all \(\alpha(l) = (j_1, j_2, \ldots j_\lambda) \) such that \(|\alpha(l)| = s \) and at most one \(j_i \neq j \).

Proof. Take the first term on the right side of Equation (2.19), represent \(B_{k, j}^k \) as \(B_{j, \alpha(l)} \) and \(\frac{\lambda}{r_j} \) as \(|c(\alpha(l), j, s)| \). Notice that \((-1)^k = (-1)^{\lambda(\alpha(l))-1} \). The remaining terms on the right side of Equation (2.19) are \(B \), and we combine them via (2.21) by setting \(\hat{B}_{j, j}^k = B_{j, \alpha(l)} \), and \(|c(\alpha(l), j, s)| = \frac{\lambda}{r_j} \frac{(\hat{r}_j+1)(\hat{k}-1)}{k(\hat{k}-\hat{r}_j+1)} \) as long as \(r_j \neq \hat{k} + 1 \). If \(r_j = \hat{k} + 1 \), then

\[
B = (-1)^{\hat{k}+1} \frac{B_{j, j}^k}{r_j^{\hat{k}+1}} \text{ and } \hat{B}_{j, j}^k = B_{j, \alpha(l)} \text{ while } |c(\alpha(l), j, s)| = \frac{1}{r_j^{\hat{k}+1}}.
\]

If we take Equation (2.22) and iterate \(j \) times we discover that

\[
B_{j+1, s} = \sum_{\alpha(l)}(-1)^{\lambda(\alpha(l))+1}|c(\alpha(l), j, s)||a_{\alpha(l)}
\]

\[= -\sum_{\alpha(l)}|c(\alpha(l), j, s)||a_{j_1}||a_{j_2}||a_{j_3}|, \quad \tag{2.24}
\]

where the sum is over all \(\alpha(l) = (j_1, j_2, \ldots j_\lambda) \) such that \(|\alpha(l)| = s \) and \(|c(\alpha(l), j, s)| \) is a rational expression in \(j, s \) and \(\{r_i\}_{i=1}^{j+1} \) which is nonnegative whenever \(r_i \) is a positive integer.

If \(s = j + 1 \) Equation (2.24) becomes

\[
B_{j+1, j+1} = r_{j+1} h_{j+1} = \sum_{\alpha(l)}(-1)^{\lambda(\alpha(l))+1}|c(\alpha(l), j)|a_{\alpha(l)}
\]

\[= -\sum_{\alpha(l)}|c(\alpha(l), j)||a_{j_1}||a_{j_2}||a_{j_3}|, \quad \tag{2.25}
\]

where the sum is over all \(\alpha(l) = (j_1, j_2, \ldots j_\lambda) \) such that \(|\alpha(l)| = j + 1 \). If \(\{r_i\}_{i=1}^{j+1} \) is a set of positive integers, each coefficient is nonnegative. Below we explicitly
list h_i for $1 \leq i \leq 6$.

\[h_1 = (-1)^0 \frac{1}{r_1} a_1 \quad h_2 = (-1)^1 \frac{r_1 + 1}{2r_1 r_2} a_1^2 + (-1)^0 \frac{1}{r_2} a_2 \]

\[h_3 = (-1)^1 \frac{r_1^2 - 1}{3r_1^2 r_3} a_4^3 + (-1)^1 \frac{1}{r_3} a_1 a_2 + (-1)^0 \frac{1}{r_3} a_3 \]

\[h_4 = (-1)^1 \frac{r_2 + 1}{2r_2 r_4} a_2^2 + (-1)^1 \frac{2r_3^2 r_2 + r_1 + 1}{2r_1 r_2 r_4} a_1 a_2 \]

\[+ (-1)^3 \frac{2r_2 + 2r_3^3 r_2 + r_3^2 + 2r_1^3 + r_1}{8r_1^3 r_2 r_4} a_1^4 + (-1)^1 \frac{1}{r_4} a_1 a_3 + (-1)^0 \frac{1}{r_4} a_4 \]

\[h_5 = (-1)^2 \frac{1}{r_5} a_1^2 a_3 + (-1)^1 \frac{1}{r_5} a_2 a_3 + (-1)^2 \frac{1}{r_5} a_1 a_2 \]

\[+ (-1)^3 \frac{1}{r_5} a_1 a_2 + (-1)^1 \frac{1}{r_5} a_1 a_4 + (-1)^4 \frac{r_1^4 - 1}{5r_1^4 r_5} a_4^5 + (-1)^0 \frac{1}{r_5} a_5 \]

\[h_6 = (-1)^2 \frac{1}{r_6} a_1^2 a_4 + (-1)^1 \frac{1}{r_6} a_2 a_4 + (-1)^1 \frac{r_3 + 1}{2r_3 r_6} a_3 \]

\[+ (-1)^3 \frac{r_1^2 + 3r_1^3 r_3 - 1}{3r_1^2 r_3 r_6} a_3 a_3 + (-1)^2 \frac{2r_3 + 1}{r_3 r_6} a_1 a_2 a_3 + (-1)^2 \frac{r_2^2 - 1}{3r_2^2 r_6} a_3 \]

\[+ (-1)^3 \frac{3r_1^3 r_2 r_3 + r_1^3 r_2 - r_3 - r_1 r_3}{2r_1 r_2^2 r_3 r_6} a_1^2 a_2 \]

\[+ (-1)^4 \frac{12r_1^2 r_2^2 r_3 - 3r_3 - 6r_3 r_1 + 4r_1^2 r_2^2 - 4r_2^2 - 3r_1^2 r_3}{12r_1^2 r_2^2 r_3 r_6} a_1^4 a_2 \]

\[+ (-1)^5 \frac{(12r_1^2 r_2^3 r_3 + 12r_2^3 r_3 - 9r_1^4 r_3 - 3r_1^2 r_3 - 8r_1^2 r_3^3 + 4r_1 r_2^2 - 3r_1^2 r_3 + 4r_1^3 r_2^2 - 9r_1^3 r_3)}{72r_1^2 r_2^2 r_3 r_6} a_1^6 \]

Table 1: The expressions for h_i, $1 \leq i \leq 6$.

Remark 2.2. It is reasonable to expect that the number of terms occurring in each $B_{j,n}$ of a GPPE or GIPPE, where at least one $r_j \neq 1$, to be larger than the number of terms in a GPPE or GIPPE with all $r_j = 1$. This observation translates into the number theoretic property that the sum of the integral coefficients in the last two terms of h_6 are zero when $r_1 = r_2 = r_3 = r_6 = 1$.

Remark 2.3. It is instructive to compare the properties of the GPPE with those of the GIPEE. For a GPPE we have

\[
r_{j+1}g_{j+1} = \sum_l (-1)^{l(\alpha(l)) + 1} |c(\alpha(l), j)| a_{\alpha(l)}
\]

\[= - \sum_l |c(\alpha(l), j)| |a_{j_1}||a_{j_2}| \ldots |a_{j_N}|, \quad (2.26)\]

where the sum is over all $\alpha(l) = (j_1, j_2, \ldots j_N)$ such that $|\alpha(l)| = j + 1$ and $\{r_i\}_{i=1}^{j+1}$ is a set of real numbers such that $r_i \geq 1$. See [12]. Since Theorem
2.1 shows that \(g_{2l+1} = h_{2l+1} \) for all nonnegative integers \(l \), we conclude that Equation (2.25) is valid for \(\{r_i\}_{i=1}^{j+1} \), a set of real numbers with \(r_i \geq 1 \), whenever \(j \) is an even nonnegative integer. This observation does not follow from the techniques used to prove Theorem 2.2. In that proof it was crucial that \(r_j \) was a positive integer since this condition ensured that \(\binom{r_j}{k} \geq 0 \). As the following counterexample demonstrates, if \(s \neq j+1 \), Equation (2.22) is not true for \(r_j \geq 1 \) unless \(r_j \) is a positive integer. Take Equation (2.18) and let \(j = 1 \) and \(s = 5 \) to obtain

\[
B_{2,5} = \left(\frac{\binom{r_1}{4}}{r_1^4} - \frac{\binom{r_5}{5}}{r_5^5} \right) B_{1,1}^5 - \frac{\binom{r_1}{3}}{r_1^3} B_{1,1}^3 B_{1,2} + \frac{\binom{r_2}{2}}{r_2^2} B_{1,1}^2 B_{1,3}
- B_{1,1} B_{1,4} + B_{1,5}.
\]

Then set \(r_1 = \frac{3}{2} \). After simplification we find that

\[
B_{2,5} = \frac{1}{162} B_{1,1}^5 + \frac{1}{54} B_{1,1}^3 B_{1,2} + \frac{1}{6} B_{1,1}^2 B_{1,3} - B_{1,1} B_{1,4} + B_{1,5}.
\quad (2.27)
\]

The term \(\frac{1}{54} B_{1,1}^3 B_{1,2} \) does not have proper sign of \((-1)^{4-1} = -1 \).

Equation (2.27) also demonstrates that \(B_{2,5} \) may be positive even if \(\{B_{1,k}\}_{k=1}^5 = \{a_k\}_{k=1}^5 \) are assumed to be nonpositive. For example, take \(B_{1,1} = B_{1,3} = B_{1,4} = B_{1,5} = -1 \), and let \(B_{1,2} = -200 \). Equation (2.27) becomes \(\frac{124}{81} \). If we fix \(B_{1,n} \) for \(n \in \{1, 3, 4, 5\} \) we may choose a value of \(B_{1,2} \leq 0 \) such that \(B_{2,5} \) is arbitrarily large in the positive sense.

There is one other observation which follows from Table 1. For \(h_i \) with \(1 \leq i \leq 6 \) we observe that \(h_i \) may be written as a polynomial in \(\{r_i^{-1}, \ldots, r_i^{-1}\} \). We deduce that \(h_j \) is a polynomial in \(\{r_1^{-1}, \ldots, r_j^{-1}\} \) for all nonnegative integers \(j \). This and more actually follow Equation (2.22). If we take Equation (2.22) and induct on \(j \) we prove the following proposition.

Proposition 2.2. Let \(n \) and \(j \) be positive integers. Define \(B_{j,n} \) via Equation (2.14). Then \(B_{j,n} \) is a polynomial in \(\{r_1^{-1}, r_1^{-2}, \ldots, r_j^{-1}\} \). In particular \(h_j = \frac{B_{j,j}}{r_j} \) is also a polynomial in \(\{r_1^{-1}, r_1^{-2}, \ldots, r_j^{-1}\} \). Moreover, \(h_{2l+1} \) is a polynomial in \(\{r_{2l+1}^{-1}\}_{l=0}^{l} \).
3. Convergence Criterion for Equation (2.2)

The structure of h_j provided by Equation (2.25) allows us to prove the following theorem.

Theorem 3.1. Let $\{r_n\}_{n=1}^{\infty}$ be a set of positive integers. Let $f(x) = 1 + \sum_{n=1}^{\infty} a_n x^n$. Then $f(x)$ has the GIPPE

$$f(x) = 1 + \sum_{n=1}^{\infty} a_n x^n = \prod_{n=1}^{\infty} (1 - h_n x^n)^{-r_n}. \quad (3.1)$$

Consider the auxiliary functions

$$C(x) = 1 - \sum_{n=1}^{\infty} |a_n| x^n = \prod_{n=1}^{\infty} (1 + H_n x^n)^{-r_n}. \quad (3.2)$$

$$M(x) = 1 - \sum_{n=1}^{\infty} M_n x^n = \prod_{n=1}^{\infty} (1 + F_n x^n)^{-r_n}. \quad (3.3)$$

Assume that $|a_n| \leq M_n$ for all n. Then $|h_n| \leq H_n \leq F_n$ for all n.

Proof. By Equation (2.25) we have

$$h_n = \sum_{l:|\alpha(l)|=n} (-1)^{\lambda(\alpha(l))} + 1 |c(\alpha(l), n)| a_{\alpha(l)}$$

$$= \sum_{l:|\alpha(l)|=n} (-1)^{\lambda(\alpha(l))} + 1 |c(\alpha(l), n)| a_{j_1} a_{j_2} \cdots a_{j_{\lambda}}. \quad (3.4)$$

Equation (3.4) implies that

$$|h_n| = \left| \sum_{l:|\alpha(l)|=n} (-1)^{\lambda(\alpha(l))} + 1 |c(\alpha(l), n)| a_{j_1} a_{j_2} \cdots a_{j_{\lambda}} \right|$$

$$\leq \sum_{l:|\alpha(l)|=n} |c(\alpha(l), n)||a_{j_1}| |a_{j_2}| \cdots |a_{j_{\lambda}}| \quad (3.5)$$

Equation (2.25) when applied to Equation (3.2) implies that

$$0 \leq H_n = \sum_{l:|\alpha(l)|=n} (-1)^{\lambda(\alpha(l))}|c(\alpha(l), n)| (-|a_{j_1}|)(-|a_{j_2}|) \cdots (-|a_{j_{\lambda}}|)$$
\[
\begin{align*}
= & \sum_{l:|\alpha(l)|=n} (-1)^{\lambda(2\alpha(l))} |c(\alpha(l), n)|([a_{j1}])([a_{j2}]) \ldots ([a_{j\lambda}]) \\
= & \sum_{l:|\alpha(l)|=n} |c(\alpha(l), n)|[a_{j1}] [a_{j2}] \ldots [a_{j\lambda}] \\
\end{align*}
\]

Combining Equations (3.5) and (3.6) shows that \(|h_n| \leq H_n \). Since \(|a_n| \leq M_n\) we also have

\[
0 \leq H_n = \sum_{l:|\alpha(l)|=n} |c(\alpha(l), n)||a_{j1}| |a_{j2}| \ldots |a_{j\lambda}| \\
\leq \sum_{l:|\alpha(l)|=n} |c(\alpha(l), n)|M_{j1} M_{j2} \ldots M_{j\lambda} = F_n. \quad \Box
\]

Remark 3.1. Equation (2.24) allows for the following generalization of Theorem (3.1). Let \(f(x) = 1 + \sum_{n=1}^{\infty} a_n x^n \) and \(\{r_n\}_{n=1}^{\infty} \) be a set of positive integers. Consider the partial product expansion

\[
f(x) = 1 + \sum_{n=1}^{\infty} a_n x^n = \prod_{n=1}^{p} (1 - h_n x^n)^{-r_n} \left[1 + \sum_{j=p+1}^{\infty} B_{p+1,j} x^j \right].
\]

Also consider the partial product expansions of the auxiliary functions

\[
C(x) = 1 - \sum_{n=1}^{\infty} |a_n| x^n = \prod_{n=1}^{p} (1 + H_n x^n)^{r_n} \left[1 - \sum_{j=p+1}^{\infty} \hat{B}_{p+1,j} x^j \right],
\]

\[
M(x) = 1 - \sum_{n=1}^{\infty} M_n x^n = \prod_{n=1}^{p} (1 + F_n x^n)^{r_n} \left[1 - \sum_{j=p+1}^{\infty} F_{p+1,j} x^j \right].
\]

If \(|a_n| \leq M_n\) for all \(n \), we conclude that \(|h_k| \leq H_k \leq F_k\) for \(1 \leq k \leq p \) and that \(|B_{p+1,j}| \leq \hat{B}_{p+1,j} \leq F_{p+1,j}\) for all \(j \geq p + 1 \).

Let

\[
M(x) = 1 - \sum_{n=1}^{\infty} s^n x^n = \prod_{n=1}^{\infty} (1 + F_n x^n)^{-r_n}, \quad s := \sup_{n \geq 1} |a_n|^n. \quad (3.7)
\]

Our first task is to determine the radius of convergence of the GIPPE in Equation (3.7). Define

\[
\log(1 + F_n x^n)^{-r_n} := -r_n \log(1 + F_n x^n) := r_n \sum_{l=1}^{\infty} \frac{(-1)^l(F_n x^n)^l}{l}
\]
by the convention that $-r_n \log(1 + F_n x^n)$ is well-defined whenever the series converges. Next define

$$-\sum_{n=1}^{\infty} r_n \log (1 + F_n x^n) = \sum_{n=1}^{\infty} [-r_n \log (1 + F_n x^n)]$$

$$:= \sum_{n=1}^{\infty} r_n \sum_{l=1}^{\infty} \frac{(-1)^l (F_n x^n)^l}{l}, \quad (3.8)$$

by the convergence of the double series. Equation (3.8) implies that if the double series is absolutely convergent, then both $\sum_{n=1}^{\infty} [-r_n \log (1 + F_n x^n)]$ and $-r_n \log(1 + F_n x^n)$ are absolutely convergent. The absolute convergence of the double series implies the absolute convergence of $\prod_{n=1}^{\infty} (1 + F_n x^n)^{-r_n}$ since

$$e^{\sum_{n=1}^{\infty} [-r_n \log(1+F_n x^n)]} = e^{\sum_{n=1}^{\infty} \log(1+F_n x^n)^{-r_n}} = \prod_{n=1}^{\infty} (1 + F_n x^n)^{-r_n}.$$

Define $\log \prod_{n=1}^{\infty} (1 + F_n x^n)^{-r_n} := \sum_{n=1}^{\infty} [-r_n \log (1 + F_n x^n)]$ via Equation (3.8). If we take the logarithm of Equation (3.7) we find that

$$\sum_{n=1}^{\infty} [-r_n \log (1 + F_n x^n)] = \log \left(1 - \sum_{n=1}^{\infty} s^n x^n \right) \quad (3.9)$$

Now

$$1 - \sum_{n=1}^{\infty} s^n x^n = 1 - sx \sum_{n=0}^{\infty} (sx)^n = 1 - \frac{sx}{1-sx} = \frac{1-2sx}{1-sx}.$$

Therefore

$$\log \left(\frac{1-2sx}{1-sx} \right) = \log(1-2sx) - \log(1-sx)$$

$$= -\sum_{n=1}^{\infty} \frac{(2sx)^n}{n} + \sum_{n=1}^{\infty} \frac{(sx)^n}{n} = \sum_{n=1}^{\infty} \frac{1-2^n}{n} (sx)^n.$$

By the Ratio Test we know that $\sum_{n=1}^{\infty} \frac{1-2^n}{n} (sx)^n$ converges whenever

$$\lim_{n \to \infty} \left| \frac{n(1-2^{n+1})}{(n+1)(1-2^n)} \right| |sx| < 1.$$

This is ensured by requiring $|x| < \frac{1}{2s}$.

To determine the radius of convergence of the GIPPE of Equation (2.2) it suffices to determine the radius of convergence of

$$\log \prod_{n=1}^{\infty} (1 - h_n x^n)^{-r_n} := \sum_{n=1}^{\infty} [-r_n \log(1 - h_n x^n)] = - \sum_{n=1}^{\infty} r_n \log(1 - h_n x^n),$$

where the series is defined via the convergence of the double series in Equation (2.8). By definition we have

$$\left| \log \prod_{n=1}^{\infty} (1 - h_n x^n)^{-r_n} \right| = \left| \sum_{n=1}^{\infty} [-r_n \log(1 - h_n x^n)] \right| \leq \sum_{n=1}^{\infty} r_n \left| \log(1 - h_n x^n) \right| \leq \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} \frac{(h_n x^n)^k}{k} \leq \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} \frac{(|h_n|\|x\|^n)^k}{k},$$

where the last inequality follows from (3.1). These calculations imply that if \(\sum_{n=1}^{\infty} [-r_n \log(1 + F_n x^n)] \) is absolutely convergent then so is

$$\sum_{n=1}^{\infty} [-r_n \log(1 - h_n x^n)]$$

and

$$\prod_{n=1}^{\infty} (1 - h_n x^n)^{-r_n}$$

absolutely convergent. Since \(\sum_{n=1}^{\infty} [-r_n \log(1 + F_n x^n)] \) is absolutely convergent whenever \(|x| < \frac{1}{2^s} \), we have proven the following theorem.

Theorem 3.2. Let \(f(x) = 1 + \sum_{n=1}^{\infty} a_n x^n \) Let \(s := \sup_{n \geq 1} |a_n|^{\frac{1}{n}} \). Then both \(f(x) \) and its GIPPE,

$$f(x) = 1 + \sum_{n=1}^{\infty} a_n x^n = \prod_{n=1}^{\infty} (1 - g_n x^n)^{-r_n},$$

where
and the auxiliary function, along with its GIPPE,

\[M(x) = 1 - \sum_{n=1}^{\infty} s^n x^n = \prod_{n=1}^{\infty} (1 + F_n x^n)^{-r_n}, \quad (3.10) \]

will be absolutely convergent whenever \(|x| \leq \frac{1}{2s} \).

We now provide an asymptotic estimate for the majorizing GIPPE of Equation (3.10).

Theorem 3.3. Let \(f(x) = 1 - \sum_{n=1}^{\infty} s^n x^n = \frac{1-2sx}{1-sx} \) where \(s > 0 \). Let \(\{r_n\}_{n=1}^{\infty} \) be a sequence of positive integers. For this particular \(f(x) \) and its associated GIPPE \(\prod_{n=1}^{\infty} (1 - h_n x^n)^{-r_n} \) we have

\[r_n h_n \sim \frac{(1 - 2^n)s^n}{n}, \quad n \to \infty. \quad (3.11) \]

Before we prove Theorem (3.3) we need the following lemma.

Lemma 3.1. Let \(f(x) = 1 - \sum_{n=1}^{\infty} s^n x^n = \frac{1-2sx}{1-sx} \) where \(s > 0 \). Let \(\{r_n\}_{n=1}^{\infty} \) be a sequence of positive integers. For this particular \(f(x) \) and its associated GIPPE \(\prod_{n=1}^{\infty} (1 - h_n x^n)^{-r_n} \) there exists \(\alpha \) with \(1 < \alpha < 2 \) such that

\[mr_m |h_m| \leq \alpha 2^m s^m. \quad (3.12) \]

Proof. It is possible to verify through a straight forward calculation that \(\frac{mr_m |h_m|}{(2s)^m} \leq 1.6875 \) whenever \(1 \leq m \leq 22 \). To prove Equation (3.12) for arbitrary \(m \) assume inductively that \(jr_j |h_j| \leq \alpha 2^j s^j \) is true for \(1 \leq j < m \). Our analysis shows that we may assume \(m \geq 16 \). To that end we proceed as follows. The first step in our induction proof is to rewrite Equation (3.1). Start with Equation (2.9) and note that

\[\log f(x) = - \sum_{n=1}^{\infty} r_n \log(1 - h_n x^n) = \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} \frac{r_n h_n^k}{k} x^{nk} = \sum_{m=1}^{\infty} D_m x^m. \]

Comparing the coefficient of \(x^m \) shows that

\[D_m = \frac{1}{m} \sum_{n: n|m} nr_n h_n^m. \quad (3.13) \]
For the specific case of \(f(x) = 1 - \sum_{n=1}^{\infty} s^n x^n = \frac{1-2sx}{1-sx} \) we find that

\[
\log f(x) = \log \left(\frac{1-2sx}{1-sx} \right) = \sum_{k=1}^{\infty} \frac{-(2^k-1)s^k}{k} x^k = \sum_{m=1}^{\infty} D_m x^m,
\]

which implies that \(D_m = \frac{-(2s)^m (1-2^{-m})}{m} \).

Take Equation (3.13) and rewrite it as

\[
m[D_m - T_1 - T_2 - T_3 - T_4 - T_5 - T_6 - T_7 - \Delta] = m r_m h_m,
\]

where

\[
T_j = \frac{jr_j}{m} (h_j)^{\frac{m}{j}}, \quad 1 \leq j \leq 7, \quad \Delta = \frac{1}{m} \sum_{\frac{n|m}{2 \geq n \geq 8}} n r_n h_m^{\frac{m}{n}}.
\]

The range of summation of \(\Delta \) implies that \(m \geq 16 \). In order to prove Equation (3.12) it suffices to show that

\[
\frac{m r_m |h_m|}{(2s)^m} = \frac{m}{(2s)^m} |D_m - T_1 - T_2 - T_3 - T_4 - T_5 - T_6 - T_7 - \Delta| \leq \frac{m}{(2s)^m} |D_m| + |T_1| + |T_2| + |T_3| + |T_4| + |T_5| + |T_6| + |T_7| + |\Delta| < 2,
\]

whenever \(m \geq 16 \). We must approximate \(\frac{m}{(2s)^m}|D_m|, \frac{m}{(2s)^m}|T_j| \) for \(1 \leq j \leq 7 \), and \(\frac{m}{(2s)^m}|\Delta| \). Begin with \(\frac{m}{(2s)^m}|D_m| \) and observe that

\[
\frac{m}{(2s)^m}|D_m| = \frac{m}{(2s)^m} \cdot \frac{(2s)^m (1-2^{-m})}{m} < 1.
\]

We now work with \(\frac{m}{(2s)^m}|T_j| \). Take Table 1, let \(a_i = -s^i \), and simplify the results to find that

\[
\begin{align*}
&h_1 = -\frac{s}{r_1}, \quad h_2 = -\frac{s^2 (3r_1 + 1)}{2r_1 r_2}, \quad h_3 = -\frac{s^3 (7r_1^2 - 1)}{3r_1^2 r_3}, \\
&h_7 = -\frac{s^7 (127r_1^6 - 1)}{7r_1^6 r_7}, \quad h_4 = -\frac{s^4 (9r_1^3 + 30r_1^3 r_2 + 6r_1^2 + 2r_2 + r_1)}{8r_1^3 r_2 r_4}, \\
&h_5 = -\frac{s^5 (31r_1^4 - 1)}{5r_1^4 r_5}.
\end{align*}
\]
\[h_6 = -s^6(4r_1^2 + 12r_2^2r_3 - 3r_1^2r_3 - 56r_2^2r_3 - 81r_3^2 + 756r_1^2r_3 + 196r_1r_2^2 - 81r_1^2r_3 - 27r_3r_3) / 72r_1^2r_3r_6. \]

We use this data to approximate \(m \) for 1 \(\leq j \leq 7 \). All approximations use \(m \geq 16 \) and \(r_j \geq 1. \)

\[
\frac{m}{(2s)^m} |T_1| = \frac{r_1}{(2s)^m} \left(\frac{s}{r_1} \right)^m = \frac{1}{2(2r_1)^{m-1}} \leq \frac{1}{2^{16}} \leq 0.00002 \quad (3.16)
\]

\[
\frac{m}{(2s)^m} |T_2| = \frac{2r_2}{(2s)^m} |h_2|^{\frac{m}{2}} = \frac{2r_2}{4} \left(\frac{3r_1 + 1}{2r_1 r_2} \right)^{\frac{m}{2}} = 2r_2 \left(\frac{3r_1 + 1}{8r_1 r_2} \right) = \left(\frac{3 + r_1^{-1}}{8r_2} \right)^{\frac{m}{2} - 1} \leq \left(\frac{1}{2} \right)^{\frac{16}{7}} \leq 0.08 \quad (3.17)
\]

When approximating \(m \) for \(T_3 \) use the fact that \(T_3 = 0 \) if \(3 \nmid m \).

\[
\frac{m}{(2s)^m} |T_3| = \frac{3r_3}{(2s)^m} |h_3|^{\frac{m}{3}} = \frac{3r_3}{2} \left(\frac{7r_2^2 - 1}{3r_1^2r_3} \right)^{\frac{m}{3}} \leq \frac{3r_3}{8} \left(\frac{7}{3} \right)^{\frac{m}{3}} = \frac{3r_3}{8} \left(\frac{7}{24} \right)^{\frac{m}{3} - 1} \leq \frac{7}{8} \left(\frac{7}{24} \right)^{\frac{16}{7} - 1} = \frac{7}{8} \left(\frac{7}{24} \right)^{5} \leq 0.002 \quad (3.18)
\]

\[
\frac{m}{(2s)^m} |T_4| = \frac{4r_4}{(2^4)^{\frac{m}{4}}} \left(\frac{9r_1^3 + 30r_1^3r_2 + 6r_1^2 + 2r_2 + r_1}{8r_1^2r_4} \right)^{\frac{m}{4}} = 4r_4 \left(\frac{9r_1^3 + 30r_1^3r_2 + 6r_1^2 + 2r_2 + r_1}{2^7r_1^2r_4} \right)^{\frac{m}{4}} \leq \frac{48}{2^7} \left(\frac{3}{2} \right)^{\frac{m}{4} - 1} \leq \frac{3}{2} \left(\frac{3}{8} \right)^{\frac{16}{7} - 1} \leq \frac{3}{2} \left(\frac{3}{8} \right)^{3} \leq 0.08 \quad (3.19)
\]

When approximating \(m \) for \(T_5 \) use the fact that \(T_5 = 0 \) if \(5 \nmid m \).

\[
\frac{m}{(2s)^m} |T_5| = \frac{5r_5}{(2^5)^{\frac{m}{5}}} \left(\frac{31r_4^4 - 1}{5r_1^2r_5} \right)^{\frac{m}{5}} \leq 5r_5 \left(\frac{31}{160r_5} \right)^{\frac{m}{5}} = \frac{31}{32} \left(\frac{31}{160r_5} \right)^{\frac{m}{5} - 1}
\]
\[
\leq \frac{31}{32} \left(\frac{31}{160} \right)^{\frac{m}{5} - 1} \leq \frac{31}{32} \left(\frac{31}{160} \right)^{\frac{20}{5} - 1} = \frac{31}{32} \left(\frac{31}{160} \right)^3 \leq 0.008 \quad (3.20)
\]

When approximating \(\frac{m}{(2s)^m} |T_6| \) use the fact that \(T_6 = 0 \) if \(6 \nmid m \).

\[
\frac{m}{(2s)^m} |T_6| =
\]

\[
= \left. \frac{6r_6}{(2^6)^{\frac{m}{7}}} \left(\frac{4r_1r_2^2 + 12r_2^2r_3 + 3r_2^2r_3 - 56r_2^2r_1 - 81r_3r_4 + 756r_1^3r_2^2r_3 + 196r_1^3r_2^2 - 81r_1^3r_3 - 27r_1^3r_3}{72r_1^3r_2^2r_3r_6} \right)^{\frac{m}{7}}
\]

\[
\leq \left. \frac{6r_6}{(2^6)^{\frac{m}{7}}} \left(\frac{4r_1r_2^2 + 12r_2^2r_3 + 756r_1^3r_2^2r_3 + 196r_1^3r_2^2}{3^22^6r_1^2r_2^2r_3r_6} \right)^{\frac{m}{7}}
\]

\[
\leq \left. \frac{968}{3^22^6} \left(\frac{968}{3^22^6} \right)^{\frac{18}{12} - 1} = \frac{11^2}{3^22^6} \left(\frac{11^2}{3^22^6} \right)^2 \leq 0.056 \quad (3.21)
\]

When approximating \(\frac{m}{(2s)^m} |T_7| \) use the fact that \(T_7 = 0 \) if \(7 \nmid m \).

\[
\frac{m}{(2s)^m} |T_7| = \left. \frac{7r_7}{(2^7)^{\frac{m}{7}}} \left| \frac{127r_7^6 - 1}{7r_7^6} \right| \right| \leq \frac{7r_7}{(2^7)^{\frac{m}{7}}} \left(\frac{127}{7r_7} \right)^{\frac{m}{7}} = \frac{7r_7}{(2^7)^{\frac{m}{7}}} \left(\frac{127}{7r_7} \right)^{\frac{m}{7}}
\]

\[
= \frac{127}{2^7} \left(\frac{127}{7127r_7} \right)^{\frac{m}{7} - 1} \leq \frac{127}{2^7} \left(\frac{127}{7127} \right)^{\frac{21}{7} - 1}
\]

\[
= \frac{127}{2^7} \left(\frac{127}{7127} \right)^2 \leq 0.02 \quad (3.22)
\]

It remains to approximate \(\frac{m}{(2s)^m} \Delta \). Here is where we make use of the induction hypothesis. We also use the fact the \(\frac{m}{2} \geq n \) implies \(\frac{m}{n} \geq 2 \). By definition we have

\[
\frac{m}{(2s)^m} \Delta \leq \left(\frac{1}{(2s)^m} \sum_{n|m \geq 2} \frac{nr_m|n|}{n} \right)^m \leq \left(\frac{1}{(2s)^m} \sum_{n|m \geq 2} \frac{nr_m}{n} \right)^m \leq \frac{1}{(2s)^m} \sum_{n|m \geq 2} \frac{nr_n}{n} \left(\frac{\alpha n^s m}{n} \right)^m \leq \alpha \sum_{n|m \geq 2} \frac{nr_n}{\alpha} \left(\frac{1}{nr_n} \right)^m \leq \alpha \sum_{n|m \geq 2} \left(\frac{\alpha}{nr_n} \right)^{m - 1}
\]

\[
= \alpha \sum_{n|m \geq 2} \frac{nr_n}{\alpha} \left(\frac{1}{nr_n} \right)^m = \alpha \sum_{n|m \geq 2} \left(\frac{\alpha}{nr_n} \right)^{m - 1}
\]
\[\leq \alpha \sum_{n|m, m \geq 2} \left(\frac{\alpha}{8} \right)^{n-1} \leq \alpha \left[\frac{\alpha}{8} \right] \]

\[= \alpha \left[\frac{\alpha}{8 - \alpha} \right] \leq \alpha \left[\frac{2}{8 - 2} \right] = \frac{\alpha}{3} \leq \frac{2}{3} \quad (3.23) \]

We now take Equations (3.16) through Equation (3.23) and place them in

\[\frac{m r_m h_m}{(2s)^m} \leq \frac{m}{(2s)^m} \left[|D_m| + |T_1| + |T_2| + |T_3| + |T_4| + |T_5| + |T_6| + |T_7| + |\Delta| \right] \]

to find that

\[\frac{m r_m h_m}{(2s)^m} \leq \frac{m}{(2s)^m} \left[|D_m| + |T_1| + |T_2| + |T_3| + |T_4| + |T_5| + |T_6| + |T_7| + |\Delta| \right] \]

\[\leq 1 + 0.00002 + 0.08 + 0.002 + 0.08 + 0.008 + 0.056 + 0.02 + \frac{2}{3} \]

\[= 1.91268667 < 2. \]

In other words Equation (3.14) is valid and our proof is complete. \(\square \)

Proof of Theorem 3.3. Equation (2.12) implies that

\[(k + 1) r_{k+1} h_{k+1} = d_k - r_1 h_{k+1} - \sum_{n|(k+1), k+1 \geq n \geq 2} n r_n h_n^{k+1}. \quad (3.24) \]

Since \(f(x) = 1 - \sum_{n=1}^{\infty} (sx)^n = \frac{1-2sx}{1-sx} \) we discover that

\[\frac{f'(x)}{f(x)} = \frac{-2s}{1-2sx} + \frac{s}{1-sx} = s \left[-2 \sum_{k=0}^{\infty} 2^k s^k x^k + \sum_{k=0}^{\infty} s^k x^k \right] \]

\[= s \sum_{k=0}^{\infty} (-2^{k+1} + 1)s^k x^k. \]

By definition \(\frac{f'(x)}{f(x)} = \sum_{k=0}^{\infty} d_k x^k \). Hence \(d_k = (-2^{k+1} + 1)s^k x^k \), and Equation (3.24) becomes

\[(k + 1) r_{k+1} h_{k+1} = (-2^{k+1} + 1)s^{k+1} - r_1 \left(\frac{s}{r_1} \right)^{k+1} - \sum_{n|(k+1), k+1 \geq n \geq 2} n r_n h_n^{k+1}. \quad (3.25) \]
Define
\[T_1 := (-2^{k+1} + 1)s^{k+1}, \quad T_2 := r_1 \left(-\frac{s}{r_1} \right)^{k+1}, \]
and
\[\Delta := \sum_{n|\{k+1\}}^{|\{k+1\}|} n r_n h_n^{k+1}. \]

Equation (3.25) is equivalent to \((k + 1) r_{k+1} h_{k+1} = T_1 - T_2 - \Delta.\) Lemma (3.1) implies there exist \(\alpha\) with \(1 < \alpha < 2\) such that
\[n |h_n| \leq nr_n |h_n| \leq \alpha 2^n s^n. \quad (3.26) \]

By definition
\[|\Delta| = \left| \sum_{n|\{k+1\}}^{|\{k+1\}|} n r_n h_n^{k+1} \right| \leq \sum_{n|\{k+1\}}^{|\{k+1\}|} n r_n |h_n|^{k+1} \leq \sum_{n|\{k+1\}}^{|\{k+1\}|} n r_n \left[\frac{\alpha 2^n s^n}{nr_n} \right]^{k+1} \]
\[= \alpha (2s)^{k+1} \sum_{n|\{k+1\}}^{|\{k+1\}|} \frac{1}{n |n/\alpha|^{k+1}} = \alpha (2s)^{k+1} \sum_{n|\{k+1\}}^{|\{k+1\}|} \frac{1}{n |n/\alpha|^{k+1}} \]
\[\leq \alpha (2s)^{k+1} \sum_{n|\{k+1\}}^{|\{k+1\}|} \frac{1}{n |n/\alpha|^{k+1}} \leq \alpha (2s)^{k+1} \sum_{n|\{k+1\}}^{|\{k+1\}|} \frac{1}{n |n/\alpha|^{k+1}} \]
\[= \alpha (2s)^{k+1} \left[\frac{1}{2\alpha^{k+1} - 1} + \frac{2\alpha}{k+1} + \sum_{k+1 \geq n \geq 3} \frac{1}{n |n/\alpha|^{k+1}} \right] \]
\[\leq \alpha (2s)^{k+1} \left[\frac{1}{2\alpha^{k+1} - 1} + \frac{2\alpha}{k+1} + \sum_{k+1 \geq n \geq 3} \frac{1}{n |n/\alpha|^{k+1}} \right], \quad (3.27) \]

where the last equality reflects the fact that \(\frac{1}{2} < \frac{1}{\alpha} < 1.\)

Define \(M := \sum_{k+1 \geq n \geq 3} \frac{1}{n |n/\alpha|^{k+1}} = \frac{1}{2} \left(\frac{1}{\alpha^{k+1} - 1} + \frac{1}{(\frac{k+1}{2})^{k+1} - 1} + \frac{1}{(\frac{k+1}{3})^{k+1} - 1} + \frac{1}{(\frac{k+1}{5})^{k+1} - 1} + \frac{1}{(\frac{k+1}{7})^{k+1} - 1} \right) + \sum_{k+1 \geq n \geq 3} \frac{1}{n |n/\alpha|^{k+1}} \)
\(b(n, k) := -\ln \left(\frac{k+1}{n} \right)^{k+1} = -\left(\frac{k+1}{n} - 1 \right) \ln \frac{n}{2}.\) Then
\[\frac{\partial b(n, k)}{\partial n} = \frac{k+1}{n^2} \ln \frac{n}{2} - \left(\frac{k+1}{n} - 1 \right) \frac{1}{n} \]
\[\frac{k + 1}{n} \left[\frac{1}{n} \left(\ln \frac{n}{2} - 1 \right) + \frac{1}{k + 1} \right] > 0, \quad n \geq 6. \quad (3.28) \]

Line (3.28) shows that \(b(n, k) \) is an increasing function with respect to \(n \) whenever \(n \geq 6 \). Hence

\[
b(n, k) < b \left(\frac{k + 1}{3}, k \right) = -(3 - 1) \ln \frac{k + 1}{6} = -2 \ln \frac{k + 1}{6},
\]

which implies each term of \(M \) satisfies \(e^{b(n, k)} \leq e^{-2 \ln \frac{k + 1}{6}} = \frac{36}{(k + 1)^2} \) whenever \(n = 6, 7, 8, \ldots \). Therefore

\[
\sum_{k + 1 \geq n \geq 3} \frac{1}{(\frac{n}{2})^{k + 1 - 1}} \leq \frac{1}{(\frac{3}{2})^{k + 1 - 1}} + \frac{1}{(\frac{4}{2})^{k + 1 - 1}} + \frac{1}{(\frac{5}{2})^{k + 1 - 1}} + \sum_{k + 1 \geq n \geq 6} \frac{36}{(k + 1)^2}
\]

\[
\leq \frac{1}{(\frac{3}{2})^{k + 1 - 1}} + \frac{1}{(\frac{4}{2})^{k + 1 - 1}} + \frac{1}{(\frac{5}{2})^{k + 1 - 1}} + (k + 1) \frac{36}{(k + 1)^2}
\]

\[
\leq \frac{3}{(\frac{3}{2})^{k + 1 - 1}} + \frac{1}{(\frac{4}{2})^{k + 1 - 1}} + \frac{1}{(\frac{5}{2})^{k + 1 - 1}} + \frac{36}{k + 1}. \quad (3.29)
\]

Equation (3.29) shows that \(\lim_{k \to \infty} M = 0 \). By combining this result with Equation (3.27) we conclude that

\[
\lim_{k \to \infty} \left\{ \frac{\Delta}{(-2^{k+1} + 1)s^{k+1}} \right\} = \lim_{k \to \infty} \left\{ \frac{|\Delta|}{(1 + 2^{k-1})|(2s)^{k+1}|} \right\}
\]

\[
= \lim_{k \to \infty} \frac{\alpha(2s)^{k+1}}{|(1 + 2^{k-1})|(2s)^{k+1}} \left[\frac{1}{(\frac{2}{\alpha})^{k+1}} + \frac{2\alpha}{(k + 1)} + M \right] = 0.
\]

We return to Equation (3.25) and observe that

\[
r_{k+1}h_{k+1} = \frac{T_1}{k + 1} - \frac{T_2}{k + 1} - \frac{\Delta}{k + 1}
\]

\[
= \frac{(-2^{k+1} + 1)s^{k+1}}{k + 1} - \frac{r_1(-1)^{k+1} \left(\frac{s}{r_1} \right)^{k+1}}{k + 1} - \frac{\Delta}{k + 1}
\]

\[
= \frac{(-2^{k+1} + 1)s^{k+1}}{k + 1} \left[1 - \frac{(-1)^{k+1}}{r_1^{k}(-2^{k+1} + 1)} - \frac{\Delta}{(-2^{k+1} + 1)s^{k+1}} \right]
\]

\[
= \frac{(-2^{k+1} + 1)s^{k+1}}{k + 1} \left[1 + o(1) \right] = \frac{d_k}{k + 1} \left[1 + o(1) \right]. \quad \square
\]
Remark 3.2. Define a composition of a_n to be monomial of the form $a_{j_1}a_{j_2}\ldots a_{j_m}$ such that $j_1 + j_2 + \cdots + j_m = n$. By combining Equation (2.5) with Theorem 3.3 we deduce that the absolute value of Equation (3.11) provides an upper bound on the number and weight of compositions of a_n whenever $\{|a_n|^{n^{-1}}\}_{n=1}^{\infty}$ is monotone increasing sequence and $s = \lim_{n\to\infty} |a_n|^{n^{-1}}$.

4. Combinatorial Interpretations for IGPPE

In this section we develop combinatorial interpretations for Equations (2.1) and (2.2). When developing our combinatorial interpretations, we require that $\{r_k\}_{k=1}^{\infty}$ be a set of positive integers. For a fixed set of positive integers $\{r_k\}_{k=1}^{\infty}$ denote the associated multi-set as $1^{r_1}2^{r_2}\ldots k^{r_k}\ldots$. If r_k is the number of ways to color the digit k, we require that each copy of k in the multi-set be uniquely colored. For example, $1^{2}2^{3}3^{4}4^{5}$ denotes the multi-set $\{1_R,1_B,2_R,2,B,2,O,2,Y,3_R,3_B,3,O,4_R,4_B,4,O,4,Y,4,G\}$, where R means red, B means blue, O means orange, Y means yellow, and G means green. We form the generating function

$$\prod_{n=1}^{\infty} (1 + x^n)^{r_n} = (1 + x)^{r_1}(1 + x^2)^{r_2}\ldots (1 + x^k)^{r_k}\ldots = \sum_{n=0}^{\infty} \hat{p}_d(n)x^n, \quad (4.1)$$

where $\hat{p}_d(n)$ counts the partitions of n with distinct parts composed from $1^{r_1}2^{r_2}\ldots k^{r_k}\ldots$. Recall that a partition of n is a collection of positive integers whose sums equals n, i.e. $n = i_1 + i_2 + \cdots + i_k$ where $1 \leq k \leq n$ and each i_k is a positive integer less than or equal to n. The summands in the partition are called parts and the order of summation is immaterial. In the context of colored multi-sets, two parts i_{j_1} and i_{j_2} are distinct if they either have different numerical value, or if they have the same numerical value, they are of different color. For the multi-set $1^{2}2^{4}3^{3}4^{5}$, both $1_R + 3_O$ and $2_R + 2_B$ are partitions of 4 with distinct parts. We generalize Equation (4.1) by introducing collection of weights associated with each part, namely $\{g_n\}_{n=1}^{\infty}$, where g_n is an arbitrary complex number. Equation (4.1) becomes

$$\prod_{n=1}^{\infty} (1 + g_nx^n)^{r_n} = (1 + g_1x)^{r_1}(1 + g_2x)^{r_2}\ldots (1 + g_kx^k)^{r_k}\ldots = \sum_{n=0}^{\infty} \hat{p}_d(\bar{g},n)x^n, \quad (4.2)$$
FACTORIZATIONS OF ANALYTIC FUNCTIONS VIA... 139

where \(\bar{g} \) is a finite polynomial in \(\{g_n\}_{n=1}^{\infty} \), such that each monomial has the form
\[g_{1}^{\alpha_1}g_{2}^{\alpha_2} \cdots g_{m}^{\alpha_m} \], where \(\sum_{i=1}^{m} i\alpha_i = n \) and \(\alpha_m \) denotes the number of distinct colored copies of the part \(m \) which appear in the partition. For example, the partition \(1_R + 3_O \) is represented as \(g_1 g_3 \), while \(2_R + 2_B \) is represented as \(g_2^2 \).

Equations (4.1) and (4.2) interpret the product side of Equation (2.1). Colored multi-sets also provide means of combinatorially interpreting the product side of Equation (2.2). If \(h_n = 1 \), Equation (2.2) becomes
\[
\prod_{n=1}^{\infty} (1 - x^n)^{-r_n} = (1 - x)^{-r_1}(1 - x^2)^{-r_2}(1 - x^3)^{-r_3} \cdots = \sum_{n=0}^{\infty} \hat{p}(n)x^n, \tag{4.3}
\]
where \(\hat{p}(n) \) is the number of partitions of \(n \) associated with the colored multi-set which contains an unlimited repetition of each integer \(k \) in \(r_k \) colors. The factor \((1-x^k)^{-r_k} = (1+x^k+x^{2k}+x^{3k}+\ldots)^{r_k} \) corresponds to \(\{k, k+k, k+k+k, \ldots\} \) replicated in \(r_k \) colors.

Equation (4.3) generalizes by assigning a set of weights to each part. In particular, we have
\[
\prod_{n=1}^{\infty} (1 - h_n x^n)^{-r_n} = (1 - h_1 x)^{-r_1}(1 - h_2 x^2)^{-r_2}(1 - h_3 x^3)^{-r_3} \cdots = \sum_{n=0}^{\infty} \hat{p}(\bar{h}, n)x^n, \tag{4.4}
\]
where \(\bar{h} \) is a polynomial in \(\{h_n\}_{n=0}^{\infty} \) such that the exponent of \(h_i \) is the number of colored parts \(i \) that appear in a partition of \(n \). In other words, \(\bar{h} \) has the form \(h_1^{\alpha_1}h_2^{\alpha_2} \cdots h_m^{\alpha_m} \), where \(\sum_{i=1}^{m} i\alpha_i = n \) and \(\alpha_m \) denotes the number of colored parts \(m \) which appear in the partition [9].

The combinatorial interpretations of Equations (4.1) through (4.4) originated from the product side of Equations (2.1) and (2.2). Is there way to develop a combinatorial interpretation if we start with the sum side instead? To answer this question define \(f(x) = 1 - \sum_{n=1}^{\infty} a_n x^n \) where \(\{a_n\}_{n=1}^{\infty} \) is a set of positive integers. Equation (2.25), when combined with Equation (2.1), implies that
\[
1 - \sum_{n=1}^{\infty} a_n x^n = \prod_{n=1}^{\infty} (1 - g_n x^n)^{r_n}, \quad g_n \text{ a positive integer.} \tag{4.5}
\]

Take Equation (4.5) and form the reciprocal.
\[
\frac{1}{1 - \sum_{n=1}^{\infty} a_n x^n} = \frac{1}{\prod_{n=1}^{\infty} (1 - g_n x^n)^{r_n}} = \prod_{n=1}^{\infty} (1 - h_n x^n)^{-r_n}, \quad h_n := g_n \tag{4.6}
\]
Equation (4.6) shows that the reciprocal of \(1 - \sum_{n=1}^{\infty} a_n x^n\) is an IGPPE. Since \(r_n\) is a positive integer we may expand
\[
\left[1 + \sum_{\mu=1}^{\infty} (g_n x^n)^\mu\right]^{r_n} = \left[1 + \sum_{\mu=1}^{\infty} (g_n x^n)^\mu\right]^{r_n} = 1 + \sum_{n=1}^{\infty} \frac{1}{1 - g_n x^n} = 1 + \sum_{n=1}^{\infty} C_n x^n,
\]
where \(C_n\) is a positive integer determined by a finite number of arithmetic calculations involving a finite number of elements in \(\{g_n\}_{n=1}^{\infty}\). We claim each \(C_n\) has a combinatorial interpretation. Expand the left side of Equation (4.7) as

\[
1 - \sum_{n=1}^{\infty} a_n x^n = 1 - \sum_{n=1}^{\infty} a_n x^n = \prod_{n=1}^{\infty} \left[1 + \sum_{\mu=1}^{\infty} (g_n x^n)^\mu\right]^{r_n} = 1 + \sum_{n=1}^{\infty} C_n x^n,
\]

\((4.7)\)

The methodology used to describe \(C_n\) is best exhibited by the particular case of \(a_n = 1\). Equation (4.8) becomes

\[
1 - \sum_{n=1}^{\infty} x^n = \frac{1}{1 - \frac{x}{1-x}} = 1 + \frac{x}{1-x} + \left(\frac{x}{1-x}\right)^2 + \left(\frac{x}{1-x}\right)^3 + \cdots + \left(\frac{x}{1-x}\right)^k + \cdots
\]

\((4.9)\)

= 1 + \sum_{n=1}^{\infty} x^n + \left[\sum_{n=1}^{\infty} x^n\right]^2 + \left[\sum_{n=1}^{\infty} x^n\right]^3 + \cdots + \left[\sum_{n=1}^{\infty} x^n\right]^k + \cdots

\((4.10)\)

We must determine a series expansion for \(\left[\sum_{n=1}^{\infty} x^n\right]^k = \sum_{l=1}^{\infty} \hat{C}(l,k)x^l\) whenever \(k \geq 1\). Clearly \(\hat{C}(l,1) = 1\). A simple exercise in coefficient comparison shows that

\[
\left[\sum_{n=1}^{\infty} x^n\right]^2 = (x + x^2 + x^3 + x^4 + x^5 + \ldots)(x + x^2 + x^3 + x^4 + x^5 + \ldots)
\]

\[
= \sum_{l=2}^{\infty} (l - 1)x^l = \sum_{l=2}^{\infty} \hat{C}(l,2)x^l.
\]
We use this result to determine \(\hat{C}(l, 3) \) as follows

\[
\left[\sum_{n=1}^{\infty} x^n \right]^3 = \left[\sum_{n=1}^{\infty} x^n \right]^2 \left[\sum_{n=1}^{\infty} x^n \right] = (x^2 + 2x^3 + \cdots + (n-1)x^n + \cdots)(x + x^2 + x^3 + \cdots + x^k + \cdots)
\]

\[
= (1)x^3 + (1 + 2)x^4 + (1 + 2 + 3)x^5 + \cdots (1 + 2 + 3 + \cdots + (k-2)) x^k + \cdots
\]

\[
= \sum_{l=3}^{\infty} \binom{l-1}{2} \hat{C}(l, 3) x^l
\]

Since \(\hat{C}(l, 1) = 1 = \binom{l-1}{0} \), \(\hat{C}(l, 2) = \binom{l-1}{1} \), and \(\hat{C}(l, 3) = \binom{l-1}{2} \), we deduce that \(\hat{C}(l, k) = \binom{l-1}{k-1} \). This claim is proven via induction on \(k \). Assume that \(\hat{C}(l, j) = \binom{l-1}{j-1} \) for all positive integers \(j \) with \(j \leq k \). Then

\[
\left[\sum_{n=1}^{\infty} x^n \right]^{k+1} = \left[\sum_{n=1}^{\infty} x^n \right]^k \left[\sum_{n=1}^{\infty} x^n \right] = \sum_{l=k}^{\infty} \hat{C}(l, k) x^l \left[x + x^2 + \cdots + x^k + \cdots \right]
\]

\[
= \sum_{s=1}^{\infty} \sum_{j=0}^{s-1} \hat{C}(k+j, k) x^{k+s} = \sum_{s=1}^{\infty} \sum_{j=0}^{s-1} \binom{k+j-1}{k-1} x^{k+s}
\]

\[
= \sum_{s=k+1}^{\infty} \binom{s-1}{k} x^{s} = \sum_{s=k+1}^{\infty} \hat{C}(s, k+1) x^s.
\]

We return to Equation (4.10) and write it as

\[
1 - \sum_{n=1}^{\infty} x^n = 1 + \sum_{n=1}^{\infty} x^n + \left[\sum_{n=1}^{\infty} x^n \right]^2 + \left[\sum_{n=1}^{\infty} x^n \right]^3 + \cdots + \left[\sum_{n=1}^{\infty} x^n \right]^k + \cdots
\]

\[
= 1 + \sum_{n=1}^{\infty} \hat{C}(n, 1) x^n + \sum_{n=2}^{\infty} \hat{C}(n, 2) x^n + \sum_{n=3}^{\infty} \hat{C}(n, 3) x^n + \cdots + \sum_{n=k}^{\infty} \hat{C}(n, k) + \cdots
\]

\[
= 1 + \sum_{n=1}^{\infty} \left[\sum_{k=1}^{n} \hat{C}(n, k) \right] x^n = 1 + \sum_{n=1}^{\infty} \left[\sum_{k=1}^{n} \binom{n-1}{k-1} \right] x^n = 1 + \sum_{n=1}^{\infty} 2^{n-1} x^n.
\]
From these calculations we conclude that \(\frac{1}{1-\sum_{n=1}^{\infty} x^n} = 1 + \sum_{n=1}^{\infty} \hat{C}_n x^n \) where \(\hat{C}_n = 2^{n-1} \). This result could have been obtained by observing that
\[
\frac{1}{1 - \frac{x}{1-x}} = 1 - x = 1 + \frac{x}{1-2x} = 1 + \sum_{n=1}^{\infty} 2^{n-1} x^n.
\]

We now turn to the general case and develop a factorization for the ordinary power series whose coefficients are representations of compositions of \(n \). Notice that
\[
\frac{1}{1 - \sum_{n=1}^{\infty} a_n x^n} = 1 + \sum_{n=1}^{\infty} a_n x^n + \left[\sum_{n=1}^{\infty} a_n x^n \right]^2 + \left[\sum_{n=1}^{\infty} a_n x^n \right]^3 + \cdots
\]
\[
= 1 + \sum_{n=1}^{\infty} C(n, 1) x^n + \sum_{n=2}^{\infty} C(n, 2) x^n + \sum_{n=3}^{\infty} C(n, 3) x^n + \cdots
\]
\[
= 1 + \sum_{n=1}^{\infty} \left[\sum_{k=1}^{n} C(n, k) \right] x^n
\]
\[
= 1 + \sum_{n=1}^{\infty} C_n x^n,
\]
where \(C(n, k) \) is a polynomial representation of the compositions of \(n \) with exactly \(k \) parts such that the part \(i \) is represented by \(a_i \) and the + is replace by \(\ast \). In other words, \(C(n, k) \) is composed of monomials \(ca_{i_1}a_{i_2}\ldots a_{i_k} \) such that \(i_1 + i_2 + \ldots i_k \) is a partition of \(n \). Recall that a composition of a positive integer \(n \) with \(k \) parts is a sum \(i_1 + i_2 + \ldots i_k = n \) where each part \(i_j \) is a positive integer with \(1 \leq i_j \leq n \). The difference between a partition of \(n \) with \(k \) parts and a composition of \(n \) with \(k \) parts is that a composition distinguishes between the order of the parts in the summation. For example, \(2 + 1 + 1 \) and \(1 + 2 + 1 \) are two distinct compositions of \(4 \) with \(3 \) parts but only one partition of \(4 \) with \(3 \) parts [20]. To construct \(C(n, k) \) we list all the compositions of \(n \) with \(k \) parts, replace each part \(i \) with \(a_i \), multiply the terms together, and add the resulting monomials. For example, \(C(n, 1) = a_n \) and \(C(5, 2) = 2a_1a_4 + 2a_2a_3 \) since \(\{4 + 1, 1 + 4, 2 + 3, 3 + 2\} \) are the four compositions of \(5 \) with \(2 \) parts.
We justify our combinatorial interpretation of $C(n, k)$ through induction on k. Obviously $C(n, 1) = a_n$ satisfies our definition. Now assume for $j \leq k$ that $C(n, j)$ is the polynomial representation of the compositions of s with $k+1$ parts such that each part i is represented by a_i and all + are replaced with *. Then

$$\left[\sum_{n=1}^{\infty} a_n x^n \right]^{k+1} = \left[\sum_{n=1}^{\infty} a_n x^n \right]^k \left[\sum_{n=1}^{\infty} a_n x^n \right]$$

$$= \sum_{l=k}^{\infty} C(l, k) x^l \sum_{l=1}^{\infty} a_l x^l$$

$$= \sum_{s=1}^{\infty} \left[\sum_{j=0}^{s-1} C(k+j, k) a_{s-j} \right] x^{k+s}$$

$$= \sum_{s=k+1}^{\infty} \left[\sum_{j=0}^{s-k-1} C(k+j, k) a_{s-k-j} \right] x^s$$

$$:= \sum_{s=k+1}^{\infty} C(s, k+1) x^s.$$

We claim that the polynomial representation of the compositions of s with $k+1$ parts such that each part i is represented by a_i and all + are replaced with * is precisely $\sum_{j=0}^{s-k-1} C(k+j, k) a_{s-k-j}$. Start with a composition of s which has $k+1$ parts. Call this composition p and write $p = p_1 + p_2 = s$, where p_1 is the sum of the first k parts and p_2 is the $(k+1)^{st}$ part. In other words, $p_1 = i_1 + i_2 + \ldots + i_k$ and $p_2 = i_{k+1}$. Notice that $1 \leq i_{k+1} \leq s-k$ since $i_j \geq 1$ whenever $1 \leq j \leq k$. If $i_{k+1} \geq s-k+1$ we would have the contradiction $p_1 + p_2 \geq k + s - k + 1 = s + 1$. For each choice of $i_{k+1} \in \{1, 2, \ldots, s-k\}$, p_1 is a composition $s - i_{k+1}$ with k parts. If $C(s, k+1)$ is the number of compositions of s with $k+1$ parts, the preceding argument shows that $c(s, k+1) = \sum_{j=1}^{s-k} c(s-j, k) j = \sum_{j=0}^{s-k-1} c(s-j-1, k)(j+1) = \sum_{j=0}^{s-k-1} c(k+j, k)(s-k-j)$. It is just a matter of taking each composition represented by $c(k+j, k)(s-k-j)$, replacing the part i with a_i, and + with *. The end result is that $\sum_{j=0}^{s-k-1} C(k+j, k) a_{s-k-j} = C(s, k+1)$ is indeed the desired polynomial representation for the compositions of s with k parts.

Since

$$\frac{1}{1 - \sum_{n=1}^{\infty} a_n x^n} = 1 + \sum_{n=1}^{\infty} \left[\sum_{k=1}^{n} C(n, k) \right] x^n = 1 + \sum_{n=1}^{\infty} C_n x^n, \quad (4.11)$$
we may interpret C_n to be the sum of all non-trivial polynomial representations of the compositions of n with k parts, i.e. C_n is a polynomial representation of the compositions of n. Notice that C_n is constructed by taking the set of compositions of n, replacing i with a_i, replacing $+$ with \ast, and summing the monomials. For example, since the compositions of 4 are \{1 + 1 + 1 + 1, 3 + 1 + 1 + 1, 1 + 2 + 1 + 1, 1 + 1 + 2, 4\}, $C_4 = a_4 + 3a_2a_1^2 + a_2^2 + 2a_3a_1 + a_1^4$. If $a_n = 1$, $C(n, k) = \hat{C}(n, k)$ is the number of compositions of n with k parts while $C_n = \hat{C}_n$ is the total number of compositions of n. We have shown that $\hat{C}(n, k) = \binom{n-1}{k-1}$ and $\hat{C}_n = 2^{n-1}$. Therefore, our calculations provide yet another proof that the number of compositions of n is 2^{n-1}, and the number of compositions of n with k parts is $\binom{n-1}{k-1}$. By combining our observations with Equations (4.6) and (4.7), we see that IGPPE $\prod_{n=1}^{\infty} (1 - h_nx^n)^{-r_n}$ provides a way of “factoring” the series $1 + \sum_{n=1}^{\infty} C_n x^n$, where C_n is the polynomial representation of the compositions of n.

We should mention a similar result holds for the GIPPE associated with $1 - \sum_{n=1}^{\infty} a_n x^n$ where a_n is a positive integer. Theorem 3.2 implies that

$$1 - \sum_{n=1}^{\infty} a_n x^n = \prod_{n=1}^{\infty} (1 + h_n x^n)^{-r_n}, \quad h_n \text{ a positive integer.} \quad (4.12)$$

We then invert Equation (4.12) to obtain

$$\frac{1}{1 - \sum_{n=1}^{\infty} a_n x^n} = \prod_{n=1}^{\infty} (1 + h_n x^n)^{r_n} = 1 + \sum_{n=1}^{\infty} C_n x^n, \quad (4.13)$$

where C_n is the aforementioned polynomial representation for the compositions of n.

References

